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ABSTRACT
Here, we revisit the assembly of colloidal tetrahedral patchy particles. Previous studies have shown that the crystallization of diamond from
the fluid phase depends more critically on patch width than on the interaction range: particles with patches narrower than 40○ crystallize
readily and those with wide patches form disordered glass states. We find that the crystalline structure formed from the fluid also depends
on the patch width. Whereas particles with intermediate patches assemble into diamond (random stacking of cubic and hexagonal diamond
layers), particles with narrow patches (with width ≈20○ or less) crystallize frequently into clathrates. Free energy calculations show that
clathrates are never (in the pressure-temperature plane) thermodynamically more stable than diamond. The assembly of clathrate structures
is thus attributed to kinetic factors that originate from the thermodynamic stabilization of pentagonal rings with respect to hexagonal ones as
patches become more directional. These pentagonal rings present in the fluid phase assemble into sII clathrate or into large clusters containing
100 particles and exhibiting icosahedral symmetry. These clusters then grow by interpenetration. Still, the organization of these clusters into
extended ordered structures was never observed in the simulations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5109382., s

I. INTRODUCTION

The assembly of patchy particles has been the subject of consid-
erable research during the last years due to their potential usefulness
for producing new materials.1–3 Among the plethora of geometries,
tetrahedral patchy particles have been probably the system attract-
ing more attention.4–16 Some of these studies were motivated by
the desire to obtain a colloidal diamond crystal (a material with
interesting photonic properties)4–10,16 but also by the potential use-
fulness of simple colloidal models to understand the behavior of
more complex systems, in particular, that of tetrahedral atomic
and molecular liquids, such as water, carbon, silicon, germanium,
etc.13–15,17

After these extensive studies, the phase diagram and the assem-
bly behavior of tetrahedral patchy particles are relatively well under-
stood. Evaluation of the equilibrium phase diagram showed that
diamond competes with a body centered cubic (BCC) solid, in which

the particles are bound to four of the eight nearest neighbors form-
ing two interpenetrated diamond lattices.6–8,11 These studies also
found that the thermodynamic stability of diamond over that of
the BCC becomes larger for shorted ranged models.6–8 In spite
of being the thermodynamically stable phase at low pressure and
temperature, simulations have shown that diamond is not always
readily accessible from the fluid phase as the system can fall into
kinetic traps in which a glass state is formed instead. A system-
atic study of the parameter space found that the interaction range
is the relevant parameter to make diamond kinetically accessible.
Particles with patch widths narrower than 30○ assemble into a crys-
tal, consisting in a random stack of cubic (that contains only chair
6-membered rings) and hexagonal (with both chair and boat rings)
diamond layers, and into a disordered glass structure for particles
with wider patches.9 In passing, we note that recently it has been
suggested that the entropy of mixing cubic and hexagonal layers
makes stacking-disordered ice the stable phase for crystallites up to
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a size of at least 105 molecules.18 Further simulation studies showed
that the diamond nucleation free energy barrier reaches a mini-
mum for particles with a patch width of about 30○. As patch width
increases, the chemical potentials of the liquid and solid phases
become closer (leading to a higher energy barrier), but the sur-
face tension decreases (reducing the barrier) so that the minimum
free energy barrier for diamond nucleation occurs for intermediate
patches.10

Here, we revisit the assembly of simple tetrahedral patchy par-
ticles from the fluid phase. We find that tetrahedral particles with
narrow patches preferentially assemble into empty clathrate struc-
tures, whereas particles with intermediate patches form cubic and
hexagonal diamond as shown in previous work.9 The formation of
clathrates is attributed to kinetic factors whose origin is traced back
to the thermodynamic stability of pentagonal rings as patch width
decreases. These pentagonal rings can assemble into sII clathrate or
into icosahedral clusters containing 100 particles grown from a cen-
tral dodecahedral cage. Synthesis of colloidal particles with this sim-
ple geometry falls within today’s experimentalist capabilities.19–21

Thus, it might be foreseeable that the assembly of clathrate struc-
tures using tetrahedral patchy particles might also be soon realizable
in the lab.

