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We report a numerical study of the statistical properties of the potential energy landscape of
TIP4P/2005, one of the most accurate rigid water models. We show that, in the region where equili-
brated configurations can be generated, a Gaussian landscape description is able to properly describe
the model properties. We also find that the volume dependence of the landscape properties is con-
sistent with the existence of a locus of density maxima in the phase diagram. The landscape-based
equation of state accurately reproduces the TIP4P/2005 pressure-vs-volume curves, providing a sound
extrapolation of the free-energy at low T. A positive-pressure liquid-liquid critical point is predicted
by the resulting free-energy. Published by AIP Publishing. https://doi.org/10.1063/1.5023894

I. INTRODUCTION

The potential energy landscape (PEL) framework offers
an intuitive description of the physics of low temperature
(T ) liquids.1 It is based on the idea that molecular motions
at low T can be split into anharmonic vibrations around
potential energy local minima (the so-called inherent struc-
tures,2 ISs) and infrequent visits of several different such
minima.3

Computer simulations have been crucial in supporting
the PEL approach.2 Efficient conjugate gradient minimiza-
tion algorithms provide the possibility to associate with each
equilibrium configuration its IS and to study the connec-
tion between the system dynamics and the PEL.4,5 The onset
of a two-step relaxation decay of correlation functions has
been shown to coincide with the onset of the PEL dominated
region,6 i.e., with the temperature below which the energy eIS

of the sampled IS becomes T dependent. As envisioned by
Goldstein,3 below this T, deeper and deeper PEL basins are
visited on supercooling.

The power of the PEL approach is rooted not only in
the possibility of closely comparing the theoretical assump-
tions with numerical results, but more importantly in the
possibility of developing a formal description of the ther-
modynamics of supercooled liquids. The number of basins
of depth eIS and their shape are key ingredients to express
the liquid partition function (and hence the free energy)
in terms of statistical properties of the PEL.7–12 Modeling
of such quantities (supported by a one-to-one comparison
with numerical results) offers the possibility to predict, with
clear assumptions, the thermodynamics of supercooled liq-
uids8 and in limited cases even the thermodynamics in out-
of-equilibrium conditions.13 In addition, the analysis of the
ISs provides insights into the glass phases of the material
studied.

An interesting application of the PEL framework is
offered by the study of water, a liquid which continues to chal-
lenge contemporary science due to its complex behavior.14–17

A hallmark of this complexity is the well-known maximum

in density at ambient pressure (P) around 4 ◦C and the min-
ima displayed by the isobaric heat capacity and the isothermal
compressibility. In addition, these response functions show
a marked change in supercooled states. For state-of-the-art
results, see, for example, Refs. 18 and 19. Several recent
reviews15–17,20 discuss in detail the principal thermodynamic
scenarios compatible with the experimental observation: (i)
the Speedy limit of stability scenario21 (recently observed in
numerical studies of colloidal model particles22,23), (ii) the sin-
gularity free scenario,24 and (iii) the liquid-liquid critical point
(LLCP) scenario.25 This last scenario, depending on the locus
of the second critical point, changes into the critical point free
scenario when the critical pressure approaches the spinodal
pressure.26

The statistical properties of the PEL responsible for the
density maxima and all other related19,24,27,28 anomalies have
been previously discussed.29 As reviewed in Sec. II, within the
harmonic Gaussian PEL hypothesis, the volume dependence
of just one of the landscape parameters suffices to discriminate
liquids with and without density anomalies. An investigation
of the PEL of the SPC/E model30 was shown to be consistent
with theoretical predictions, suggesting the presence of a low T
liquid-liquid critical point.29 In more recent years, significantly
improved classic rigid-water models have been proposed,
which are able to better reproduce water’s physical proper-
ties.31 Among this class of model potentials, TIP4P/200532 has
emerged as the present-day optimal choice. We present here
the first detailed PEL investigation of the TIP4P/2005 model
with the aims of (i) confirming the quality of the Gaussian PEL
assumption in modeling the statistical properties of the land-
scape; (ii) incorporating the anharmonic contribution to the
basin shape into the equation of state (EOS) which was previ-
ously neglected; (iii) confirming the connection between sta-
tistical properties of the landscape and density anomalies; (iv)
providing a sound PEL supported extrapolation of the model
EOS to investigate the possibility of a liquid-liquid critical
point in TIP4P/2005.33–40 In addition, the evaluation of the IS
provides information on the structural properties of amorphous
water.15,41–45
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II. THE GAUSSIAN PEL APPROACH

We base our study on the PEL framework, introduced
by Stillinger and Weber.2,46 Within this framework, the mul-
tidimensional potential energy surface U(~rN , φN , θN ,ψN ), a
function of the center of mass positions ~r and orientations
(given by the Euler angles φ, θ, ψ) of all N molecules, is split
into basins. A basin is defined as the set of all configurations
which under a steepest descent path end up in the same local
potential energy minimum. Such minimum configuration is
named inherent structure (IS) and its associated energy eIS.
Thus, U(~rN , φN , θN ,ψN ) can be written as

U(~rN , φN , θN ,ψN ) = eIS + ∆U(~rN , φN , θN ,ψN ), (1)

where ∆U(~rN , φN , θN ,ψN ) quantifies the energy associated
with the thermal vibration around the IS. Grouping all basins
with the same eIS, the canonical partition function of the system
can be written as46,47

Z(T , V ) =
∫

eIS

Ω(eIS)deIS e−βFbasin(eIS,T ,V ), (2)

where Ω(eIS)deIS is the number of basins with IS energy
between eIS and eIS + deIS, Fbasin(eIS, T, V ) is the average
free energy of a basin of depth eIS, and β is 1/kBT with kB

being Boltzmann’s constant. All basins containing a signifi-
cant amount of crystalline order are by definition not included
in the integration over phase space in Eq. (2).

