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Exploiting limited valence patchy particles to
understand autocatalytic kinetics
Silvia Corezzi 1, Francesco Sciortino2 & Cristiano De Michele 2

Autocatalysis, i.e., the speeding up of a reaction through the very same molecule which is

produced, is common in chemistry, biophysics, and material science. Rate-equation-based

approaches are often used to model the time dependence of products, but the key physical

mechanisms behind the reaction cannot be properly recognized. Here, we develop a patchy

particle model inspired by a bicomponent reactive mixture and endowed with adjustable

autocatalytic ability. Such a coarse-grained model captures all general features of an auto-

catalytic aggregation process that takes place under controlled and realistic conditions,

including crowded environments. Simulation reveals that a full understanding of the kinetics

involves an unexpected effect that eludes the chemistry of the reaction, and which is crucially

related to the presence of an activation barrier. The resulting analytical description can be

exported to real systems, as confirmed by experimental data on epoxy–amine polymeriza-

tions, solving a long-standing issue in their mechanistic description.
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Autocatalysis is very important in life and probably played a
central role in its origin on Earth1. The prebiotic synthesis
of molecular-building blocks2, 3, the emergence of com-

plex behavior in networks of organic reactions4, the establishment
of self-replicating systems capable of sustaining and evolving
information5, 6 and ultimately, the transition from inanimate
matter to living organisms7, they all seem unfeasible without
molecular autocatalysis. It also comes into play in biological
cycles8 and synthetically useful transformations9, 10, as well as in
the production of engineering materials, such as epoxy resins,
which are formed by autocatalytic step-growth polymerization
and used in many technological applications11. The phenomenon
of autocatalysis is inherently kinetic. The fingerprint is the sig-
moidal kinetic profile: the reaction is slow initially as little catalyst
is present, progressively accelerates as the amount of catalyst
increases and then slows down again due to reactant depletion.

The study of kinetics is key to make inferences about the
molecular mechanisms of a reaction and their physical descrip-
tion. The comparison of reaction rates with the prediction of
models is the most general method for validating a chemical
description. Over the years, deviations from expected kinetics
kicked off the search for new or modified mechanistic under-
standing of important processes, e.g., the abnormal assembly of
proteins into amyloid fibrils implicated in human diseases12 or
the curing of epoxy resins whose control is important, among
others, for constructing mechanically optimized structural com-
ponents13. But also, the speed at which products are formed in a
reaction impacts all other reactions that are using one of them as
a reagent and represents an important controlling factor for the
overall process. Despite the pervasiveness of autocatalytic phe-
nomena in nature and technology, and despite the importance of
studying the kinetics of chemical processes, autocatalytic aggre-
gation has so far remained out of reach of realistic numerical
simulations. This prevents the underlying physical mechanisms
from being recognized and full understanding of the process from
being achieved. Rate equations, for example, which describe
models where reacting units are viewed as a gas of point-like
entities, have been solved numerically for epoxy network
formation14, 15 and amyloid fibril self-assembly16–18 but within
this approach crowding (then, excluded volume) effects and the
role played by shape anisotropy of the constituent particles are
neglected; in addition, no consideration is given to the fact that
real monomeric units react and bond directionally as a result of
well-defined coordination geometries, after they have diffused in
space.

Patchy particle models, which are designed learning from
nature, can be thought of as an archetype of real monomers and
their individual motion is an integral part of the bonding process.
While these models have been predominantly used in the field of
self-assembly of colloids, their range of applicability is much
wider, ranging from associating and network-forming
liquids19, 20 to chemically reactive particles21. Their flexibility
originates from the possibility of implementing a limited number
of reactive bonds by geometrically enforcing the single bond per
patch condition22. Nevertheless, so far they completely lack
autocatalysis and as such cannot be used to shed light on the
physics behind autocatalytic aggregation phenomena. Here we
describe how to endow a patchy particle model with the ability to
aggregate autocatalytically and we show for this model the
emergence of an unexpected kinetic mechanism, that eludes the
chemistry of the reaction. To this end we focus on a binary
mixture of mutually reactive monomers represented as hard
homogeneous ellipsoids, surface-decorated with a small number
of bonding sites arranged in a fixed geometry and interacting via
a squared-well attractive potential (Fig. 1). With a view to com-
paring the simulation results with experiments of formation of

effectively irreversible strong covalent bonds between epoxy and
amino reagents, once a bond is formed, bond breaking is pre-
vented by an infinite barrier which constrains the reacted sites to
remain trapped in the well. The model offers the possibility to
include and modulate the height of an energy barrier that must be
overcome to enter the potential well and which, according to
current reasoning, would only be expected to slowdown bond
formation depending on its relative value compared to the ther-
mal energy kBT—kB being the Boltzmann’s constant. On the
contrary, we observe anomalous rate of bond formation depen-
dent on the barrier and we demonstrate that this kinetic behavior
has a dynamical origin connected to the motion of particles
around the obstacle to be overcome. Since autocatalysis according
to a mean-field treatment can be traced back to a continuous
reduction of energy barrier as the reaction progresses, this effect
which is observed during non-autocatalytic aggregation of the
ellipsoidal particles, re-emerges in the kinetics of the model in
which particles are endowed with the ability to bond auto-
catalytically, and guides to an analytical description of the
observed kinetics which is exportable to real systems, as con-
firmed by experimental data on epoxy–amine polymerizations.
Our study thus provides a powerful tool to investigate under
realistic conditions autocatalytic aggregation processes, including
those occurring in crowded environments.