II. SIMULATION METHODS
Interactions between tetrahedral particles are described by the

Kern-Frenkel model22 which consists of a hard sphere particle of
diameter σ with four attractive sites or patches on the surface, each
of which can form a bond with energy−ϵ. Using σ and ϵ as the length
and energy units, this model has only two parameters: the patch half
opening angle θmax and the interaction range Δ, which can be inde-
pendently tuned. The assembly behavior was investigated by means
of Monte Carlo simulations in the NVT ensemble. First, we per-
formed numerous exploratory simulations in a system withN = 1000
particles, sweeping the parameter space formed by the patch width
(cos θmax = 0.98–0.92) and the interaction range (Δ = 0.03–0.24).
Once the region where clathrates spontaneously form was identi-
fied, simulations on a much larger system with N = 10 000 were
also performed to get further insight into the crystallization of
clathrates.

We have chosen to perform NVT MC simulations with
single particle moves at density ρσ3 = 0.03 and temperature
kBT/ϵ = 0.116, as is observed that in this condition a single crys-
tal cluster is formed in reasonable computational times. Study of
crystallization from a dilute phase by addition of single particles
may lead to a faster crystallization and an easier identification of the
polymorph formed than in simulations at higher densities close to
that of diamond (conditions at which our preliminary simulations
also predicted the formation of clathrates). Note that single parti-
cle MC moves produce an artificial dynamics, which only in spe-
cific cases (small displacement/rotation steps) can be mapped into
Brownian dynamics.53 Previous work has also shown that the ten-
dency of a low density liquid to gelation (which will slow or even
prevent crystallization) might be artificially suppressed if collective
motion is neglected.23 Luckily, at the selected T, bonds break and
reform several times during the simulation. Collective motion can be
mimicked using cluster moves designed to use in conjunction with
MC or Brownian dynamics schemes but only approximately and at a

considerable computational cost.24–26 The most rigorous route to
simulate the dynamics in out-of-equilibrium processes involves per-
forming Brownian dynamics simulations in which hydrodynamic
interactions within the clusters are taken into account, something
that is beyond the scope of this work.

All throughout this article, σ and ϵ are used as the distance
and energy units, respectively. Thus, temperature is expressed as
T∗ = kBT/ϵ, density is expressed as ρ∗ = ρσ3, and pressure is
expressed as p∗ = pσ3/ϵ.

For the 4-patch KF model, the gas-liquid critical point T is
quite accurately predicted by B∗2 = −4.92, where B∗2 = 1 − 4(1
− cos2 θmax)((1 + Δ)3 − 1)(exp βϵ − 1) is the reduced second virial
coefficient.27

The evolution of crystal growth was monitored using
CHILL+.28 This order parameter has the advantage over other ones
that it is capable of distinguishing between hexagonal and cubic ice,
and clathrate structures, identifying also interfacial particles. Given
that some trajectories assemble into clathrate structures, we imple-
mented also the order parameter proposed by Jacobson et al.29 to
discriminate between the two most common clathrate structures, sI
and sII. This order parameter is based on the identification of cages
and vertex present in the different clathrate structures.29 Adopting
the usual convention, each cage or polyhedron will be assigned a
label nmi

i , where i runs over the different types of polygonal faces
forming the cage, ni is the number of edges of each type of polygo-
nal face, and mi is the number of faces with ni edges. The cages that
appear in sI and sII are the dodecahedron (512), a tetradecahedron
(51262), and a hexadecahedron (51264). Then, each vertex in the lat-
tice is assigned four indices accounting for the number cages of each
type converging at that site.

