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Abstract. A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparti-
cles functionalized with complementary DNA single strands has been recently introduced. Upon quenching
below the DNA melt temperature, such a system results in a highly porous gel state, that may be devel-
oped in a new functional material of tunable porosity. In order to shed light on the gelation mechanism,
we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations
its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and
hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental
conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spin-
odal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods
and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the
system. Our results are consistent with the hypothesis that the mixture of DN A-coated fd-viruses and gold
nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.

1 Introduction

Since Onsager’s theoretical prediction of the isotropic-to-
nematic transition of hard rods [1], filamentous Tobacco
Mosaic viruses [2-4] and bacteriophage fd-viruses [5, 6]
have been used among others (e.g., boehmite [7], aka-
ganeite [8], silica [9], sepiolite clay [10], protein fibrils [11],
etc.) as rod-like colloids to test Omsager’s predictions of
the phase behavior of anisotropic particles. Indeed, viruses
are particularly appealing as an experimental realization
of rod-like colloidal particles both because of their high
monodispersity and because of their effective aspect ratio
that can be tuned from 10 up to 100 continuously. Such a
variable aspect ratio is possible —given the charge of the
side-coat proteins— by playing with the ionic strength in
solution and thus tuning the effective range of repulsion
between the viruses. A comprehensive review can be found
in ref. [5]. More recently the phase diagram of hard rods
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solutions has been extended to account for the presence
of non-adsorbing polymers or hard spheres causing a well-
defined short-ranged depletion attraction [6,11-13]. Such
binary systems containing asymmetric particles lead to
many new phases.

An even more controlled attraction between different
types of colloids can be achieved by functionalizing them
with short single-stranded (ss)DNA [14-16]. It is possible
to make use of the high specificity of DNA in terms of the
sequence of bases (Adenine, Cytosine, Thymine and Gua-
nine) along the ssDNA backbone, allowing it to reversibly
bind only to its complementary sequence purely via hy-
drogen bonds. In this way colloids grafted with a single
strand of DNA called « can only bind to colloids holding
the complementary sequence o’ when cooled below the
melt temperature T}, of the specific DNA sequence. T}, is
defined as the temperature where half of all possible base-
pairs between complementary strands are formed. Hence,
below T}, DNA-driven aggregation settles in, and colloids
functionalized with complementary DNA single strands
start to aggregate. Recently, ssDNA have been covalently
bound to the side-coat proteins of fd-virions [17]. In par-
ticular, one of us [18] experimentally studied the aggrega-
tion behaviour of a binary system of fd-virions and gold
nanoparticles (gold-NPs) for varying number ratios but
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overall low colloidal volume fractions. The binding rules
were chosen such that the roughly 880nm long, @ DNA-
coated virions could only bind to 50nm large gold col-
loids, densely grafted with o/ DNA [18]. A binary mixture
of semi-flexible rods (the fd-viruses) and spheres (the gold
nanoparticles) mutually interacting via a short-range ther-
mally reversible binding attraction was therefore obtained.
When the initially homogeneously mixed rod-sphere sys-
tem was quenched from the fluid phase into the two-phase
region below T, rapid aggregation occurred [18], possi-
bly driven by spinodal decomposition at the initial stages.
At a second stage, the incipient spinodal demixing was
kinetically arrested leading to a “fine-stranded” network
that was similar for all “quench” depths for cooling rates
slow enough to allow equilibrium hybridization. However,
“quenches” with very high cooling rates led to a much
coarser network.