A formal expression for the basin free energy can be
written as

Fbasin(eIS, T , V ) = eIS +Fharm(eIS, T , V )+Fanh(eIS, T , V ), (3)

where the first term on the rhs is the basin minimum energy,
the second term accounts for the harmonic vibrations around
the minimum (and their eIS dependence), while the last term
accounts for the remaining anharmonic contribution to the
basin free energy. The harmonic free energy can be calculated
as

βFharm(eIS, T , V ) ≡

〈6N−3∑
i=1

ln (β~ωi(eIS))

〉
eIS

, (4)

where ωi(eIS) are the normal mode frequencies and ~ is
Planck’s constant. To separate the T and the eIS dependence,
we write

βFharm(eIS, T , V ) = (6N − 3) ln (βA0) + S(eIS, V ), (5)

where

S(eIS, V ) =

〈6N−3∑
i=1

ln

(
~ωi(eIS, V )

A0

)〉
eIS

. (6)

The latter is called the basin shape function, and A0

≡ 1 kJ mol�1 ensures that the arguments of the logarithms
bare no units.

The expressions derived so far are formally exact. To pro-
ceed further, one needs to model the statistical properties of
the landscape8,9,12,48 as well as a description of the harmonic
and anharmonic contributions. This is performed by compar-
ing step by step the theoretical assumption with numerical
results.

In the following, we review the EOS for a Gaussian land-
scape with minimal assumptions on the harmonic and anhar-
monic contributions and show that the resulting EOS properly

models the TIP4P/2005 pressure-volume relation. In a Gaus-
sian landscape, for each V, three parameters describe the PEL
statistical properties: the total number of basins eαN (where N
is the number of molecules), the most probable IS energy E0,
and the variance σ2, resulting in

Ω(eIS)deIS =
eαN

√
2πσ2

e−
(eIS−E0)2

2σ2 deIS. (7)

We further assume that (i) the shape function is lin-
ear with eIS (as previously found in several investigated
models29,49,50),

S(eIS, V ) = a(V ) + b(V )eIS, (8)

where a and b represent the (V -dependent) coefficients of
the linear expansion; (ii) the anharmonic free energy is inde-
pendent of eIS. Thus, we can write the anharmonic poten-
tial energy as a polynomial in T starting from a quadratic
term

Uanh(T , V ) =
imax∑
i=2

ci(V )T i, (9)

where ci represent the respective (V -dependent) coefficients.
Solving dSanh/dUanh = 1/T, the anharmonic entropy is written
as

Sanh(T , V ) =
imax∑
i=2

i
i − 1

ciT
i−1. (10)

Thus the anharmonic free energy is

Fanh(T , V ) = Uanh(T , V ) − TSanh(T , V )

=

imax∑
i=2

ciT
i
(
1 −

i
i − 1

)
. (11)

Other approximations, which do not require the assumption
of eIS independence of the anharmonic free energy, have been
proposed in the past,51 but they do require a larger number of
parameters.

Within the outlined approximation, the T dependence of
the average IS energy EIS at a given V can be formally written
as

EIS(T ) = E0 − bσ2 −
σ2

kBT
, (12)

where E0, σ2, and b depend all on V. Thus, in a Gaussian
landscape, EIS is linear in 1/T, a prediction which can be tested
numerically.

The configurational entropy can also be expressed in terms
of V -dependent PEL quantities as

Sconf (T )
kB

≡ lnΩ(EIS(T )) = αN −
σ2(b + β)2

2
(13)

which again provides a stringent numerical test of the T -
dependence of Sconf.

Defining the Kauzmann temperature TK as the tempera-
ture at which Sconf = 0, one finds
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kBTK = *
,

√
2αN

σ2
− b+

-

−1

. (14)

Below TK , the system is trapped in the basin of depth

eK ≡ EIS(TK) = E0 −
√

2αNσ. (15)

Finally we note that the validity of the Gaussian land-
scape at temperatures significantly lower than the one we
have investigated is not guaranteed. Assuming quantized exci-
tations around the lowest disordered energy state, the low
T landscape would be better described by a logarithmic
landscape.11

III. THE PEL EQUATION OF STATE

A benefit in using the Gaussian landscape approach
lies in the possibility to analytically derive an EOS. This
EOS can be expressed in terms of volume derivatives of
the PEL parameters.8,47,52 Past studies, however, used only
the harmonic Gaussian parameters to formulate the EOS.
We here derive an expression including terms arising from
anharmonic corrections. The PEL free energy can be written
as

F = EIS − TSconf + Fharm + Fanh. (16)

The first two terms can be condensed in a free energy of the
inherent structure FIS.

Hence the pressure can be expressed as

P = −
∂F
∂V
= −

∂FIS

∂V
−
∂Fharm

∂V
−
∂Fanh

∂V
. (17)

We now look at each term separately. The volume derivative
of FIS is

−
∂FIS

∂V
= −

∂

∂V
(EIS − TSconf)

= −
∂(E0 − bσ2)

∂V
+

1
kBT

∂σ2

∂V
+ T

∂Sconf

∂V
. (18)

Using Eq. (13), we further find

T
∂Sconf

∂V
= kBT

∂

∂V

(
αN −

σ2 (b + β)2

2

)
= kBT

∂

∂V

(
αN −

b2σ2

2

)
−
∂(bσ2)
∂V

−
1

2kBT
∂σ2

∂V
.