III. RESULTS
A. Assembly “experiments”

The summary of the crystallization behavior as a function of
the interaction parameters is shown in Fig. 1. Consistent with previ-
ous work, our simulations indicate that the patch width has a much
larger impact on the assembly behavior than the interaction range.
Crystallization is achieved for patch widths narrower than about 40○,

FIG. 1. Structure formed from the fluid phase as a function of model parameters,
namely, interaction range Δ and patch width 2θmax . Black circles represent the
glass state, red squares represent cubic/hexagonal diamond, and blue triangles
indicate that both diamond and clathrates are assembled.
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which is somewhat larger than the limit value reported previously.9

This is just a consequence of exploring more thermodynamic con-
ditions and performing longer simulations. But, more interestingly,
we find that the crystal formed is not always a mixture of cubic and
hexagonal diamond as expected. For the narrowest patch, the assem-
bly of diamond competes with the spontaneous formation of empty
clathrates. The interaction range again seems to play a secondary
role in the probability of the system crystallizing in either of these
crystal structures.

With the aim of getting further insight into the crystallization
of clathrate structures, we performed 10 independent simulations in
a larger system with N = 10 000 particles for the model with cos θmax
= 0.98 and Δ = 0.24 at a density ρ = 0.03. These simulations were
performed at T = 0.126, a temperature at which nucleation often
starts from a single crystalline nucleus and occurs at reasonable sim-
ulation times. Our simulations indicate that different trajectories
follow different crystallization paths. Three representative config-
urations of the aggregate formed at the end of the simulation are

depicted in Figs. 2(d), 2(h), and 2(l). The particles in different crys-
tal environments as identified with CHILL+ are shown in different
colors.

In the most common situation, the fluid crystallizes into an
aggregate formed mainly of particles in clathratelike environments
[Fig. 2(d)]. In these trajectories, crystallization coincides with a sud-
den rise in the number of clathrate particles [Fig. 2(a)]. There are
also some particles at interfacial clathrate environments, which are
obviously those located at the aggregate surface. On the contrary, the
number of diamond particles is negligible throughout all the trajec-
tories. Therefore, it can be concluded that nucleation starts from a
clathrate nucleus that grows steadily.

In some other instances, both clathrate and cubic/hexagonal
diamond coexist in the aggregate [Fig. 2(h)]. The evolution of the
number of particles in different crystal environments shows that in
the first nucleation stage the nucleus is formed almost exclusively
of clathrate particles, and only after some time, the number of dia-
mond particles also increases [Fig. 2(e)]. Consistent with previous

FIG. 2. Evolution of the number of particles in different crystal environments as identified using CHILL+ (a), (e), and (i) and of the number of cages (b), (f), and (j) and vertices
(c), (g), and (k) detected by Jacobson order parameter for clathrates,29 along three representative trajectories of the crystallization of a fluid of tetrahedral particles with
cos θmax = 0.98 and Δ = 0.03 at T∗ = 0.116. The final configuration along each of the three selected trajectories is also shown: (d) sII clathrate, (h) coexisting sII and diamond,
and (l) an amorphous aggregate. Particles in different colors represent different crystal environments as identified with CHILL+: clathrate particles are shown in red, interfacial
clathrate is shown in yellow, cubic diamond is shown in blue, hexagonal diamond is shown in green, and interfacial diamond is shown in purple.
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findings,9 this crystal consists of a random stack of cubic and hexag-
onal diamond. This is just as a consequence of cubic and hexago-
nal diamond presenting a similar nucleation free energy barrier,10

as well as almost identical free energy. Curiously, the number of
clathrate particles remains almost constant shortly after that dia-
mond growth starts. The fact that clathrate and diamond structures
can coexist during relatively long simulation times suggests that their
free energy might be similar, but the higher tendency of diamond to
grow hints that diamond might be indeed the thermodynamically
stable phase.