The formation of low-density arrested structures in
colloidal systems has been highly debated in the last
years [19]. Several routes for gel formation have been thor-
oughly discussed, with particular emphasis on phase sep-
aration mediated gelation [20-23] and equilibrium gela-
tion [24]. In the first case, the driving force for phase sep-
aration is central in producing dense regions, despite the
small average sample concentration, in which dynamic ar-
rests take place [25]. When this is the case, the frozen
structure of the sample retains, encoded in its structure,
information of the originating phase separation process.
Vice versa in equilibrium gelation, expected to take place
in low-valence systems, phase separation is not encoun-
tered on cooling and the progressively longer lifetime of
the interparticle interaction is responsible of the slowing
down of the dynamics and the eventual kinetic arrest.
Even in the equilibrium gelation scenario deep quenches
can induce diffusion limited aggregation, which can in-
fluence the structural evolution of the system [26,27]. It
is thus crucial, in order to identify the correct gelation
scenario, to measure or calculate the equilibrium phase
diagram of the investigated system. In the present paper
we report the numerical study of a binary mixture of hard
rods and hard spheres respectively reflecting the size and
aspect ratio of the fd-virions and the size of the gold-NPs.
As in the experiments [18], in the simulations only rods
and spheres are assumed to attract via a short-range po-
tential. We numerically explore the equilibrium phase dia-
gram of the model, performing Monte Carlo simulations to
probe its stability with respect to fluctuations of density
in different phase points. We build the low-density branch
of the system’s binodal line as the boundary of the unsta-
ble two-phases region, confirming that in the experimental
conditions the system undergoes a phase separation which
—depending on the quench depth— can occur either via
nucleation and growth or via spinodal decomposition. In
particular, spinodal decomposition is shown to lead to the
formation of percolating structures even at low densities.
This confirms that DNA-coated rods and spheres form gels
as a result on an interrupted phase separation, in analogy
to spherical colloidal particles in the presence of polymer
depletants [20-23].
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Fig. 1. (a) Representation of the particles. A hard rod is mod-
elled as an ordered line of N, = 101 spherical beads of diameter
op = 0.16 on a length scale fixed by the hard spheres’ diam-
eter og = 1. (b) Representation of the attractive interaction
in the model. From the left to the right the interaction energy
E /e between a hard sphere and a hard rod varies upon varying
their relative distance. The maximum number of rod’s beads
interacting with the sphere via a square-well potential is six.

2 The model

We modelled the experimental system [18] as a binary
mixture of hard spheres and hard rods. Specifically, gold
nanoparticles were modelled as hard spheres of diame-
ter g = 50nm and fd-viruses were modelled as hard
rods of diameter o, = 8nm and length Ly = 0.808 pm,
with an aspect ratio of 101, thus neglecting viruses’ semi-
flexibility. Notice that the persistence length of fd-viruses
is 2.8 £ 0.7 um [28] and hence comparable to the viruses’
length. Different approaches have been previously pro-
posed and used in literature to model hard rods —e.g. the
hard-cylinders model [29,30] or the hard-spherocylinders
model [31-33]. In order to mimic the granularity of the
experimental DNA-driven interaction between virions and
gold-NPs we decided to adopt a bead model for hard rods,
namely modelling each hard rod as a rigid ordered line of
Ny, = 101 spherical beads of diameter o1, (thus reflecting
the chosen aspect ratio), as shown in fig. 1(a). We assumed
hard sphere excluded volume interactions between gold-
NPs, between beads composing two fd-viruses (providing
a hard-core repulsion between each pair of hard rods) and
between beads composing a virus and gold-NPs (provid-
ing an hard-core repulsion between each hard rod and each
hard sphere). We assumed a short-range square-well (SW)
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interaction of width A = 8 nm and depth ¢ (fixing our unit
of energy) between each bead composing a virus and each
gold nanoparticle, providing a short-range attraction de-
pending on the relative distance between each hard rod
and each hard sphere. Figures 1(a) and (b), respectively,
provide a visual representation of the particles in the sys-
tem and of the gold-virus interaction potential. Note that
the full binding free energy SAG of the sequence a-o'
used in the experiments was ~ 16.35 at room temper-
ature. However, this value significantly changes with T
(due to the large entropic contribution to DNA hybridisa-
tion), determining a sharp melting region of width roughly
10°C.

Formally, the gold-gold (GG), the bead-bead (bb) and
the gold-bead (Gb), pair potentials are

o ( ) oo, r<og, (1)
T =
e 07 T 2 aG,
> ( ) o0, 1 < Op, (2)
T =
* 07 r 2 Ob,
0, (Ub —|—U(;) ,
2
Bap(r) = { —e. M <r< (f’b;i”(*) LA (3)
0, r> (O'bgim LA,

where r is the centre-to-centre distance respectively be-
tween a couple of gold-NPs, a couple of beads, and a
bead and a gold nanoparticle. Notice that with the present
choice of parameters, the lowest gold-virus interaction en-
ergy corresponds to —6e (see fig. 1(b)), i.e. six adjacent
rod beads can enter simultaneously in the bonding volume
of the square-well.