(19)

Finally, bringing Eqs. (18) and (19) together and grouping
the terms according to their respective temperature depen-
dence,

−
∂FIS

∂V
= −

∂E0

∂V
+TkB

∂

∂V

(
αN −

b2σ2

2

)
+

1
T

1
2kB

∂σ2

∂V
. (20)

Next we perform the same procedure for Fharm using
Eqs. (8) and (12),

−
∂Fharm

∂V
= −kBT

∂S
∂V

= −kBT
∂

∂V

(
a + bE0 − b2σ2 −

bσ2

kBT

)
. (21)

Sorting the terms according to their respective tempera-
ture dependence, we find

−
∂Fharm

∂V
=

∂

∂V
bσ2 − TkB

∂

∂V
(a + bE0 − b2σ2). (22)

The anharmonic contribution to the pressure arises
from the volume derivative of the ci coefficient in
Eq. (11),

−
∂Fanh

∂V
=

imax∑
i=2

T i ∂ci(V )
∂V

(
i

i − 1
− 1

)
. (23)

Since all contributions could be separated into terms
of different temperature dependence, the equation of state
including anharmonic corrections reads

P(T , V ) =
imax∑
i=−1

PT i (V )T i, (24)

where we have defined

PT−1 (V ) =
1

2kB

d
dV

σ2, (25)

PT0 (V ) = −
d

dV

(
E0 − bσ2

)
, (26)

PT1 (V ) = kB
d

dV

(
αN − a − bE0 +

b2σ2

2

)
, (27)

PT i≥2 (V ) =

(
i

i − 1
− 1

)
d

dV
ci(V ). (28)

For reasons that will be clear next, we notice that PT−1 (V )
involves only the V derivative of σ2.

From the mathematical structure of Eq. (24), it is clear
that, if the system moves along an isochore, the high T behav-
ior is controlled by the imax order term in T. The behavior at
low T however is controlled by the PT−1 T−1 term. One can
also see that the pressure along an isochore must display a
minimum if PT−1 > 0. In this case, a density maximum exists.
Indeed, according to a Maxwell relation, ∂P/∂T |V = 0 corre-
sponds to ∂V /∂T |P = 0, i.e., to a density extremum. Hence, the
condition for the existence of density maxima (PT−1 > 0) in
the PEL formalism corresponds to dσ2/dV > 0 [see Eq. (25)].
Thus, in the Gaussian landscape, liquids with density anoma-
lies must be characterized by a V -range where σ2 increases
with V.

IV. SIMULATION DETAILS
A. NVT simulations

We perform NVT simulations of 1000 TIP4P/2005
molecules in a cubic box utilising GROMACS 5.1.253 with
a leap-frog integrator using a time step of 1 fs. The temper-
ature is controlled using a Nosé-Hoover thermostat54,55 with
a time constant of 0.2 ps. For the Coulombic interactions, we
use a particle mesh Ewald treatment56 with a Fourier spacing
of 0.1 nm. For both the Lennard-Jones (LJ) and the real space
Coulomb interactions, a cutoff of 0.85 nm is used. Lennard-
Jones interactions beyond 0.85 nm have been included
assuming a uniform fluid density. Finally, we maintain the
bond constraints using the LINCS (Linear Constraint Solver)
algorithm57 of 6th order with one iteration to correct for
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rotational lengthening. We investigate 14 different densities
from 0.9 to 1.42 g/cm3 and seven different Ts between 200 and
270 K. We performed equilibration runs up to 100 ns followed
by equally long production runs. Equally spaced configura-
tions from the production runs have been used in the following
analysis.

B. Inherent structures

To generate the IS configuration, we minimise the poten-
tial energy of the system with a conjugate gradient method
(evolving the centre of mass and the orientation of the par-
ticles around their principal axes). At least 30 configurations
extracted from each trajectory were minimised. We also evalu-
ate the normal modes of all the found inherent structures via the
numerical determination of the Hessian, the 6N × 6N matrix
of the second derivatives of the potential energy as a function
of the molecule centre of mass and principal axes. Both conju-
gate gradient minimization and Hessian evaluation have been
performed with our own code.

C. Free energy

We evaluate the harmonic free energy (Fharm) of all dif-
ferent IS according to Eq. (4), starting form the density of
states calculated by diagonalising the Hessian matrix. The
free energy of TIP4P/2005 in the liquid state (F liq) is eval-
uated by performing thermodynamic and Hamiltonian inte-
gration,59 starting from the known reference free energy of
an ideal gas of water-shaped molecules F id(T, V, N). Specifi-
cally,

βFid(T , V , N) = − ln Zid(T , V , N), (29)

where the partition function

Zid(T , V , N) =
ZTZR

N!
(30)

can be split in a translational part

ZT =
*.
,
V

(
2πmkBT

h2

) 3
2 +/
-

N

(31)

and a rotational part

ZR =
*.
,

1
2

(
8π2kBT

h2

) 3
2 (
πIxIyIz

) 1
2 +/
-

N

, (32)

where m is the mass of the water molecule and Ix, Iy, and Iz

are the moments of inertia along the three principal axes. The
factor 1

2 in front of ZR accounts for the water molecule’s C2v

symmetry.60 For future reference, we note that the molecular
ideal gas (non-interacting) free energy at T ref = 3000 K and
ρref = 1.1 g/cm3 is �481.15 kJ/mol.

