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ABSTRACT
We report a numerical test of the Adam–Gibbs relation for the TIP4P/2005 model of water. The
configurational entropy is here evaluated as the logarithm of the number of different basins in
the potential energy landscape sampled in equilibrium conditions. Despite the non-monotonic
behaviour which characterise the density dependence of the diffusion coefficient, the Adam–Gibbs
relation is satisfied within the numerical precision in a wide range of densities and temperatures.
We also show that expressions based on the excess entropy (the logarithm of the number of sam-
pled microstates in phase space) fail in the region of densities where a tetrahedral hydrogen bond
network develops.
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1. Introduction

One of the most intriguing phenomena in condensed
matter physics is the glass transition. The temperature
(T) at which it occurs is conventionally defined at the
T at which viscosity (η) reaches values of the order
of 1012 Pa s. Such high viscosities render flow impossi-
ble on reasonable observation timescales and hence the
liquid turns into a disordered solid. The tendency of
liquids to form disordered solids, i.e., glasses, on cool-
ing varies. Protein solutions typically form disordered
arrested states readily [1], making crystallisation the hard
problem [2]. Others such as silica are both fairly easily
obtained as a crystalline solid or as a glass [3]. Finally,
there are substances that tend towards crystallisation,
challenging the creativity of experimentalists if a glass
is desired. An example of such a bad glass former is
water. Several methods had to be devised to obtain it in
its glassy form [4–7]. Besides the tendency of a material
to form a glass, an interesting feature is the change of
η or of the diffusion coefficient D upon cooling before
reaching the glassy state. The way η or D change with
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T conveys information not only on the possibility to
shape the supercooled liquid on its way to the glass,
but also on the physical process controlling the slow-
ing down of the dynamics. Typically two types of liquids
are discerned. Strong liquids show an Arrhenius-type
behaviour, i.e., ln η vs. 1/T is linear, whereas fragile liq-
uids display Super-Arrhenius behaviour, described by the
Vogel–Fulcher–Tammann (VFT) relation [8]:

η = η∞eBT0/(T−T0). (1)

Here B, T0 and η∞ are (path dependent) constants.
An intriguing connection between thermodynamics

and the VFT relation for dynamical quantities is offered
by the Adam–Gibbs (AG) relation [9]:

η = η∞eA/(TSconf ). (2)

Here Sconf indicates the configurational entropy, propor-
tional to the logarithm of the number of distinct rele-
vant liquid configurations. The idea behind Equation (2)
is based on the concept of ‘cooperatively rearranging
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regions’ (CRR), spatial regions in which relaxation pro-
cesses take place cooperatively. The activation energy for
such relaxations is assumed to be extensive in the num-
ber of atoms or molecules that make up the CRR. The
increase in the size of theCRRbecomes thus associated to
a decrease of the configurational entropy and responsible
for the slowing down of the dynamics on supercooling.
Numerical studies have attempted to identify the CRR
from atomistic configurations. For the case of water see
for example Ref. [10]. If Sconf vanishes at finite T, the AG
model is consistent with approaches predicting an under-
lying (thermodynamic) phase transition as origin of the
divergence of relaxation time. If TSconf can be linearly
expanded around the temperatureT0 at which it vanishes
as TSconf = (A/B) · (T − T0) /T0, (where now A/BT0 is
the coefficient of the linear expansion) Equation (2) coin-
cides with Equation (1). In this case T0 is called the
Kauzmann temperature, being the T where Sconf = 0.
Equations (1) and (2) can also be written in terms of the
diffusion constant D or other structural relaxation times
τ . Due to the possible decoupling between D and η the
parameters in the equations are in some cases sensitive
to the chosen observable. For a critical exam of the AG
model see for example [11].

The potential energy landscape (PEL) approach iden-
tifies Sconf in the liquid state as the logarithm of the num-
ber of distinct basins sampled on the potential energy
surface [12], each of them conventionally associated to
the minimum potential energy of the basin, the so-called
inherent structure (IS). The PEL approach offers also
a consistent way to numerically evaluate Sconf [13–16],
which avoids the approximation of Sconf as the differ-
ence between the liquid and the solid entropy commonly
adopted in experiments [17–19]. PEL-based studies have
offered the possibility to check the validity of the AG
relation in several model potentials [20–27]. In most
cases, it has been shown that a representation of lnD
or ln η vs. (TSconf )−1 is consistent with the numerical
results.