Results
Autocatalysis scenarios. Catalysis is the increase in the rate of a
chemical reaction due to the participation of an additional sub-
stance, called catalyst, not consumed in the reaction. According to
transition state theory23, in order to transform into products the

Exit infinite barrier

Entry finite barrier

U (r )

u0

ΔU

�

r

Fig. 1 The model. Graphic description of the two types of hard ellipsoids
composing the simulated system, and snapshot of the system in the initially
monomeric state. The centers of the small (yellow) spheres locate the
bonding sites on the surface of the hard-core particle. The site–site
interaction, sketched as a function of the inter-site distance r, is modeled as
an attractive square-well potential complemented by a repulsive entry
barrier of finite height (in red) and an infinite repulsive exit barrier (in
green). Bonds can be formed only between small (blue) and big (cyan)
particles
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reactants must form a temporary intermediate with a higher free
energy: a catalyst works by providing an alternative reaction
pathway involving a different transition state with a lower acti-
vation free energy. The rate of reaction increases because more
reactant molecules collide with enough energy to surmount the
smaller energy barrier. Autocatalysis is the catalysis provided by a
reaction product. In a generic autocatalytic scheme, compound C
facilitates a chemical reaction between compounds A and B, in
which a second C molecule is formed. We rationalize this fact as
that every time a new bond is formed between a pair of mutually
reactive sites of type A and B, this creates in the system a catalyst
unit C, existing as a separate species or as a side-group attached to
one reacted molecule, whose proximity in turn is able to lower the
free energy barrier between another pair of unreacted sites. The
reaction between A and B species might naturally start via a
slower noncatalyzed pathway, or might be too slow to occur
naturally and be initiated by a small amount of catalyst initially
present as impurities or intentionally added. These are the basic
autocatalytic scenarios of practical importance to which we refer,
and which we aim to reproduce within a simple patchy particle
model where bonds irreversibly form between complementary
reactive sites, giving rise to larger and larger particle aggregates in
the form of branched clusters or networks.

It has been previously noticed24–27 that owing to the random
nature of the growth mechanism in step-wise aggregation, the
system’s evolution slaved to the bonding process is expected to
proceed along a sequence of equilibrium states only controlled by
the number of formed bonds, so that when the fraction of bonds
is p, the number n(s) of clusters made of s particles can be
calculated following statistical mechanics prescriptions24, inde-
pendent of the time evolution of p. The presence of autocatalytic
mechanisms of aggregation, on the other hand, expresses itself in
the evolution of p over time. Therefore, to find out the rule for a
proper design of autocatalytic patchy particles, first we develop a
statistical treatment for the rate equation of an autocatalytic,
irreversible aggregation process.

Autocatalytic chemical rate constant. Within a mean-field
approach, the rate of an irreversible bimolecular reaction is
expected to be proportional to the product of concentration of the
unreacted sites, i.e., dp/dt= koverall(1− p)2, where p is the fraction
of bonds formed at time t, and koverall is a proportionality coef-
ficient that incorporates all information on the aggregation pro-
cess, by taking into account both the chemistry of the bonding act
and the diffusive properties of the molecules to which the reactive
sites are attached. Since 1/koverall= τoverall represents the char-
acteristic time needed to form a single bond, it is reasonable to
assume it is given by the average time needed for two molecules
to diffuse through the sample and encounter, plus the time
needed for the bonding act to take place, i.e., τoverall= τdiff+
τchem, where τdiff= 1/kdiff with kdiff a diffusive rate constant
related to the diffusion timescale of the system, and τchem= 1/
kchem with kchem a chemical rate constant dependent on the
intrinsic reactivity of the sites. By simply considering the bonding
act that would occur without diffusional restrictions, we note that
the overall number of bonds per unit time is the sum of those
formed in close proximity to and far from a catalytic site, and
therefore we write the chemical rate constant as the sum of an
autocatalytic (kauto), a catalytic (kcat), and a noncatalytic (knon)
contribution, i.e., kchem= Pakauto+ Pckcat+ [1− Pa− Pc]knon,
where Pa and Pc are the probabilities that the bonding act occurs
via the autocatalytic and the catalytic pathway of reaction,
respectively. These probabilities correspond to the probability of
finding the autocatalyst and the initial catalyst within an active
distance from the reactive sites. Assuming for both catalyst types

that their spatial distribution is uniform, and that the catalyst unit
has to be very close to the reacting sites in order to catalyze their
reaction, we calculate these probabilities (Supplementary Note 1)
and find that the chemical rate constant, in both the autocatalytic
scenarios mentioned above, can be given as a linearly increasing
function of the extent of reaction, i.e., kchem= k1+ k2p= k1(1+
ξp), by setting ξ= k2/k1. Specifically, for reactions that naturally
start in the absence of any added catalyst, k1 corresponds to the
noncatalytic rate constant and k2 is proportional to the difference
between the autocatalytic and the noncatalytic one; in contrast,
for reactions initiated by an added catalyst, k1 and k2 are
respectively proportional to the catalytic and autocatalytic rate
constant. In both cases, the parameter ξ is related to the reduction
of energy barrier for single bond due to the action of the auto-
catalytic agent (see Supplementary Note 1)—we herein call ξ the
“autocatalytic strength” of the reaction.