To evaluate the free energy of a system of water molecules
(e.g., with centre of mass and orientational degrees of free-
dom) interacting only via a Lennard-Jones interaction ULJ(r)
between the oxygen sites (we use the σ = 0.315 89 nm and
the ε = 774.9 J mol�1 of the TIP4P/2005 model32) we perform
a thermodynamic integration along a path of constant density
ρref from infinite T down to T ref of the isotropic pair potential
U(r) defined as61

U(r) = min(ULJ(r), Ucutoff). (33)

This potential coincides with the ULJ(r) potential for
all intermolecular distances for which ULJ(r) < Ucutoff,
and it is constant and equal to Ucutoff otherwise. With this
choice, the divergence of the potential energy for config-
urations in which some intermolecular separations vanish
(which would otherwise be probed at very high T ) is elim-
inated and the infinite T limit is properly approximated
by an ideal gas of molecules at the same density. Specifi-
cally, we choose Ucutoff = 100RT ref J/mol (R being the ideal
gas constant), corresponding to a interparticle distance of
rcutoff = 0.180 33 nm.

The fluid free energy (per particle) is calculated as

FLJ(T , V , N) = Fid(T , V , N) + kBTref

∫ βref

0
〈U〉βdβ, (34)

FIG. 1. Steps in the thermodynamic integration process requested for the evaluation of the TIP4P/2005 free energy. Panel (a) shows the thermodynamic
integration from infinite T (ideal gas) to T ref = 3000 K of a system of particles at ρref = 1.1 g/cm3, interacting according to the potential energy in Eq. (33). Panel
(b) shows the Hamiltonian λ integration from LJ to TIP4P/2005 [see Eq. (35)]. Panel (c) shows the thermodynamic integration from T ref down to the studied T
at ρref. Panel (d) shows the thermodynamic integration from ρref to the studied ρ at T = 270 K. In all panels, the blue line represents the integrand and the red
line represents the running integral.
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where the integration goes from infinite T to βref = 1/kBT ref.
Figure 1(a) shows the resulting β dependence of 〈U〉β evalu-
ated on a mesh of 23 points and the corresponding running
integral ∫

β
0 〈U〉βdβ. The free energy of water-shaped

molecules interacting only via a Lennard-Jones interaction at
T ref and ρref is �422.84 kJ/mol.

Next we evaluate the free energy change from the
LJ to the TIP4P/2005 model at ρref and T ref via Hamil-
tonian integration interpolating from LJ to TIP4P/2005.
Hence we perform simulations based on the potential energy
ULJ + λ(UTIP4P/2005 � ULJ) for 15 different λ values. In this
way, the electrostatic interactions are progressively turned
on. We note that the separation of the thermodynamic inte-
gration in two parts (from ideal gas to LJ and from LJ
to TIP4P/2005), while not explicitly necessary, has been
implemented to better control the convergence of the two
contributions.62

The resulting TIP4P/2005 free energy (F liq) can be
calculated as

Fliq(T , V , N) = FLJ(T , V , N) +
∫ 1

0
〈UC〉λ dλ, (35)

where 〈UC〉λ is the canonical average of the potential energy
difference UTIP4P/2005 � ULJ evaluated in a simulation with
potential energy ULJ + λ(UTIP4P/2005 �ULJ). Figure 1(b) shows
〈UC〉λ and the corresponding integral. As a result of the inte-
gration, we estimate F liq(ρref, T ref) = �436.23 kJ mol�1. From
this reference point, we then calculate via standard thermody-
namic integration along isochores [see Fig. 1(c) for ρref] and/or
along isotherms [see Fig. 1(d) for T = 270 K] the TIP4P/2005
free energy at any T and ρ. As a reference for future studies,
we report the resulting free-energy in the range 200-270 K for
all investigated densities in Appendix A.

From the free energy F liq and the total energy of the liquid
Eliq, the entropy can be calculated from

Sliq =
Eliq − Fliq

T
. (36)

V. RESULTS
A. Minima of the TIP4P/2005

In this section, we provide information on the struc-
ture of the IS, describing the IS energies, the static structure
factor between the oxygen centres S(q), and the local cur-
vature of the potential energy around the IS [i.e., the
vibrational density of states (VDOSs)]. Since the ISs are
essentially realisations of the possible glasses of a mate-
rial, the following structural data provide information on
the possible structure and vibrational dynamics of water
glasses.

Figure 2 shows the calculated IS energies for all stud-
ied state points. As expected, deeper and deeper basins are
explored on cooling. The deepest ISs are sampled at the low-
est explored density (ρ ≈ 0.9 g/cm3), revealing the optimal
density for the build up of the hydrogen-bonded network. Inter-
estingly, a region of negative curvature of EIS vs. ρ is present
at low T, a first indication of an energetic destabilisation of the
liquid.63,64

FIG. 2. Average inherent structure energy EIS for all studies state points.

Figure 3 shows S(q) for different densities at T = 220 K.
Being evaluated in the local minimum, the IS S(q) reflects
the static correlation present in the IS, in the absence of any
thermal broadening. A clear progression of the structure on
increasing density is observed. The signature of the tetrahe-
dral ordering, which show in the S(q) as a pre-peak around
17 nm�1 and a main peak around 31 nm�1, progressively dis-
appears in favour of a main peak around 25 nm�1 at densities
so high that the hydrogen bond network is strongly perturbed.
The inset shows the low q region, to provide a quantification
of the IS compressibility [related to S(0)]. A clear maximum
in the density dependence of S(q) at the smallest accessible
q value appears, signalling the presence of an extremum in
the structural component of the isothermal compressibility.
The density fluctuations implicit in the structure achieve their
maximum value when ρ ≈ 1.02 g/cm3. We also note (see
the inset of Fig. 3) that the extrapolation of S(q) at vanish-
ing wavevectors reaches values of the order of 10�2 for both
the network density (ρ = 0.9) and the highest studied density
(ρ = 1.42 g/cm3). The vanishing of S(0) in disordered sys-
tems has been interpreted as evidence of hyper-uniformity.65

FIG. 3. Oxygen-oxygen structure factor evaluated in the IS at all studied
densities at T = 220 K. The inset enlarges the low q limit.
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FIG. 4. Vibrational density of states resulting from the diagonalization of the Hessian matrix. Panel (a) shows the density dependence at T = 200 K. Panels
(b)–(d) report the T dependence at ρ = 0.98, ρ = 1.14, and ρ = 1.34 g/cm3, respectively.