Finally, some trajectories assemble into a large aggregate whose
structure seems disordered at first sight [Fig. 2(l)]. However, most
of the particles in this structure are classified as cubic diamond or
interfacial clathrate by CHILL+, both environments being evenly
distributed over the aggregate and growing simultaneously (with
the number of interfacial clathrate particles typically being more
than three times higher than those in cubic diamond environ-
ments). Interestingly, a careful inspection reveals that particles are
often arranged into an icosahedral three-shell cluster containing
100 particles and formed by two inner dodecahedral shells cov-
ered by a rhombicosidodecahedron [see Fig. 3(c)]. This structure
can also be seen as formed by a central dodecahedral cage, sur-
rounded by 20 barrelian-shaped pentagonal cages in which two
pentagons are joined by five other particles forming five boat 6-
membered rings [see Fig. 3(d)]. By analogy with the notation often
used to name the cages in clathrate structures and defined before,
these cages are designated here 5265, although we should empha-
size that the five six-edge faces are not planar (nor even nearly
planar). As can be seen in Fig. 3(e), particles belonging to the cen-
tral dodecahedral cage form three eclipsed and one staggered bond
with its nearest neighbors and, thus, are identified as interfacial
clathrate by CHILL+. Those belonging to the second dodecahe-
dral shell form four staggered bonds, i.e., they have the same local
environment as cubic diamond. Particles on the surface of the 100
cluster form two eclipsed and one staggered bond. They will be
identified as interfacial clathrate or fluid depending on the fourth
neighbor.

Further information about the structure of these ordered and
disordered clathrates can be obtained using Jacobson order param-
eter that identifies cages and vertices within these lattices.29 This
parameter is slightly modified here to include the 5265 cages that
appear in the icosahedral three-shell cluster. Thus, vertices are now
defined using five instead of four indices vjklmn, where the indices
j, k, l, m, and n are the number of 512, 51262, 51263, 51264, and
5265 cages converging at that vertex. Using this convention, sI
clathrate contains vertices of types v04000 and v13000, sII of types
v04000 and v13000, and the icosahedral shell cluster of types v10003
and v00004. Analysis of clathrate structures with this order parameter
reveals that the clathrate assembled from the melt at these condi-
tions is invariably of type sII, as evidenced by the large number of
51264 cages [Figs. 2(b) and 2(f)] and correct sII vertices [Figs. 2(c)
and 2(g)].

Regarding the amorphous aggregate, it contains a large num-
ber of dodecahedral 512 and pentagonal 5265 cages [Fig. 2(j)] and
only a tiny amount of 51262, 51263, and 51264 cages, typical of sI, sII,
and amorphous water clathrates.29,30 Consistently, the growth of the
aggregate is not correlated with an increase of sI, sII, or amorphous
clathrate vertices. On the contrary, there is a rather pronounced

enhancement of the number of vertices compatible with the three
shell icosahedral cluster [Fig. 2(l)]. By merging dodecahedral and
pentagonal cages, we were able to identify more than 40 complete
icosahedral shell clusters in this aggregate [see Figs. 3(a) and 3(b)].
These clusters are often joined by interpenetration, sharing a pen-
tagonal cage. Two typical unions of icosahedral cluster are shown in
Figs. 3(f) and 3(g). Even though there are some regions where the
clusters show some tendency to aggregate in an ordered way, there
is really no order beyond the shell cluster. As can be seen in Fig. 3(b)
the structure can be described as an amorphous aggregate of shell
icosahedral clusters. We speculate that the lack of ordering of the
cluster aggregates might be related to a possible increase in strain
when merging shell clusters.

Interestingly, the stability of a three shell cluster with the same
structure as the one spontaneously assembled here has been theo-
retically studied as a possible arrangement of the water molecules in
the liquid state.31 In the case of water, this unit made of 100 parti-
cles is the central core of a larger icosahedral cluster with N = 240
molecules. Reference 32 suggested that the cluster can grow in three
dimensions by adding more shells in the 12 faces, but it is more
strained as cluster size increases. According to the author, such a
growth on cooling qualitatively explains the origin of water density
and pressure anomalies.