By introducing an effective free energy barrier having the form
ΔG= ΔG0− β−1ln(1+ ξp) with β= 1/kBT, and an effective time
constant τ0, the chemical rate constant is written
kchem ¼ τ�1

0 e�βΔG, that is the same as when the activation barrier
for bonding any pair of reactive sites is ΔG. Autocatalysis is
responsible for the progressive reduction of such a barrier, on
increasing the number of bonds, from an appropriate initial value
ΔG0 which represents the activation barrier for bond formation
not mediated by the autocatalyst, in the case of reactions that start
naturally, and represents the activation barrier for bond
formation mediated by an added catalyst, in the case of reactions
otherwise blocked (see Supplementary Note 1).

Implementation of autocatalysis. On the basis of the previous
treatment, the mechanism of autocatalysis can be effectively
traced back to a progressive reduction of the free energy barrier
for bond formation as the reaction proceeds. According to this
prescription, we modify the patchy particle model previously
introduced21 to make the particles able to aggregate auto-
catalytically. To facilitate comparison with available experiments
the particles are chosen to resemble a stoichiometric mixture of
(bifunctional) epoxy and (pentafunctional) amino reagents, and
the characteristic features of the interaction potential to qualita-
tively mimic covalent-bond formation between mutually reactive
monomers (Methods section). Since in the model the entropy
barrier for bonding two reactive sites only depends on geome-
trical factors, the variation of ΔG= ΔU− TΔS as the reaction
progresses is charged on ΔU. We therefore implement the auto-
catalytic mechanism by introducing in the inter-site potential an
incoming energy barrier (Fig. 1) which depends on the number of
bonds present in a system’s configuration and which progres-
sively reduces on increasing p, starting from the initial value ΔU0,
according to

ΔU ¼ ΔU0 � β�1ln 1þ ξpð Þ ð1Þ

The parameter ξ, i.e., the autocatalytic strength, quantifies the
reduction rate. Note that, according to the Boltzmann distribu-
tion, the probability to overcome the barrier becomes
� e�βΔU0 1þ ξpð Þ, i.e., grows linearly as the reaction proceeds,
thus establishing a positive feedback mechanism. Such a system
combines the representativity of basic autocatalytic processes
which are of real interest, with the advantage of a mean-field
approach. It thus provides the simplest treatable model for the
investigation of autocatalytic aggregation under realistic
conditions.

We study the kinetics of the model for several values of βΔU0

and different values of ξ. The resulting curves of p versus time for
βΔU0= 4 are shown in Fig. 2. For all ξ, the rate of bond
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formation passes through a maximum at an intermediate reaction
time t > 0, giving the kinetic curve the characteristic profile
observed in many real systems.

Barrier effect. To understand these profiles and link the kinetics
with the physics of the aggregation process, we perform addi-
tional simulations with fixed-barrier particles, at several values of
βΔU. An excellent description (solid line in Fig. 3) of the overall
kinetics in the case βΔU= 0, already studied in ref. 28, is obtained
according to the mean-field description mentioned above, by
assuming a diffusive rate constant directly proportional to the
p-dependent average diffusion coefficient, D, of a particle in the
system (kdiff= kdD). In this case, two sites bond each other when
achieving the bonding distance δ, whatever energy they have.
In contrast, for βΔU > 0 two colliding sites not always have
enough energy to overcome the barrier, and an expected number
N ¼ eβΔU of collisions are needed before a successful event
occurs (Methods section). Once two sites have undergone an
unfruitful collision the particles to which they belong go back to
diffuse through the sample and the next encounter, producing
another attempt to overcome the barrier, will take on average as
much time as the previous one. The average time to form a bond,
τoverall= τchem+ τdiff, gets longer by such a number of trials N .
As a result, the chemical rate constant of the system, which is
the reciprocal of τchem, is expected to reduce with the height of
barrier as kchem ¼ kc=N ¼ kce

�βΔU , with kc the value
without barrier, and analogously the diffusive rate constant,
which is the reciprocal of τdiff, is expected to reduce as
kdiff ¼ kdD=N ¼ kdDe

�βΔU , with kd the same as without barrier
provided that the average diffusion coefficient does not depend
on the barrier itself. Therefore, it is koverall= (1/kchem+ 1/kdiff)−1