Recently, it has also been suggested that the structure fac-
tor of amorphous ices shows strong signatures of hyper-
uniformity.66

Figure 4 shows the vibrational density of states (VDOS),
in harmonic approximation, for several ρ and T, resulting
from diagonalising the Hessian matrix in the IS. Previous
evaluation of the TIP4P/2005 VDOS in a limited frequency
range had been based on Fourier transform of the oxygen
velocity autocorrelation functions.67 The VDOS enters in
the evaluation of the basin harmonic vibrational entropy.
In all cases, a clear separation between the low-frequency
translational bonds (ω < 400 cm�1) and the higher frequency
librational bands (ω > 400 cm�1) is observed. Figure 4 shows
that the T dependence of the VDOS is more significant
at ρ = 0.98 g/cm3, where the development of the tetrahe-
dral networks takes place on cooling and less significant at
ρ = 1.34 g/cm3, where the structure of the system is less
dependent on the hydrogen bond formation, as clearly indi-
cated by S(q). The data in Fig. 4(a) show that instead a strong
density dependence is observed at low T. The low frequency
part of the VDOS behaves as ω2 as expected in the Debye
limit.

To evaluate the eIS dependence of the basin shape in har-
monic approximation, we evaluate the function S [cf. Eq. (6)].

For all densities, S is linear in eIS (Fig. 5), providing a
simple quantification of the basin dependence of the free
energy [Eq. (8)] via the intercept a and slope b. The basin
shape for TIP4P/2005 is similar to the results for SPC/E49

FIG. 5. EIS dependence of the shape function S (per particle) for all studied
densities in comparison with results for SPC/E from Ref. 49.
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reproduced also in Fig. 5. The TIP4P/2005 shape is only shifted
down in S and eIS. This similarity is also reflected in the fit-
ting parameters a and b for both models as will be shown
below.

B. Evaluating the PEL parameters

Figure 6 shows EIS as a function of 1/T for TIP4P/2005.
This figure, and the following, also show corresponding
results for the SPC/E model of water, the only other water
model for which a detailed PEL study has been previously
performed.58 At all densities, EIS is well described by a
linear 1/T dependence, consistent with the predictions of
Eq. (12). This supports the assumption of a Gaussian landscape
description of the statistical properties of the PEL and provides
a straightforward measure of the important landscape parame-
ter σ2. The TIP4P/2005 data are consistently smaller than the
SPC/E data, but the overall trend of the two models is very
similar (e.g., the curve at ρ = 0.9 g/cm3 is the steepest in both
cases).

From the value of the parameters obtained performing
linear representation of the data reported in Figs. 5 and 6, the
density (or volume) dependence of the Gaussian PEL param-
eters σ2 [Eq. (12)] and E0 [Eq. (12)] can be evaluated. The
results are shown in Fig. 7. E0 shows the expected minimum,

FIG. 6. Inverse temperature dependence of EIS for selected densities in
comparison with results for SPC/E from Ref. 58 at similar densities.

indicating an optimal density (ρ≈ 1.1 g/cm3) for energetic sta-
bilisation, resulting from the compensation between the repul-
sive contributions (relevant at high densities) and weakening
of the attraction on stretching for low densities. More inter-
esting is the minimum observed in the ρ (or V ) dependence
of σ2 which, as previously discussed, provides the landscape

FIG. 7. Density dependence of the landscape parameters E0, σ2, α, a, and b in comparison with corresponding data for SPC/E from Ref. 29.
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FIG. 8. Temperature dependence of the anharmonic potential energy for sev-
eral different densities and the associated polynomial fit c2(V )T2 + c3(V )T3,
see Eq. (9).

signature of anomalous behavior. The data shown in Fig. 7(b)
show that density anomalies are expected in the range
0.9 < ρ < 1.2 g/cm3, where dσ2/dV is positive. Figures 7(d)

and 7(e) show, respectively, the ρ dependence of the linear fit
of S.

To calculate α, we exploit Eq. (13) and evaluate α as the
difference between Sconf and a quantity dependent only on the
previously calculated b and σ2. Sconf is the difference between
the entropy of the liquid Sliq and the vibrational entropy of
the explored basins Sharm + Sanh (harmonic and anharmonic
vibrations around the inherent structures) and can be thus
written as

Sconf = Sliq − Sharm − Sanh. (37)

All three contributions on the rhs are available: Sliq

from Eq. (36), Sharm can be evaluated subtracting from Fharm

[Eq. (4)] the harmonic potential energy (6N � 3)kBT, and Sanh

according to Eq. (10). The evaluation of Sanh requires the pre-
liminary modeling of the T dependence of the anharmonic
potential energy Uanh ≡ UTIP4P/2005 � EIS � (6N � 3)kBT /2.
Figure 8 shows that Uanh vs. T is well represented by Eq. (9)
with imax = 3 (i.e., Uanh = c2(V )T2 + c3(V )T3).