B. Stability of clathrate structures
The spontaneous formation of clathrates from tetrahedral par-

ticles with narrow patches raises the obvious question of whether
they might become thermodynamically stable in this region of the
parameter space. Even though the phase diagram of tetrahedral
patchy particles has already been investigated,6–8 clathrates were not
considered in these studies. Given that the distribution of near-
est neighbors around a central particle exhibits deviations from
the perfect tetrahedral arrangement of the particles, it is reason-
able to think that clathrates are likely to be entropically disfavored
over cubic and hexagonal diamond, in which patches point directly
to the nearest neighbors (see Table I). Additionally, the density
of clathrates is lower than that of hexagonal and cubic diamond,
which makes them also enthalpically disfavored. In any case, we
checked the stability of sI and sII clathrates by performing free
energy calculations using the Einstein molecule approach.33–35 Ini-
tial clathrate structures were taken from Ref. 36, scaling the Carte-
sian coordinates to the appropriate interaction range. The phase
diagrams for four sets of model parameters are shown in Fig. 4. As
can be seen, clathrates are metastable for tetrahedral patchy parti-
cles over all the parameter space. They only become more stable
than diamond at negative pressures, sII being slightly more stable
than sI. The relative stability of clathrates with respect to diamond
increases for small patches and large interaction ranges. Note, how-
ever, that diamond stability decreases for long ranges. Coinciden-
tally, simulations of the phase diagram of water using TIP4P/2005
also found that sII is more stable than sI, becoming only more sta-
ble than the remaining solid phases at negative pressures.37 In the
case of water, though, another clathrate structure sH was more sta-
ble than sI. However, sH is not even mechanically stable for patchy
particles, as it involves local environments with large deviations
from the tetrahedral arrangement. This is consistent with Ostwald’s
empirical observation that the crystal that nucleates first does not
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FIG. 3. [(a) and (b)] Two different representations of the amorphous aggregate. In (a), particles belonging to shell clusters are shown in red and the remaining particles are
shown in cyan. In (b), particles that do not belong to complete shell clusters are removed to aid visualization. (c) Structure of the three shells forming a 100-particle cluster that
is often found in the amorphous clathrate aggregate. (d) The two types of cages formed in the cluster are a central dodecahedral cage shown in red, surrounded by twelve
5265 barrelianlike cages (one of which is highlighted in green). (e) CHILL+ identifies particles belonging to the central dodecahedral cage (yellow) as interfacial clathrate
(they form three eclipsed and one staggered bond), those in the second dodecahedral shell (dark blue) as cubic diamond (four staggered bonds) and those belonging to the
external rhombicosidodecahedron (cyan) as fluid (particles in these sites form two eclipsed and one staggered bond) or as interfacial clathrate depending on the fourth bond.
Two typical forms of joining the shell clusters: (f) three interpenetrated shell clusters and (g) six interpenetrated shell clusters around a 5265 cage.
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TABLE I. Wyckoff positions in sI and sII structures, as well as the angles formed by the neighbors in these sites.

Crystal Wyckoff site Angles with neighbors

sI 24k 124.628, 106.70, 106.70, 106.12, 106.12, 105.10
16i 110.565, 110.565, 110.565, 108.353, 108.353, 108.353
6c 110.74, 110.743, 108.839, 108.839, 108.839, 108.839

sII 96g 119.86, 108.63, 108.63, 107.96, 105.59, 105.59
32e 111.55, 111.55, 111.55, 107.30, 107.30, 107.30
8a 109.47, 109.47, 109.47, 109.47, 109.47, 109.47

necessary coincide with the thermodynamically stable phase, a find-
ing that was rationalized by Stranski and Totomanow by stating
that the phase that forms first is that separated from the fluid by
a lower free energy barrier.38 Thus, we can conclude that patchy
particles with small patches crystallize into sII, not because it is the
thermodynamically stable phase but because the free energy barrier
separating this crystal from the fluid is possibly lower than that of
diamond.

C. Why are clathrate structures kinetically favored?

Once we have seen that clathrates are always metastable, the
next question is then why they are preferentially formed over the
stable diamond phase for particles with small patches. For this
purpose, we analyzed the properties of the fluid phase. We per-
formed simulations in the NVT ensemble at ρ∗ = 0.03 for particles
with angular patch widths within cos θmax = 0.90–0.99 and constant