= (1/kc+ 1/kdD)−1e−βΔU. With these expectations, dividing the
reaction rate by (1− p)2e−βΔU should produce a master curve of
the data as a function of p, providing a direct visualization of the
coefficient (1/kc+ 1/kdD)−1. This representation is shown in
Fig. 3, in which two kinds of deviations from a master curve are
observed, respectively at lower and higher p values. In the early
stages of reaction, when the diffusivity is high and the system is in
chemically controlled regime, koverall is approximated by kchem
and the data should flatten out, towards the value kc. For βΔU > 0,
however, this behavior is not observed but the slope of the data
increases on increasing the barrier, up to a saturation value. This

effect cannot be ascribed to diffusional limitations, because these
latter intervene at a later stage and contribute to decrease, not to
increase the reaction rate. Thus, a “barrier effect” emerges in the
chemically controlled kinetics: a barrier to overcome produces a
rate of bond formation which does not simply scale exponentially
with the height of the barrier, giving rise to an enhancement
over the expected value. Since we can empirically compensate
for the rate excess observed in this range by dividing the rate by
(1− p)ne−βΔU rather than by (1− p)2e−βΔU, with n < 2 an
exponent that depends on βΔU, this barrier-induced effect is
accounted for analytically by introducing a corrective factor to
kchem, dependent on the barrier and the extent of reaction, given
by (1− p)n−2.

At a later stage, when the encounter probability between
particles has dropped significantly and the system is in diffusion-
controlled regime, koverall is approximated by kdiff and the data in
Fig. 3 should collapse on the p-dependent quantity kdD evaluated
for the case without barrier. The curves for βΔU > 0, however,
increasingly depart from the curve with βΔU= 0 and the
departure starts at increasingly high values of p, indicating that
the diffusion-controlled regime dominates at a higher extent of
reaction the higher is the barrier. Thus, a “barrier effect” also
emerges in the diffusion-controlled kinetics: a barrier to over-
come is associated to an enhanced diffusive rate constant
compared to the value expected by scaling exponentially with
the height of the barrier. To investigate the origin of such
enhancement we analyze the average diffusion coefficient D,
calculated from the long-time limit of the mean-squared
displacement averaged over all the individual particles composing
the system (see Methods section and Supplementary Fig. 1). The
comparison between βΔU= 0 and 4 is shown in Fig. 4a, and no
difference in the behavior of D versus p is surprisingly found.
Consistent with this fact, we also find that the distribution n(s) of
the size s of particle clusters in the system is not altered by the
presence of activation barriers, not when the height of barrier
remains fixed (Fig. 4b), not when it progressively reduces (Fig. 4c),
suggesting a dynamical origin for the observed barrier-induced
effect that does not involve changes in the overall structure. This
is confirmed by the static structure factor S(q), where q is the
modulus of the wave vector q (Supplementary Fig. 2). Based on
these results, the enhancement of kdiff cannot be ascribed to
variations of D, but rather implies a modification of kd, dependent
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Fig. 2 Kinetics of autocatalytic reactions. Kinetic curves, p versus time, at
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autocatalytic strength ξ, as indicated. Time is scaled by eβΔU0 to highlight
speed-up of the reaction due to autocatalysis. The profile of the site–site
potential for bond formation, including its qualitative behavior during
reaction, is sketched in the inset as a function of the inter-site distance r
(Methods section)
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(see next Fig. 4a)
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on the barrier. It is important to note that the reaction rate in the
high p region is not scalable with the corrective factor found at
lower p values (Supplementary Fig. 3), revealing that the same
activation barrier is causing a different enhancement of kchem and
kdiff in the system. For kdiff, we assume a corrective factor k0,
dependent on βΔU. To quantify these observations, we reproduce
the reaction rate over the entire range of p for all βΔU by using

kchem ¼ kc 1� pð Þn�2e�βΔU

kdiff ¼ kdk0De
�βΔU

ð2Þ

in which kc and kd are obtained from the case without barrier, D
versus p is known from the mean-squared displacement, and the
fit only adjusts the exponent n and the constant prefactor k0 for
each curve.

Figure 5a compares the results of the best-fit for βΔU= 0 and
4, showing that in the second case the description requires a value
of nmuch lower than 2 and a value of k0 much higher than 1. The
βΔU dependence of these parameters is shown in Fig. 5b, c: n
exponentially decays with the height of barrier as e−βΔU, towards
a limiting value which is rapidly reached at βΔU≈2; k0, in the
range of barrier explored, exponentially increases as ebβΔU with b
significantly lower than 1.

In its apparent simplicity, the simulation unveils a novel kinetic
effect, related to the presence of activation barriers. So far this
effect has been ignored, despite the fact that it may apply to
many situations. To go deeper into the physics of this effect, we
consider a model, based on the solution of Smoluchowski
equation of diffusion in three dimensions29, which aims
to describe in a simplified way the growth process of a sink
(due to clustering) in the presence of a barrier for particle
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adsorption (see Supplementary Note 2). In this model, although
the overcoming of the barrier is an activated process, the
adsorption rate of the diffusers does not scale as e−βΔU, but it
appears a corrective factor always greater than 1, dependent
parametrically on both the barrier height and the extent of
reaction (Supplementary Fig. 4c), in qualitative agreement with
what is observed in the simulation model. Since the system in the
chemically and in the diffusion-controlled regime is in very
different microscopic conditions, it is reasonably expected that
different rate-corrective factors have to be used to model
adequately the two regimes. In particular, Supplementary Fig. 4c
qualitatively suggests that in the early and intermediate stages of
reaction, when clusters are experiencing rapid growth, the barrier
dependence of the corrective factor tends to saturate and shows a
more pronounced p dependence. In the late stages of reaction,
when new bonds mainly incorporate small clusters into the
percolating gel network which can be assimilated to a negligibly
growing sink, the p dependence is expected to vanish and the
barrier dependence dominates the corrective factor.