We notice that in the experiments the observation
of the cluster aggregates was performed on the gravity-
deposited clusters on the bottom of the sample. We did
not add gravitational fields in our calculations, as our aim
was the evaluation of the equilibrium phase diagram and
the identification of the gelation mechanism.

3 Numerical methods

We investigated the model with different Monte Carlo
(MC) techniques.

3.1 Monte Carlo in the canonical ensemble

We performed simulations in the canonical ensemble,
namely at fixed number of fd-viruses Ny, number of gold
nanoparticles Ng, volume V' and temperature 7', with pe-
riodic boundary conditions, in a wide region of T" and total
volume fractions

3N\/7TO'%LV + 2Ng7raé

¢= 12V
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We mostly kept the composition ratio X = Ng /Ny at the
value X =5 (one of the values explored in the experimen-
tal study). At each MC step we randomly chose one of
the two species, and then one of the particles of the cho-
sen species. We then performed a random displacement of
the chosen particle. In case of a sphere, we just applied
a random translation to its center with a maximum am-
plitude of +0.50¢. Instead for a rod we applied both a
random displacement to its centre of mass —with a max-
imum amplitude of +0.50,— and a random rotation to
its direction —implementing the algorithm described in
pag. 48 of ref. [34]. The algorithm requires a parameter
controlling the maximum rotational angle that we set to
v = 0.02. The proposed displacement of the chosen par-
ticle was then accepted or rejected according to the stan-
dard Metropolis acceptance rule (see p. 30 of ref. [34]).
Namely, if the proposed move led to the overlap of the
displaced particle with any other particle in the system
the move was automatically rejected. Otherwise, it was
accepted with probability

min (1, eiﬂAU) ,

where AU is the variation of energy eventually caused
by the proposed move. Algorithms to check the overlap
between any couple of particles were therefore necessary
in order to test move acceptances. We designed an effi-
cient algorithm to test the overlap between two bead-rods
—based on the determination of the points of minimum
distance between two line segments— that reduces the
rod-rod overlap test to at most 52 sphere-sphere overlap
tests between couple of beads. The efficient evaluation of
the overlaps and the calculation of the binding energy be-
tween a hard rod and a hard sphere —based on the deter-
mination of the minimum distance between a line segment
and a point— is afterwards simple to design.

We also implemented cluster moves. Clusters are de-
fined as aggregates of bonded rods and spheres, where a
bond between a sphere and a rod exists if their pair inter-
action is negative. During the MC simulation, every (on
average) 50 MC steps we randomly picked a cluster and
attempted to randomly translate it by at most +£2.50¢
and rotate it (around the cluster’s centre of mass) via a
suitable random rotation matrix. If the chosen cluster was
percolating —and thus infinitely extended given the peri-
odic boundary conditions— the cluster move was rejected.
To satisfy detailed balance without having to implement
cluster-breaking moves, we accepted the cluster displace-
ment if and only if it did not lead to overlaps or variations
of the bonds in the system. We note that MC simula-
tions produce a Brownian-like dynamic evolution —and
hence the number of MC steps could be associated with a
time evolution— only under specific conditions [35-38].
Similarly, cluster moves could be selected and adapted
to mimic a Brownian —or even a hydrodynamic— evo-
lution, coupling the translational and rotational displace-
ment with the mass —or hydrodynamic radius— of the
clusters [39,40]. Since our study was not aimed at pre-
cisely characterizing the structure of the arrested phase,
we did not try to implement these more sophisticated MC
algorithms.
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Fig. 2. Snapshot of a simulation in the Gibbs ensemble at
kgT/e = 1.6, ¢ = 3.0% and X =5 of the parent phase.

3.2 Gibbs ensemble

To support the evidence of a phase separation and to
provide estimates of the coexisting compositions along
the experimental dilution line, we performed Gibbs en-
semble simulations at different total packing fractions ¢
for the same temperature 7. As in the original formu-
lation [34, 41, 42], we studied two simulation boxes (I
and I7) in parallel, containing the two different phases
of the system, which were characterized, respectively, by
packing fractions ¢; and ¢;; and compositions X; and
Xir (see fig. 2). At each MC step we randomly picked
—with relative probabilities chosen in order to enhance
equilibration— one of the following move proposals:

— Standard MC displacement move: a box and a species
were randomly chosen, and the displacement of a ran-
dom particle of the chosen species in the chosen box
was proposed.