Very recently we have reported a numerical study of
the statistical properties of the PEL for the TIP4P/2005
model of water [28]. We have shown that a Gaus-
sian PEL properly describes the simulation data, repro-
ducing the thermodynamic anomalies characteristic of
water and predicting the existence of a liquid-liquid
critical point. In this contribution we expand the land-
scape analysis to dynamics, testing the validity of the
Adam–Gibbs relation for TIP4P/2005, the most accurate
classical water model to date [29,30]. For completeness,
we also compare the T and density (ρ) dependence of
the diffusion coefficient with other propositions relat-
ing the excess Sexc and the two-point entropy with
dynamics [31].

2. Simulation details

2.1. NVT simulations

We perform NVT simulations of 1000 TIP4P/2005
molecules in a cubic box utilising GROMACS 5.1.2 [32]
with a leap-frog integrator using a timestep of 1 fs. The
temperature is controlled using a Nosé-Hoover ther-
mostat [33,34] with a time constant of 0.2 ps. For the
coulombic interactions we use a particle mesh Ewald
treatment [35] with a Fourier spacing of 0.1 nm. For both
the Lennard-Jones and the real space Coulomb interac-
tions, a cut-off of 0.85 nm is used. Lennard-Jones inter-
actions beyond 0.85 nm have been included assuming
a uniform fluid density. Finally, we maintain the bond
constraints using the LINCS (Linear Constraint Solver)
algorithm [36] of 6th order with one iteration to correct
for rotational lengthening. We investigate 14 different
densities from 0.9 to 1.42 g/cm3 and seven different Ts
between 200 and 270K. Very long equilibration runs (up
to 100 ns) followed by equally long production runs have
been performed.

2.2. Diffusivity

To evaluate the diffusion coefficient D we use the stan-
dard approach employed in molecular simulations [37].
We calculated the mean-square displacement

MSD(t′) =
〈(�r(t + t′) − �r(t))2〉 (3)

for all MD runs. Here the average is over all particles in
the system and over different initial times t, while �r indi-
cates the oxygen position of the generic molecule. Since
the oxygen is significantly heavier than the hydrogen
atoms, the oxygen position provides a good characteri-
sation of the centre of mass. From the long-time limit of
the MSD we evaluate D via the Einstein relation

lim
t′→∞

MSD(t′) = 6Dt′. (4)

2.3. Entropy

In this study we evaluate five different entropies. The
entropy of the liquid Sliq, the vibrational entropy Svib,
the configurational entropy Sconf , the excess entropy of
the liquidwith respect to the ideal gas Sexc and a two body
approximation of the latter S(2).

Sliq at each state point is calculated from the total
energy Eliq and the free energy of the liquid Fliq via

TSliq = Eliq − Fliq. (5)

In Ref. [28] we evaluated Fliq of TIP4P/2005 using a
series of thermodynamic and Hamiltonian integration
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steps [37–39] as well as Eliq. The vibrational part of the
entropy (Svib) is split into two components. A harmonic
component Sharm and an anharmonic component Sanh.
For the evaluation of Sharm at least 30 equally spaced con-
figurations were extracted from theMDproduction runs.
These configurations were minimised using a conjugate-
gradient algorithm. The configurations obtained in this
way are the inherent structures (IS). For the IS we calcu-
lated the density of states by diagonalising the 6N × 6N
Hessian matrix, thereby obtaining the eigenfrequencies
ωi. From these frequencies we calculate Sharm as

Sharm = kB
6N−3∑
i=1

(1 − lnβ�ωi). (6)

Here � denotes Planck’s constant in its reduced form. To
evaluate the entropic contribution arising form anhar-
monicities [28]Sanh we fit the difference between the
potential energy and the IS energy along isochores as a
polynomial in T (with coefficients ci), corresponding to

Sanh =
3∑

i=2

i
i − 1

ciTi−1. (7)

Then Svib and Sconf are calculated via

Svib = Sharm + Sanh, (8)

and

Sconf = Sliq − Svib. (9)

The excess entropy with respect to the ideal gas is com-
puted from

Sexc = Sliq − Sid. (10)

Sid is calculated from the canonical partition function Zid
of a system of non-interacting water-shaped molecules:

Zid = ZTZR
N!

. (11)

This partition function can be split in a translational part

ZT =
(
V
(
2πmkBT

h2

)3/2
)N

(12)

and a rotational part

ZR =
(
1
2

(
8π2kBT

h2

)3/2 (
πIxIyIz

)1/2)N

, (13)

where m is the mass of the water molecule, Ix, Iy and
Iz are the moments of inertia along the three principal
axes, kB is Boltzmann’s constant and h is Planck’s con-
stant. The factor 1/2 in front of ZR accounts for the

water molecule’s C2v symmetry [40]. From this partition
function we calculate the free energy of the ideal gas

Fid = −kBT lnZid (14)

and the ideal gas entropy

TSid = 3NkBT − Fid. (15)

Finally we compute a two-body approximation of the
translational component of the excess entropy S(2) from
the O-O-pair correlation function g(r) [31]:

S(2)

NkB
= −2πρ

∫
{g(r) ln[g(r)] − g(r) + 1}r2dr, (16)

where ρ denotes the molecule number density.