Autocatalytic kinetics. We now reconstruct the autocatalytic
kinetics for all the reactions simulated, building on the kinetics of
the non-autocatalytic model with barrier, by replacing into Eq. 2

the fixed value of barrier with a barrier that progressively reduces
on increasing p according to Eq. 1. With this replacement, one
obtains

kchem ¼ kc 1� pð Þn�2 1þ ξpð Þe�βΔU0

kdiff ¼ kdk0D 1þ ξpð Þe�βΔU0
ð3Þ

where ΔU0 is the initial value of barrier. Note that because of the
change of the barrier with p, the exponent n and the prefactor k0
also change during the reaction as

n ¼ n1 þ n0 � n1ð Þ 1þ ξpð Þe�βΔU0

k0 ¼ 1þ ξpð Þ�bebβΔU0
ð4Þ

thus incorporating in the autocatalytic rate equation the barrier
effect previously discussed, and producing non-negligible cor-
rections to the kinetic profile over the entire p range. In Fig. 6 the
solid lines are the kinetic curves calculated for different values of
βΔU0 and ξ using only parameters borrowed from non-
autocatalytic simulations. Although no fit parameters are used,
in all cases the agreement with the numerical simulation is
excellent, demonstrating that the autocatalytic kinetics is deter-
mined by how the system behaves in non-autocatalytic condi-
tions, combined with the way the barrier effectively decreases.

0.000

0.004

0.008

0.012

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

–0.0005

0.0000

0.0005
0.00

0.01

0.02

0.03

0.04

–0.002

0.000

0.002

0.000

0.002

0.004

0.006

–0.0005

0.0000

0.0005
0.000

0.004

0.008

0.012

–0.001

0.000

0.001

M=1.00 N=1.90 k2/k1=14.45

M=1.02 N=1.89 k2/k1=7.51

M=0.98 N=1.79 k2/k1=2.54

R
es

id
ue

s

�ΔU0=4 �=14.28

�ΔU0=4 �=7.14

�ΔU0=4 �=2.86(d
p/

dt
) 

e
�Δ

U
0

(d
p/

dt
) 

e
�Δ

U
0

(d
p/

dt
) 

e
�Δ

U
0

(d
p/

dt
) 

e
�Δ

U
0

M=1.04 N=2.03 k2/k1=47.68

M=1.05 N=2.00 k2/k1=36.41

R
es

id
ue

s

�ΔU0=4 �=50

�ΔU0=4 �=35

M=1.18 N=2.07 k2/k1=7.43

M=0.89 N=1.74 k2/k1=2.40

R
es

id
ue

s

�ΔU0=5 �=5.71

�ΔU0=5 �=2.86

p

R
es

id
ue

s

M=0.99 N=1.84 k2/k1=14.30

M=0.92 N=1.69 k2/k1=5.65
�ΔU0=6 �=14.28

�ΔU0=6 �=7.14

p

Fig. 6 Description of the autocatalytic kinetics. The p dependence of the rate dp/dt (scaled by e�βΔU0 to facilitate comparison) at different autocatalytic
strengths ξ and initial energy barriers βΔU0. The solid lines are the predicted kinetics, i.e., dp/dt= koverall(1− p)2 where koverall= (1/kchem+ 1/kdiff)−1, with
kchem and kdiff given by Eqs. 2 and 4, and using D(p) obtained from the mean-squared displacement. All the parameters are known from non-autocatalytic
reactions. The dotted lines (in some cases they cannot be distinguished from the solid lines) represent the best-fit of the simulation data with kchem
replaced by the Kamal’s rate constant, i.e., kchem= (k1+ k2pM)(1− p)N−2 with k1, k2, M, and N free-parameters independent of p. The values of M, N, and
k2/k1 associated to each dotted line is indicated. Below each frame, in the same color as the symbols, the residues with respect to the predicted kinetics are
shown as solid lines, and with respect to the best-fitted Kamal equation as dotted lines. Different panels refer to different values of βΔU0

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04977-0

6 NATURE COMMUNICATIONS |  (2018) 9:2647 | DOI: 10.1038/s41467-018-04977-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


This analysis explains, on a physical basis, the equation that
describes the kinetics of bond formation in the model of auto-
catalytic patchy particles; yet this analysis is not offering, per se,
substantial evidence that the model is realistic and that the effect
of barrier may come to play a visible role in real systems. As a
next step, we provide evidence that the model equation derived
through the simulation study closely reproduces a number of
experimental data, in which the barrier effect shows up clearly.