— Volume exchange moves: a complementary variation
of the boxes’ volumes V; — Vi + AV and V;; —
Vir — AV was proposed. AV was randomly picked
with uniform probability in the interval [—dV;0V],
with 6V = 50% nm?.

— Particle exchange moves: a species and a box were
randomly chosen and a random particle of the chosen
species in the chosen box was proposed to be removed.
This removal was proposed along with the insertion of
the particle in a random state in the other box.

Each of this proposed moves was then eventually accepted
according to specific acceptance rules designed by Pana-
giotopoulos [41,42] in order to achieve phase equilibrium
between the two boxes. The composition X, the number
of particles N, the volume V and the temperature T of
the total system —the so-called parent phase— were con-
served throughout the simulation.

We performed Gibbs ensemble simulations with total
packing fraction ¢ and composition X lying inside the
unstable two-phase region. After reaching thermalization
the coexisting phases (¢r, Xr) and (¢r7, X;7) were deter-
mined. By varying the total ¢ and X it was possible to
re-build the coexistence curves of the system in the ¢-X
plane for a given T

Eur. Phys. J. E (2017) 40: 7

Fig. 3. Snapshot of a direct coexistence simulation at kgT'/e =
1.6, ¢ = 3.0% and X = 5.

3.3 Direct coexistence

Direct coexistence simulations, initially introduced by
Ladd and Woodcock [43,44] to study the triple point
of Lennard-Jones models, allow for the determination of
phase equilibria avoiding free energy calculations.

The method consists in performing a standard MC
simulation in the canonical ensemble in the presence of two
interfaces between two different phases (see fig. 3). During
the simulation the total X, N, V —the parent phase— and
T were thus conserved. Once thermalization was reached
the bulk properties of the two coexisting phases (¢r, X1)
and (¢r7, Xrr) were measured.

4 Results and discussion

We focused on the fixed composition X = Ng/Ny = 5,
experimentally studied in ref. [18], corresponding to a ra-
tio of five hard spheres per hard rod. In the canonical
ensemble, we investigated several ¢ —close to the one
experimentally studied in ref. [18] ¢ = 0.1124% (corre-
sponding to a packing fraction ¢g = 0.1% of the only
gold-NPs)— for several T. Starting from high T', where
the system is properly described by a configuration of
randomly disposed particles, we progressively lowered T
and equilibrated the system. Below a cross-over T', equi-
libration became impossible within a simulation run, as
the potential energy continued to drift during the entire
run. The same cross-over T signalled a drop in the poten-
tial energy averaged over the last third of the simulation
run. Such “instantaneous” drop of the energy upon a lit-
tle variation of T is a hint of aggregation and first-order
phase separation occurring in the system. Figure 4 shows
the resulting low-density branch of the equilibrium phase
diagram, in which open symbols mark phase points sta-
ble in the high-T" and low-¢ homogeneous phase, while
filled symbols indicate phase-separating points. As shown
in the inset, the line separating open and closed points
—rproviding a proxy for the system’s binodal line— were
well approximated by kgT/e = Aln(¢) + B, using fitting
parameters A = 0.21, B = 1.77.

The evolution of the potential energy during the simu-
lation (see fig. 5) allowed us to distinguish between two
possible mechanisms for phase separation. On the one
hand, if the system was quenched below but near the bin-
odal line —thus for shallow quenches into the two-phase
region— the system underwent a phase separation con-
sistent with a nucleation event: after remaining in the
metastable fluid phase for a time t¢,, (¢, becomes longer
when nearer to the binodal line), the system nucleates and
grows mostly a single big cluster of the dense phase. On
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Fig. 4. Equilibrium phase diagram along the dilution line at
composition X = 5. Open symbols define the region in which
the system is in a homogeneous, stable fluid phase, while filled
symbols identify state points in the unstable or metastable
region that is dominated by density fluctuations. Specifically,
blue filled points correspond to state points in which the sys-
tem nucleates and grows the equilibrium phases, while filled
red points correspond to points in which the system undergoes
spinodal decomposition (see fig. 6). The dashed black line is
our proxy for the system’s binodal line. It is a fit of the func-
tion kgT/e = Aln(¢) + B, with fitting parameters A = 0.21,
B = 1.77. The shaded area below the binodal line is the unsta-
ble two-phase region, were the system phase-separates after a
quench from high 7. In the inset, the phase diagram is reported
in semi-log scale. Squares indicate percolating state points.