Figure 9 shows the different entropic terms and the result-
ing Sconf for three different densities. Panel (d) also shows
the PEL representation of Sconf according to Eq. (13), with

FIG. 9. Temperature dependence of the
entropy of the liquid Sliq (a), of
the vibrational entropy (both harmonic
Sharm (b) and anharmonic Sanh (c) com-
ponents), and of the resulting configu-
rational entropy Sconf (d) for ρ = 0.98,
1.14, and 1.34 g/cm3 in comparison with
the result for SPC/E at ρ = 1.0 g/cm3

from Ref. 68. The lines in (d) rep-
resent the corresponding fits for Sconf
according to Eq. (13). All quantities are
expressed as per particle.
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α as the only fit parameter. The PEL theoretical expres-
sion properly models the T dependence of the numeri-
cal data. The extrapolation of the theoretical curves toward
Sconf = 0 provides a visual estimate of the Kauzmann T. The
resulting density dependence will be discussed in Sec. V C
together with the landscape phase diagram. The ρ depen-
dence of the best-fit values for α is shown in Fig. 7(c). α
shows a monotonic dependence on ρ. The total number of
basins, exp(αN), increases on decreasing density, with a trend
consistent with what has been observed in all other studied
models.29,46,50

C. The PEL-EOS

The V derivatives of the landscape parameters allow us
to evaluate the PEL-EOS [see Eq. (24)]. Figure 10 shows the
polynomial fits for σ2 [requested to evaluate PT−1 , Eq. (25)],
for E0 � bσ2 [to evaluate PT0 , Eq. (26)], and for α � a + bE0

+ b2σ2/2 [to evaluate PT1 , Eq. (27)]. The figure also shows
the anharmonic contribution c2 and c3. The functional form
has been chosen as a four-degree polynomial in V for σ2, E0

� bσ2 and α � a + bE0 + b2σ2/2. Due to the larger numerical
error in the anharmonic contribution, we select a quadratic
function in V for c2 and c3. The resulting parameters are

reported in Appendix B for future reference. The selection of a
fourth order in the functional form generates a cubic V depen-
dence of the pressure, which is the lowest order functional
form consistent with the possibility of a liquid-liquid critical
point.

The resulting set of fitting coefficients thus allow us to
rebuild the PEL-EOS for all T. The corresponding PEL-EOS
for selected isotherms is shown in Fig. 11 and compared with
the MD results at the same T. We also compare our MD data as
well as the PEL-EOS with the previously published isotherms
from Biddle et al.40 in Fig. 11. The PEL-EOS approximates
the MD results rather well in the entire density range, stressing
the ability of a Gaussian landscape thermodynamic approach
to model the low T behavior of TIP4P/2005. As expected
from the quality of the comparison, but also from the V -
dependence of σ2, the PEL-EOS predicts the existence of
a temperature of maximum density (TMD). The locus of the
TMD in the P � T plane and in the T � V plane is shown in
Fig. 12, together with the MD results reported in the work
of González et al.69 In the same figure, we also show the
projection of the Kauzmann locus, evaluated according to
Eq. (14). Within the PEL paradigm, this locus signals the limit
of validity of the PEL-EOS previously derived. For lower T, the
configurational entropy vanishes, the system has reached the

FIG. 10. Best polynomial fits in V of the quantities relevant for evaluating the PEL-EOS. The polynomial fit has degree four for the quantities in panels (a)–(c)
[E0 � bσ2, σ2 and αN � a � bE0 + b2σ2/2, cf. Eqs. (25)–(27)] and degree two for the quantities in panels (d) and (e) [c2 and c3, cf. Eq. (28)].
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FIG. 11. Pressure-density isotherms. Panel (a) compares MD results from
this study with recently published data from the work of Biddle et al.40 Panel
(b) compares the EOS resulting from the MD simulations with both the har-
monic (dashed) and full (harmonic plus anharmonic, solid) landscape EOS.
Panel (c) compares the EOS resulting from the MD simulations of Biddle
et al.40 with the full PEL-EOS including the extrapolation of the theoreti-
cal PEL prediction to T = 180 K, a T which was not studied in the present
work.

ideal-glass state [the basin with energy eK, see Eq. (15)], and
the only residual contribution to the free-energy arises from
the vibrational component. Please note that this extrapolation
is only valid if the landscape remains Gaussian down to the
evaluated TK.

The derived PEL-EOS formally depends on the assump-
tion of a Gaussian PEL. In this respect, it offers a sound
formulation of the thermodynamics of the TIP4P/2005 model
which can be extended to temperatures below the lowest inves-
tigated one with the only assumption that the landscape retains
its Gaussian character. It has been observed29 that a Gaus-
sian PEL and a minimum in σ2 vs. V are the only ingre-
dients requested to generate a low T liquid-liquid critical
point. Consistent with this prediction, we determine for the
TIP4P/2005 model the T and P values of the liquid-liquid
critical point from the simultaneous vanishing of the first
and second V derivatives of the EOS. The best estimate is
T c = 175 K, pc = 0.175 GPa, and ρc = 0.9970 g/cm3.
The location of the predicted critical point is also shown
in Fig. 12. We note that small variations of the ρ-range
included in the fit of the volume dependence of the landscape
parameter do not significantly change the predicted critical
parameters. We then conclude that the critical parameters,
according to this approach, are accurate within T c ± 2 K,

FIG. 12. Density-temperature (a) and pressure-temperature (b) PEL phase
diagrams, reporting the liquid-liquid critical point and its associated mean-
field spinodals, the Kauzmann TK, and the TMD loci. It also shows in (b) the
MD results for the TMD locus from Ref. 69.

pc ± 0.002 GPa, and ρc ± 0.001 g/cm3. The PEL esti-
mate has to be compared with the value of T c = 193 K
reported in Ref. 33 as well as with the more recent estimate
T c = 182 K.35,39,40

VI. CONCLUSIONS

In this article, we have reported a thorough analysis of
the potential energy landscape statistical properties for the
TIP4P/2005 model, one of the most accurate classical models
for water.31 To do so, we evaluate the inherent structure and the
local curvature around the IS for fourteen different densities
and seven different temperatures.