Comparison with experiments. To provide evidence that the
simulation model is able to reproduce the kinetics of bond for-
mation in real situations, we consider the process of epoxy–amine
cure, very important in material science. Depending on the
reactants and the curing conditions, it is not unusual to be in the
case where the addition of an amino hydrogen to the epoxy ring
represents the exclusive reaction and all amino hydrogens
have equal degree of reactivity toward epoxy groups. The
addition reaction results in the formation of a hydroxyl group
that may become involved in a hydrogen-bonded transition
state in which an unreacted epoxy ring is more sensitive
to nucleophilic attack, thus considerably promoting further
interaction with amines30–32. The reaction between epoxy
and amino species, however, is too slow to occur naturally, and
it is initiated by any hydrogen-bond donor molecule (XH) initi-
ally present in the form of moisture or impurities. The XH
molecules, together with the OH groups in the reaction products,
are not consumed in any side-reactions and act as true catalysts
and autocatalysts, respectively. Therefore, the reaction is an
example of autocatalytic reaction initiated by an added catalyst.
Figure 7 shows a qualitative comparison of experimental data for
selected epoxy resins reacted at various temperatures with
data from the simulation, providing a good anticipation of the
ability of the model to capture the essentials of the kinetics of
these systems.

For a stringent test, we go a step further and quantitatively
reproduce the experimental data of six epoxy resins with the
model equation derived through the simulation study. To this
purpose, the expression of kdiff requires prior adjustment to
account for the different p dependence of D in real systems with
respect to the numerical case, and for the lack of direct access to

D. To this end, the expression of kdiff in the modeling of epoxy
resins is replaced by kdiff= kdτ−λ, where τ(p) is the structural
relaxation time, for example measured by dielectric33, 34 or
photon-correlation spectroscopy35, 36, and 0 < λ < 1 is a system-
dependent exponent. Both kd and λ are independent of p and
reaction T. This avoids the introduction of redundant fit
parameters; it also takes into account the temperature depen-
dence of kdiff through the T dependence of τ and, at the same
time, it assumes D is related to τ via a fractional power–law
relationship, as observed in many fluids close to vitrification37, 38.
As for kchem, we use the analytical expression in Eq. 3, with n
given by Eq. 4, by recalling that ξ= k2/k1. Since k1 and k2 are
directly proportional in the present scenario to the rate constants
associated respectively to the catalytic and autocatalytic pathways
of reaction (Supplementary Note 1), they can also be written as
k1 ¼ Ae�βΔUc and k2 ¼ Be�βΔUa , with ΔUc and ΔUa the enthalpy
barriers for bond formation mediated by the initially present
catalyst (XH) and by the autoproduced catalyst (OH), being the
entropy barriers incorporated into the prefactors A and B. Using
n0= 2 (the value of n at ΔU= 0) as found in simulation, we
describe the kinetics of each epoxy system at several reaction
temperatures with five parameters for the chemically controlled
rate, i.e., ΔUc, ΔUa, A, B, n∞, and two parameters for the
diffusion-controlled rate, i.e., kd and λ, all independent of reaction
T and, therefore, shared by all isotherms. It is remarkable that
with a single set of parameters we are able to account not only for
the p dependence of the reaction rate but also for its temperature
dependence. Figure 8 shows the excellent agreement, for each
system, of the experimental data with the result of a simultaneous
fit procedure. Table 1 summarizes these results. Similar values of
enthalpy barrier are obtained independently of the amine used in
the cure process; in all cases, moreover, the value of ΔUc is equal
or very close to ΔUa, supporting the idea that the initially present
catalyst XH is mostly formed by OH groups, likely due to
moisture. More interestingly, the value n∞ < 2 which is crucial to
obtaining a successful description, stands out as a manifestation
of the barrier effect.

These findings resolve a long-standing issue concerning the
kinetics of these materials. Experimental data systematically
deviate from the kinetics that would be expected, so that a
phenomenological rate equation with kchem= (k1+ k2pM)(1− p)
N−2, which is known as Kamal equation39, has been used as a
replacement. This equation is extremely flexible, provided that M
and N are left free to assume fractional and temperature
dependent values; but these exponents still remain without
physical explanation. It is widely accepted that a less simplified
reaction scheme is hiding behind values of these exponents
respectively different from 1 and 2, yet no study has been able to
substantiate this guess40–42. Our results indicate that the observed
kinetics can be fully explained on a physical basis without any
need to complicate the reaction scheme, by means of what we
called “barrier effect”. Moreover, there is no guarantee that the
empirical Kamal’s modification preserves k1 and k2 in their
original meaning of catalytic and autocatalytic rate constants and,
therefore, no guarantee that their Arrhenius plot is providing
correct estimates of the associated activation energy. Figure 8
shows that the fit strategy using the Kamal equation indeed
provides a comparably good description of each curve; however,
it derives activation energies differing up to 50% from those
obtained with our model equation. To further demonstrate this
point, we fit the simulation data in Fig. 6 by using the Kamal
equation, according to the common practice in the experimental
literature, and find an erroneous determination of k2/k1= ξ in
several cases, over or under-estimating the true value of ξ up to
30%, despite an equally good description of the data as compared
to our equation.
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Fig. 7 Qualitative comparison with experimental data. Symbols: reaction
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dependence of the diffusion coefficient in experimental reality with respect
to the simulation model
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Discussion
A mixture of ellipsoidal patchy particles is a simple but effective
coarse-grained model for aggregation, able to combine finite
valence, specific directional bonding, selectivity of interactions
and asymmetry in shape, which are the key features of many old
and new-generation building blocks of self-assembling materials.