the other hand, upon deeper quenches below the binodal
line the system phase-separated via a spinodal decompo-
sition mechanism, characterized by a slow and continu-
ous decrease of the potential energy associated to the lo-
cal growth of many small clusters immediately after the
quench. The two different mechanisms are marked by full
symbols with different colors in fig. 4. Snapshots of the
phase-separated system, both via nucleation and phase
separation, at the end of the simulation are shown in
fig. 6 (top). Supporting videos of the system undergo-
ing nucleation (SV1) and spinodal decomposition (SV2)
are provided as Supplementary Material to this paper.
The evolution of the spheres’ structure factor [45] S(q) is
consistent with the previous classification: after a quench
from the fluid phase —characterized by an essentially flat
S(q)— into the two-phase region a low-¢ signal arises in
the structure factor, strongly dependent on the phase sep-
aration mechanism. On the one hand, the evolution of S(q)
along the nucleation-and-growth route is characterized by
a growing signal for ¢ — 0. On the other hand the fastest
signal’s growth in S(g) takes place at a finite low-g value
along spinodal decomposition. The S(g) evolution, both
during nucleation and during spinodal decomposition, is
shown in fig. 6 (bottom). Interestingly, even if a clear
growth of a peak in S(¢) at finite ¢ was observed in ex-
periments, the nucleation-and-growth regime was elusive.
The reason for this is most likely the fact that nucleation
is quickly followed by sedimentation, driven by the larger
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Fig. 5. Average potential energy (per sphere) as a function of
the number of MC steps starting from a high-T" configuration
of packing fraction ¢ = 0.1124% and X = 5 —a configura-
tion of randomly distributed particles— quenched to different
T (shown in the legend). The system at kg7 /e = 1.4 is stable
in the high-T" fluid phase, while phase separation occurs after
quenches at kgT'/e = 1.26 and kg7 /e = 1.1, respectively lead-
ing to nucleation and spinodal decomposition (and to the final
configurations shown in fig. 6).

density of the aggregates. Hence clusters started to form
and sediment while still small, depleting the top fluid sur-
face and therefore stopping the growth phase. This could
explain why even at low quenches the samples appeared
to have undergone a spinodal decomposition process.

To estimate if the numerically generated phase-
separated configurations —in particular the ones obtained
in the spinodal region— could be associated with per-
colating configurations, at least in a kinetically arrested
condition, we extended the previous simulations turning
on cluster moves. These moves, by collectively displac-
ing groups of bonded particles, led to diffusion and ag-
gregation of clusters and favoured a further decrease of
the potential energy until a completely arrested state was
reached. Such arrested state was not necessarily an equi-
librium state, but eventually a non-equilibrium kinetically
arrested state, whose structure was therefore strongly
influenced by the system’s out-of-equilibrium dynam-
ics. Therefore our simulations —not providing a reliable
out-of-equilibrium Brownian or hydrodynamical dynam-
ics (see sect. 3.1) and not taking into account gravity—
could not capture the real structure of the resulting ar-
rested state. Nevertheless, they showed that phase sepa-
ration can lead to percolation in the system —which for
instance can only be favoured by the action of gravity.
Several of the final arrested configurations at the end of
the cluster move simulations were indeed characterized by
the presence of a percolating cluster, even at low packing
fractions. These percolating states are marked as squares
in fig. 4. In fig. 7 a snapshot of the final configuration
of a simulation with and without cluster moves is shown.
Therefore, when the system was deeply quenched into the
two-phase unstable region, phase separation via spinodal
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Fig. 6. Top panels: Snapshots of the system at ¢ = 0.1124% (corresponding to the experimental ¢) in the fluid phase (a:
kgT/e = 1.4) and after a shallow quench leading to nucleation (b: kgT/e = 1.26) and a deep quench leading to spinodal
decomposition (c: kg7 /e = 1.1). The difference between the two separation mechanisms is evident: nucleation leads to the
growth of a single cluster of the dense aggregated phase after a certain time spent in the metastable fluid phase, while spinodal
decomposition leads to the aggregation of many small local clusters immediately after the quench. Bottom panels: Evolution
in time of S(¢) in the fluid phase (a: kg7 /e = 1.4) and during phase separation both via nucleation (b: after a quench at
kT /e = 1.26) and via spinodal decomposition (c: after a quench at kgT'/e = 1.1).