We have shown that a Gaussian distribution of basin depth
provides an accurate description of the system thermodynam-
ics. In the Gaussian landscape, just three quantities (E0, σ2,
and α) control the thermodynamic behavior of the system. We
have found that each molecule contributes to approximately
e3 basins, a number very close to the one which had been cal-
culated for SPC/E previously. From the volume derivative of
these parameters, a landscape EOS has been derived. Inter-
estingly, in harmonic approximation, the T -dependence of the
P is condensed in three contributions, proportional to T�1,
T0, and T1, respectively. This simple T dependence makes
it possible to identify immediately the PEL source of the
density anomalies and the close connection between density
anomalies and the existence of a liquid-liquid critical point.
Indeed, we have confirmed that for TIP4P/2005 the variance
of the Gaussian distribution is found to display a minimum
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as a function of the volume, the PEL signature of densities
anomalies.

We have also shown that including the anharmonic
contributions makes it possible to accurately describe the
PEL free-energy and the corresponding EOS. The resulting
PEL-EOS rather well approximates the MD P(V, T ), offering
a reliable functional form for predicting the low T behav-
ior of the model. A small T extrapolation predicts a liquid-
liquid critical point in TIP4P/2005, consistent with previous
estimates.35,39,40

Finally we note that in the present investigation we have
not revealed any signature of failure of the Gaussian approx-
imation. This is rather well documented in Fig. 6 where a
deviation from a linear 1/T dependence is never observed. Still
it is possible that, especially at low densities, where the system
evolves toward a defect free tetrahedral network and the bottom
of the landscape (the fully bonded network) is approached, the
Gaussian approximation should reveal its large-number ori-
gin and cease pace to a logarithmic landscape.11 A limited
landscape analysis of the ST2 water model,70,71 of silica,62,72

and of tetrahedral patchy particles73,74 suggests this as a con-
crete possibility, at least at the optimal network density. For
the ST2 model, the landscape investigation at ρ = 0.83 g/cm3

shows that, at low temperature, EIS approaches a limiting value
which has been identified as the energy of the fully bonded dis-
ordered tetrahedral network.70 Not much is known instead of
the ST2 PEL at densities around 1.0 g/cm3, the ones relevant
for developing an equation of state in the region where the
liquid-liquid critical point is located. In light of the renewed
interest in the ST2 potential (see, for example, Refs. 75 and
76), it might be worth considering performing a full landscape
analysis of the ST2 model in the near future. The possibility
to equilibrate configurations down to the liquid-liquid critical

point for the ST2 model can provide a further stringent test of
the ability to develop a full thermodynamic description via a
PEL approach.
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APPENDIX A: FREE ENERGIES OF SUPERCOOLED
TIP4P/2005

In this section, we report the molar free energies F liq

of the TIP4P/2005 liquid at all studied state points in the T
range 270-200 K. The values shown in Table I were evaluated
from the thermodynamic integration technique explained in
Sec. IV C.

APPENDIX B: PEL-EOS PARAMETERS

As explained in Sec. V C, we fitted the volume dependence
of the quantities relevant for the PEL-EOS [cf. Eqs. (24)–(28)]
by polynomials in molar volume V,

f (V ) =
n∑
0

AiV
i, (B1)

where n was four for the arguments in Eqs. (25)–(27) and
two for the V dependence of c2 and c3 [cf. Eq. (28)]. The
resulting parameters, which suffice to build the PEL-EOS, are
summarised in Table II.

TABLE I. Molar free energies Fliq in kJ mol�1 of the TIP4P/2005 liquid at given T and ρ.

ρ (g/cm3)

T (K) 0.9 0.94 0.98 1.02 1.06 1.1 1.14 1.18 1.22 1.26 1.3 1.34 1.38 1.42

270 �56.91 �57.04 �57.10 �57.10 �57.04 �56.93 �56.74 �56.49 �56.16 �55.74 �55.23 �54.60 �53.87 �53.00
250 �55.96 �56.08 �56.13 �56.12 �56.06 �55.95 �55.79 �55.55 �55.25 �54.86 �54.38 �53.80 �53.11 �52.29
240 �55.56 �55.67 �55.70 �55.69 �55.63 �55.52 �55.36 �55.13 �54.84 �54.47 �54.00 �53.44 �52.77 �51.98
230 �55.20 �55.30 �55.32 �55.29 �55.23 �55.12 �54.96 �54.75 �54.46 �54.10 �53.66 �53.12 �52.47 . . .

220 �54.89 �54.98 �54.98 �54.94 �54.86 �54.76 �54.60 �54.40 �54.13 �53.78 �53.35 �52.84 �52.22 . . .

210 . . . �54.70 �54.68 �54.62 �54.54 �54.43 �54.28 �54.08 �53.83 �53.50 �53.09 �52.59 . . . . . .

200 . . . . . . �54.41 �54.35 �54.26 �54.15 �54.01 �53.81 �53.56 �53.25 �52.86 �52.38 . . . . . .

TABLE II. Fitting parameters of the polynomial fit in V of the quantities (Q) relevant for the PEL-EOS. The unit
of Ai is the unit of Q (cf. Fig. 10) times the unit of inverse molar volume (mol/cm3) to the ith power.