Our model is realistically inspired by the step-wise polymeriza-
tion that occurs at the molecular level, but can also be considered
representative of associating polymers, functionalized molecules
and, moving up in the length scale of the linkable monomers, of
systems with bioselective interactions and patchy colloids. Fur-
thermore, it offers the possibility to implement equally well a
reversible (physical) aggregation process, through the removal of
the exit infinite barrier and the modulation of the bonding energy
of reactive sites, u0: once a bond is formed there is a probability of
bond breaking which depends on the relative value of the thermal
energy compared to the energy barrier that the reacted sites must
overcome to escape the potential well26, 27. The study presented
in this paper provides the rule to make the same model be also a
paradigmatic model of autocatalytic aggregation, in which
excluded volume and barrier effects are able to emerge. Indeed,
understanding the autocatalytic aggregation of these particles
allows us to reveal a surprising enhancement in the rate of bond
formation when step-wise aggregation proceeds in the presence of
activation barriers. While the Boltzmann distribution predicts
that slowdown of the process grows exponentially with the ratio
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Fig. 8 Quantitative comparison with experimental data. Colored symbols are experimental data—taken from a ref. 34, b ref. 51, c–f ref. 52— for the kinetics
of diglycidyl ether of bisphenol-A (DGEBA) reacted at different temperatures with different amines (1,3-phenylenediamine (mPDA), 4-4′(1,3-phenylene-
diisopropylidene) bisaniline (BSA), 4,4′-diamino-3,3′-dimethyldicyclohexylmethane (3DCM), diethylenetriamine (DETA), cyclohexylamine (CHA), 4,4′-
diaminodiphenylmethane (DDM)). Each curve corresponds to a different T of reaction. The red lines are obtained by fitting the data at all temperatures
simultaneously using dp/dt= (1/kchem+ 1/kdiff)−1(1− p)2, where kchem ¼ Ae�βΔUc þ Be�βΔUap

� �
1� pð Þn�2 with

n ¼ n1 þ n0 � n1ð Þ e�βΔUc þ ðB=AÞe�βΔUap
� �

, and kdiff= kdτ−λ with τ the p-dependent structural relaxation time, experimentally measured at each T.
Assuming n0= 2, the simultaneous fit procedure over different isotherms adjusts for each system seven parameters, i.e., ΔUc, ΔUa, n∞, A, B, kd, and λ. The
black lines are obtained by fitting the same data at each T separately, with kchem replaced by the Kamal’s rate constant, and kdiff= kdτ−λ as in our strategy,
and thus using 4Nþ 2 parameters, with N the number of isotherms. The behavior of k1 ¼ Ae�βΔUc and k2 ¼ Be�βΔUa corresponding to the two fit strategies
is reported in the Arrhenius plot, respectively, with blue lines and black symbols

Table 1 Fit parameters

System ΔUc/10−20(J) ΔUa/10−20(J) n∞
DGEBA-mPDA 9.6 ± 0.1 9.1 ± 0.1 1.34 ± 0.02
DGEBA-BSA 9.6 ± 0.2 9.4 ± 0.1 1.45 ± 0.07
DGEBA-3DCM 11.9 ± 0.3 12.1 ± 0.3 1.47 ± 0.02
DGEBA-DETA 10.7 ± 0.1 10.9 ± 0.1 1.38 ± 0.02
DGEBA-CHA 9.7 ± 0.2 9.9 ± 0.2 1.65 ± 0.04
DGEBA-DDM 9.6 ± 0.2 9.1 ± 0.2 0.71 ± 0.02

Activation enthalpy per single bond mediated by the initially present catalyst (ΔUc) and by the
autoproduced catalyst (ΔUa), and the limiting value of n for different epoxy–amine systems.
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of barrier to thermal energy, we observe a rate of aggregation
appreciably higher than expected and dependent on the height of
barrier. This increase in the rate, which corresponds to a decrease
in the average time requested for two sites on distinct particles to
bond, receives a contribution from reduction of τdiff, i.e., the
cumulative time requested for two particles to diffuse distances
comparable to the interparticle distance as many times as the
number of unsuccessful collisions with the barrier, and a different
contribution from reduction of τchem, i.e., the cumulative time
needed for neighboring particles to correctly reorient allowing
two reactive sites on their surface to collide as many times as
requested to bond. By using a minimal analytical model we show,
in a qualitative way, that both the energy barrier in the interaction
potential and the growth of clusters bearing reactive sites are
crucial for this counter-intuitive kinetic effect, never emerged
from existing simulation methods, but clearly detectable in real
situations. Experimental polymerization rates of simple auto-
catalytic epoxy–amine systems showing appreciable deviation
from ideal rates are fully explained by this physical, not
chemistry-based effect that avoids resorting to phenomenological
equations or ad-hoc modified schemes of reaction. These findings
result in a fundamental caveat when interpreting kinetic data to
derive mechanistic information, and demonstrate that physical
mechanisms also have a role that must not be overlooked.