Fig. 7. Snapshots of the system of packing fraction ¢ = 0.45% at temperature kgT'/e = 1.2 in the final configuration of a
simulation with (right) and without (left) cluster moves. Cluster moves allow for the diffusion and aggregation of clusters and
may lead to the formation of a percolating network of clusters (coloured in deep blue) in the final configuration of the simulation,

namely to percolation in the system.

decomposition led to the formation of many small clusters
that showed no correlation at all in their orientations, al-
though presenting some internal orientational order (see
sect. 4.1). These small clusters —randomly displaced and
oriented inside the simulation box— then progressively
diffused and merged, eventually leading to a percolating
arrested state even at low densities. This, along with the

evidence of a spinodal decomposition occurring in the sys-
tem in the experimental conditions, allowed us to label the
experimental gelation of the system as a non-equilibrium
gelation via arrested spinodal decomposition. We note on
passing that in all of our standard Monte Carlo simula-
tions the total excluded volume of the hard rods compo-
nent never exceeds the value theoretically predicted by
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Fig. 8. Coexisting phases at temperature kgT/e = 1.6 de-
termined (a) in the NVT-Gibbs ensemble and (b) via direct
coexistence. Triangles represent the ¢ and X of the uniform
parent phases (the total ¢ and the total X of the full system).
Filled circles of the same colour indicate the resulting coexist-
ing phases. The dashed lines, connecting the coexisting phases
and passing through the parent phase, indicate all total X and
¢ that would separate in the same coexisting phases. The cyan
shaded area indicates points in which the packing fraction of
the only hard rods is in the coexistence region of the isotropic-
to-nematic phase transition of a pure rods’ system evaluated
according to Onsager’s theory. Notice that one of the coex-
isting phases in which the system phase-separates approaches
the isotropic-to-nematic phase transition for the hard rods, co-
herently with the tendency of the dense phase to order into
nematic-like ordered structures discussed in sect. 4.1 and in
the conclusions.

Omnsager [1] for the isotropic-to-nematic phase transition
of a pure rods’ system. Specifically, the packing fraction
of the total system (both hard rods and hard spheres) at
which the excluded volume of the only hard rods is the the-
oretically predicted one at the isotropic-to-nematic phase
transition varies with the composition of the system, as
shown in fig. 8.

The phase diagram presented in fig. 4 provides an in-
dication of the T-¢ region where a homogeneous solu-
tion with X = 5 becomes thermodynamically unstable.
Due to the binary nature of the system, such a line does
not provide an indication of the coexisting equilibrium
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phases when the homogeneous state point is quenched in-
side the unstable region. To support the evidence of a
phase separation and to estimate the coexisting densities
in the X-¢ plane at least for one T' (namely kgT'/e = 1.6),
we performed simulations in the NVT-Gibbs ensemble.
The results for six different starting packing fractions,
all at X = 5, are reported in fig. 8(a). In all cases we
observed that the system phase-separates in a very low-
density fluid phase mainly composed of spheres, whose
composition strongly varied with ¢ of the parent phase,
and a very-high-density phase whose composition did not
change significantly upon variations of the parent phase,
being typically about X ~ 3-4.

To further support these results, we performed di-
rect coexistence simulations of four of the six parent
phases studied via Gibbs ensemble simulations. The re-
sulting estimates for the coexisting phases at temperature
kpT/e = 1.6 are reported in fig. 8(b). The results of direct
coexistence simulations confirmed the tendency of the sys-
tem to phase-separate in a low-density fluid phase mainly
composed of spheres and a high-density phase of composi-
tion weakly depending on the parent phase. In particular,
the ¢ of both the low- and high-density phases and the
composition of the high-density phase compare well with
the results of Gibbs ensemble simulations. We note that
the values of the composition of the low-density phase dif-
fer between the two numerical methods, signalling a nu-
merical difficulty in properly equilibrate the rods between
the two phases. Still, the evidence of a phase separation
is indisputable.