Q A0 A1 A2 A3 A4

E0 � bσ2 4.697 36·102
�1.193 85·102 1.029 18·101

�4.004 25·10�1 5.980 43·10�3

σ2 5.506 06·102
�1.169 95·102 9.610 32·100

�3.633 01·10�1 5.464 96·10�3

αN � a � bE0 + b2σ2/2 5.088 48·101
�1.538 88·101 1.553 81·100

�6.902 07·10�2 1.153 70·10�3

c2 �1.467 26·10�4 1.927 60 ·10�5
�6.598 81·10�7 . . . . . .

c3 1.538 29·10�7
�1.848 34·10�8 9.568 31·10�10 . . . . . .
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69M. A. González, C. Valeriani, F. Caupin, and J. L. Abascal, J. Chem. Phys.

145, 054505 (2016).
70P. H. Poole, S. R. Becker, F. Sciortino, and F. W. Starr, J. Phys. Chem. B

115, 14176 (2011).
71N. Giovambattista, F. Sciortino, F. W. Starr, and P. H. Poole, J. Chem. Phys.

145, 224501 (2016).
72A. Saksaengwijit, J. Reinisch, and A. Heuer, Phys. Rev. Lett. 93, 235701

(2004).
73A. Moreno, I. Saika-Voivod, E. Zaccarelli, E. La Nave, S. Buldyrev,

P. Tartaglia, and F. Sciortino, J. Chem. Phys. 124, 204509 (2006).
74F. Smallenburg and F. Sciortino, Nat. Phys. 9, 554 (2013).
75J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and

P. G. Debenedetti, Nature 510, 385 (2014).
76F. Smallenburg and F. Sciortino, Phys. Rev. Lett. 115, 015701 (2015).

https://doi.org/10.1103/physreva.25.978
https://doi.org/10.1063/1.1672587
https://doi.org/10.1103/physreve.74.050501
https://doi.org/10.1088/0953-8984/20/37/373101
https://doi.org/10.1038/31189
https://doi.org/10.1103/physrevlett.83.3214
https://doi.org/10.1103/physrevlett.88.225701
https://doi.org/10.1088/0953-8984/12/29/325
https://doi.org/10.1016/s0065-2377(01)28003-x
https://doi.org/10.1016/s0065-2377(01)28003-x
https://doi.org/10.1021/jp030885b
https://doi.org/10.1103/physreve.69.051102
https://doi.org/10.1103/physrevlett.86.107
https://doi.org/10.1088/0953-8984/15/45/r01
https://doi.org/10.1039/c0cp02600j
https://doi.org/10.1039/c0cp02600j
https://doi.org/10.1021/acs.chemrev.5b00750
https://doi.org/10.1073/pnas.1700103114
https://doi.org/10.1126/science.aap8269
https://doi.org/10.1021/acs.jpclett.7b02563
https://doi.org/10.1038/ncomms9998
https://doi.org/10.1021/j100395a030
https://doi.org/10.1063/1.4974830
https://doi.org/10.1063/1.4819058
https://doi.org/10.1103/physreve.53.6144
https://doi.org/10.1038/360324a0
https://doi.org/10.1103/physrevx.8.011004
https://doi.org/10.1063/1.476600
https://doi.org/10.1088/0953-8984/17/43/l01
https://doi.org/10.1103/physrevlett.91.155701
https://doi.org/10.1021/j100308a038
https://doi.org/10.1039/c1cp22168j
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.3506860
https://doi.org/10.1039/c1cp22076d
https://doi.org/10.1039/c3ra41320a
https://doi.org/10.1103/physreve.89.020301
https://doi.org/10.1063/1.4803868
https://doi.org/10.1063/1.4929787
https://doi.org/10.1063/1.4944986
https://doi.org/10.1063/1.4944986
https://doi.org/10.1063/1.4973546
https://doi.org/10.1038/135505b0
https://doi.org/10.1038/288569a0
https://doi.org/10.1038/310393a0
https://doi.org/10.1039/b108676f
https://doi.org/10.1039/b108676f
https://doi.org/10.1039/c4cp05587j
https://doi.org/10.1088/1742-5468/2005/05/p05015
https://doi.org/10.1063/1.1434997
https://doi.org/10.1088/0953-8984/15/11/342
https://doi.org/10.1103/physrevlett.91.115504
https://doi.org/10.1103/physreve.65.041205
https://doi.org/10.1088/0953-8984/15/11/330
https://doi.org/10.1088/0953-8984/15/11/330
https://doi.org/10.1063/1.1566943
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1103/physreva.31.1695
https://doi.org/10.1063/1.470117
https://doi.org/10.1021/ct700200b
https://doi.org/10.1021/jp047374p
https://doi.org/10.1088/0953-8984/20/15/153101
https://doi.org/10.1080/00268976.2015.1043966
https://doi.org/10.1038/35087524
https://doi.org/10.1103/physreve.55.727
https://doi.org/10.1063/1.4993567
https://doi.org/10.1103/physreve.68.041113
https://doi.org/10.1103/physrevlett.119.136002
https://doi.org/10.1038/srep01980
https://doi.org/10.1038/35018034
https://doi.org/10.1063/1.4960185
https://doi.org/10.1021/jp204889m
https://doi.org/10.1063/1.4968047
https://doi.org/10.1103/physrevlett.93.235701
https://doi.org/10.1063/1.2196879
https://doi.org/10.1038/nphys2693
https://doi.org/10.1038/nature13405
https://doi.org/10.1103/physrevlett.115.015701