We expect that a model of autocatalytic patchy particles greatly
enlarges the current simulation capabilities by opening the way
for studying under controlled realistic conditions many processes
in which not only the characteristics of the involved particles, e.g.,
shape and valence, determine the final outcome of the process,
but also the kinetics of the involved reactions plays a crucial role,
as it is when an autocatalytic reaction is going to feed other
reactions or when several reactions compete for resources43–45;
or, again, when the process of aggregation takes place into an
evolving chemical environment which changes the interparticle
interactions46. Furthermore, by giving a proof of principle of how
changing in a controlled manner the energy barrier in the
interaction potential is the key for controlling the kinetic
mechanism of aggregation, our study provides a guideline to
design colloids that self-assemble by following an autocatalytic
kinetics. This raises the intriguing prospect of constructing new
colloidal assemblies whose structure is defined by the timeline for
linking different types of nanoscale monomers, thus moving
forward the frontiers of supracolloidal chemistry47–49.

Methods
Model. We have studied a stoichiometric mixture of NA= 1200 bifunctional A
particles and NB= 480 pentafunctional B particles, represented as uniaxial hard
ellipsoids. A particles have semiaxes (2σ, 2σ, 10σ) and mass 3.4m, while B particles
are smaller and lighter, with semiaxes (σ, σ, 5σ) and mass m. The packing fraction is
ϕ= 0.30, a value calibrated on a realistic mixture of epoxy–amine molecules in
their initially fluid state. fA= 2 bonding sites on A particles (e.g., representative of
epoxy groups) are located at the particle ends, while fB= 5 bonding sites on B
particles are located two at each end (e.g., representative of a primary amine group)
and one on the equatorial line (e.g., representative of a secondary amine group).
The site–site attraction is modeled as a square-well potential of depth u0 and
interaction range δ= 0.2σ, complemented by a repulsive energy barrier ΔU at an
inter-site distance δ (Fig. 1). Each A site can only interact with a B site. In the
numerical code, two sites of different type form a bond when their distance
becomes smaller than δ; each site is engaged at most in one bond. Once a bond is
formed, it is made irreversible by switching on an infinite barrier at distance δ
between the sites involved, which constrains the distance between them to not
exceed δ. Clusters are defined as groups of bonded particles.

Molecular dynamics simulations. We have performed event-driven molecular
dynamics simulations using the algorithm described in ref. 50. The energy unit is
kBT, the mass unit is m and the unit of time

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10mσ2=kBT

p
. The dynamic evolution

of the system is studied starting from an initial configuration with no bonds
between particles, at fixed temperature kBT=1. The value of u0 is set to 0.1kBT. We
introduce a time step δt= 0.05 in reduced units, at which we periodically rescale
the particle velocity to enforce a constant temperature; rescaling is performed at

time intervals of 0.1 (we checked that the simulation results do not change upon
increasing this value up to 10.0). In all cases, the simulation box is taken to be
periodic and the volume fixed. To quantify the fraction of formed bonds p we
divide the total number of bonds present in the system by the maximum number of
possible bonds fANA (or equivalently by fBNB). All the simulation results presented
are the average of independent runs of 40 independently equilibrated starting
configurations.

The implementation of autocatalysis is performed by re-calculating at each
simulation step the site–site energy barrier used for the next step of the simulation
as ΔU= ΔU0− β−1 ln(1+ ξp), with ΔU0 the value at p= 0 and ξ the autocatalytic
strength.

Diffusion coefficient calculation. At any given time during the simulation, when
the average fraction of bonds over independent configurations is p, positions and
velocities of all particles are copied and used to start a new simulation in which the
bonding pattern is frozen by switching on an infinite barrier at distance δ in the
inter-site potential in place of the finite barrier ΔU. In this new simulation, the
formed clusters remain free to move, while being prevented from bonding other
clusters. The mean-squared displacement of all the particles in the system over the
time period t is computed as Δr2 tð Þh i ¼ PN

i¼1 ri tð Þ � ri 0ð Þj j2=N� �
, where 〈⋅〉

denotes an ensemble average, ri is the position vector of a particle and i labels the
N=NA+NB particles of the system. At the given p, the average diffusion coeffi-
cient D is then calculated as

D ¼ lim
t!1 Δr2 tð Þ� �

=6t ð5Þ

evaluated where a possible subdiffusive behavior is over and a linear increase in
time is established. This simulation protocol allows us to determine the diffusion
properties of the system in a manner not affected by the ongoing aggregation
process.

Attempts to overcome the barrier. The average time τoverall to form a bond is
assumed to increase proportionally to the average number N of unsuccessful
attempts to overcome the energy barrier ΔU in the inter-site potential. To estimate
this number we note that the probability of an unsuccessful attempt according to
the Boltzmann distribution is 1− e−βΔU, and hence the probability of n unsuc-
cessful attempts will be [1− e−βΔU]n. The average number of these attempts nh i �
N is then calculated as

N ¼
P1

n¼1 n 1� e�βΔU
� �n

P1
n¼1 1� e�βΔUð Þn ¼ eβΔU ð6Þ

Data availability. Data supporting the findings of this manuscript are available
from the corresponding author upon reasonable request.
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