4.1 Low-temperature clusters structure

The final configurations of the simulations provided in-
formation on the structure of the aggregates. At low ¢,
clusters were formed by junction points, in which a large
number of rods coalesce with different orientations and
long straight arms are formed by several parallel rods dec-
orated with gold-NPs. These arms (see fig. 9(a)) could
act as nuclei of an incipient crystallization process, be-
ing formed by highly ordered structures that could be
replicated in space, forming planar extended structures.
Indeed, we find that each rod has at most ~ 32 contacts
with spheres, i.e. two full rows of spheres (up to 16 aligned
spheres could geometrically bind to each rod). Also in the
experiments hints of such local alignment were observed
when the aggregated structures were analysed in term of
a chord-analysis [18]. However, working at the limit of the
optical resolution of the microscope, we were not able to
identify these ordered structures on particle scales. We
also note that most of the time we observe partially in-
complete rows of spheres coordinated to the same rod,
leaving some space for rattling. To quantify this obser-
vation, fig. 9(b) shows the radial distribution function of
the spheres, characterized by a first main peak at val-
ues of r ~ 60nm, 20% higher than the spheres’ contact
distance.



Page 8 of 9

Fig. 9. (a) Representation of small clusters observed during
spinodal decomposition in the system at ¢ = 0.1124% after a
quench from kgT'/e = 1.4 to kgT'/e = 1.1, below the binodal
line. (b) Radial distribution function of spheres in the system
at ¢ = 0.1124% after spinodal decomposition at kgT'/e = 1.1.
A first peak is present at r &~ 60 nm, compatible with a typical
spacing between the spheres bundled in the clusters.

5 Conclusions

The identification of the gelation mechanism active in a
binary mixture of complementary DNA-functionalized fd-
viruses and gold-NPs has motivated the present investiga-
tion. The reported Monte Carlo simulations suggest that
indeed a thermodynamic instability initiates the phase
separation process, producing regions in which rods inter-
connected via gold-NPs condensate. Gibbs-ensemble and
direct coexistence simulations confirm the presence of a
phase separation phenomenon in the X-¢ windows ex-
plored by the experiments. These results allow us to clas-
sify the experimentally observed arrest mechanism as an
interrupted phase separation, i.e. in the same category
as colloidal gelation in the presence of depletants [20-23].
We observe both nucleation and spinodal decomposition
phenomena, thereby extending our insight into the system
beyond what is experimentally possible. As confirmed by
Gibbs ensemble and direct coexistence simulations, both
nucleation and spinodal decomposition lead to phase equi-
librium between a low-density spheres-rich phase and a
high-density phase of composition X ~ 3—4. While nucle-
ation generates few isolated clusters of the dense phase in
equilibrium with a less dense phase composed essentially
of isolated gold particles, the spinodal decomposition path
generates fluctuations of the density with a characteristic
length scale (evidenced by a growing maximum at a finite

Eur. Phys. J. E (2017) 40: 7

wave vector in S(q)), leading to the formation of multiple
clusters. The diffusion and aggregation of these clusters
leads —even at small ¢— to the formation of percolat-
ing networks in the system. Analysis of the configurations
shows that the network is formed by branching points in
which several orientationally disordered rods are linked to-
gether by spheres, providing a microscopic description of
the non-resolved structures observed by fluorescence mi-
croscopy imaging carried on the system in ref. [18]. This
analysis should however be taken with a pinch of salt, con-
sidering that the networks resulting from our simulations
are generated with an un-physical out-of-equilibrium dy-
namics and in the absence of gravity. At low T, the packing
of spheres around rods induces some local ordering. Even
though the overall orientation of rods remains uncorre-
lated, this is the hint of a tendency of the system to orien-
tationally order in the dense phase. An equilibrium high-
density crystal or nematic phase of composition X ~ 3-4
coexisting at equilibrium with a low-density spheres-rich
fluid phase, not observed because of the dynamical arrest
of the system in a non-equilibrium arrested state, cannot
be excluded.
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