3. Results

Figure 1 shows the self-diffusion constant as well as the
calculated entropies for all studiedT and ρ. All quantities
show maxima in their respective ρ dependence, consis-
tent with the unconventional dynamic and thermody-
namic behaviour of water. As already pointed out [20] the
maximum in Sconf can be explained as a balance of two
mechanisms. At low ρ the structure of the liquid resem-
bles the one of a tetrahedral network which is expected
to be characterised by a small number of potential energy
minima and therefore a small Sconf . On increasing ρ, the
network is progressively distorted increasing the number
of potential energy minima and thereby Sconf . At even
higher ρ the Lennard-Jones repulsion becomes domi-
nant, decreasing the number of minima and Sconf . This
non monotonic behaviour of Sconf is already evident at
high T. Indeed, the estimated total number of PEL basins
does already show such non monotonic behaviour [28].
Also the maxima in Sliq and D are consistent with the
previous results on the SPC/E model of water [20]. The
observed maximum in Svib in Figure 1 however contrasts
the result for SPC/E, where no maximum was reported.

From the T dependence of both Sconf and D it is pos-
sible to check the validity of the Adam–Gibbs relation
(Equation (2)). Figure 2(a) shows ln(D) vs. 1/TSconf .
The same data are also reported in Figure 2(b) arbitrarily
shifted in the y direction to highlight the linear depen-
dence, consistent with the theoretical prediction of the
Adam–Gibbs relation. The density dependence of the
parameters A and D∞ are shown in Figure 2(c). Both A
and D∞ appear to approach a density independent value
at large ρ. Significant deviations are only visible at low ρ,
in the region where a well connected network of hydro-
gen bonded molecules develops. We note on passing that
if the thermal velocity

√
kBT/M is explicitly accounted
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Figure 1. Density dependence of the diffusion constant (a), the
configurational entropy (b), the vibrational entropy (c) and the liq-
uid entropy (d). The data are shown for all studied densities and
temperatures.

for by normalising D, the quality of the AG fit remains
identical.

For completeness, we compare the TIP4P/2005 data
also with the excess entropy scaling [31,41–47] propo-
sition which relates D with the excess entropy Sexc. The

Figure 2. Semi-log plot of the diffusion constant D vs. 1/TSconf for
all studied state points. Part (a) shows the data as obtained and
part (b) shows vertically shifted data. Here the solid lines repre-
sent best fits with the Adam–Gibbs relation (Equation (2)). Part (c)
shows the parameters obtained by fitting the data shown in (a)
with Equation (2). The main axis shows the parameter A and the
alternative axis the pre-exponential constant D∞.

rationale behind this hypothesis is that dynamics is con-
trolled by the total number of accessible microstates in
phase space. The validity of such a scaling can be tested if
an adimensional diffusion constant D∗ is plotted against
Sexc. D∗ is commonly defined as [42]

D∗ = Dρ1/3√
kBT/M

, (17)

to scale out the the trivial thermal velocity contribution√
kBT/M. Here ρ is the molecule number density andM

the molecular mass.
We summarise the corresponding results in Figure

3(a). The data clearly show that there is no data col-
lapse for densities lower than 1.1 g/cm3. A reasonable
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Figure 3. Plots of the reduced diffusion constant versus Sexc (a)
and S(2) (b).

collapse is observed for 1.1 < ρ < 1.3 only, i.e., in the
region where the hydrogen bond network is significantly
distorted. Finally we note that if one approximates the
excess entropy with the translational contribution S(2)

(see Figure3(b)) an even worse scaling is observed, in
accordance with the results of Chopra et al. [31] for
SPC/E.

4. Conclusions

We have recently reported [28] an exhaustive investiga-
tion of the potential energy landscape of TIP4P/2005, one
of the most accurate classic water models. This model
is able to reproduce the complex pattern of thermody-
namic anomalies which characterise liquid and super-
cooled water [48]. In that study an accurate evaluation
of the number of PEL basins sampled at each T and ρ

has been carried out, providing access to the configura-
tional entropy. Here we combine the evaluated diffusion
coefficient with the associated configurational and excess
entropy to test the validity of the Adam–Gibbs relation
and of the excess entropy scaling. Despite the complexity
of the system (which is characterised by non-monotonic
dependence of the diffusion coefficient on the density),
lnD is linear in 1/TSconf for all densities. The present
data, and the previously available data for the SPC/E
model [20], provide strong support to the hypothesis that
the number of PEL basins is a key quantity in controlling
the dynamics in supercooled water.
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