FIG. 4. Phase diagram of tetrahedral patchy particles for different angular patch widths and interaction ranges. Clathrates sI and sII are always metastable with respect to
the fluid phase. They become more stable than diamond at negative pressures, sII clathrate being more favorable than sI. (a) cos θmax = 0.98, Δ = 0.24. (b) cos θmax = 0.98,
Δ = 0.03. (c) cos θmax = 0.92, Δ = 0.24. (d) cos θmax = 0.92, Δ = 0.03.
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interaction range Δ = 0.03. The bonding probability exhibits a dis-
continuity at a temperature that decreases with patch width indicat-
ing the onset of nucleation [see Fig. 5(a)]. The number of bonded
rings was analyzed as a function of patch width and at a constant
value of bonding probability pb = 0.16 (slightly smaller than the
pb value at which nucleation starts). Comparing systems in ther-
modynamic equilibrium with the same number of bonds (same
pb) but different θmax values allows us to highlight unambiguously
the connection between ring formation and patch width. As can
be seen in Fig. 5(b), four-membered rings disappear for particles
with small patches (with cos θmax > 0.97) due to geometric con-
straints. On the contrary, both 5- and 6-membered rings are more
likely for particles with small patches, but the growth of 5-member
rings is more significant than that of 6-membered rings. The dilute
fluid prepares itself to self-assemble clathrates when the patch size
decreases.

The available volume for bonding in planar n-membered rings
can be written, to first approximation, as39

Vn−ring
b = 2πσ2(cos θ0 − cos θ)Δ, (1)

FIG. 5. (a) T dependence of the bond probability for different cos θmax values
at ρ = 0.03. A clear discontinuity is observed in all curves in concomitance with
gas-liquid phase separation and/or nucleation. Data for T smaller than the dis-
continuity are provided as a reference, being the system slowly aging. The lines
at the bottom indicate the model critical T estimated by the proposed relation
B∗2 (Tc) = −4.92.27 (b) Number of rings (defined as closed paths along bonds,
starting and ending in the same particle) for different values of cos θmax , all at
pb = 0.16 [see the dashed line in panel (a)].

where θ0 corresponds to the smallest patch width compatible with
ring formation. Considering the simple case of planar rings, this
angle can be estimated as (109.47 − α)/2, where 109.47○ is the
tetrahedral angle and α is the interior angle of the regular poly-
gon with n = 4, 5, 6, . . ., edges. According to this, the minimum
angles for 4-, 5-, and 6-membered rings are cos θ4

0 = 0.9856, cos θ5
0

= 0.9999, and cos θ6
0 = 0.996. This means that 5- and 6-membered

(both boat and chair) rings can even be formed for very directional
bonds. Thus, this very simple argument explains why 4-membered
rings are not formed for particles with narrow patches, but it is by
itself not enough to explain why the number of 5-membered rings
increases more rapidly than 6-membered rings as patches become
narrower.

In general, the configurational part of the partition function of
a cluster of particles of size n can be written as

Qn =
1

n!σ3n ∫
′

dr⃗1, . . . ,dr⃗ndΩ1, . . . ,dΩn

× exp[−βV(r⃗1, r⃗2, . . . , r⃗n, Ω1, . . . , Ωn)], (2)

where r⃗1, . . . , r⃗n are the Cartesian coordinates of the particles and
Ω1, . . ., Ωn are their orientations and where we have arbitrarily set
the thermal de Broglie length to the unit distance σ. The prime sign
in the integration limit indicates that only points in phase space for
which the cluster does not break into disconnected smaller clusters
are considered. For well defined morphologies, one can calculate
the integral for a specific set of ordered patches and particles and
multiply the result by a combinatorial factor, Ωcomb

n , accounting for
all the possible arrangements of the particles with that morphol-
ogy. For chains, the partition function can be conveniently rewritten
by using relative positions with respect to the first particle in the
chain,

Qchain
n = Ωchain

n

n!σ3n e
−βϵ(n−1)V ∫

′′

dr⃗21, . . . ,dr⃗n2dΩ1, . . . ,dΩn, (3)

where V is the volume of the system. The double prime in the inte-
gral indicates that integration is limited to phase space points for
which the cluster—now with a specific set of ordered patches and
particle labels—retains its integrity. The combinatorial factor Ωchain

n
for particles with f patches can be inferred by recurrence. Two par-
ticles with f patches can bind to each other in f 2 different ways. For
each one of these arrangements, the chain can bind an additional
particle in (2f − 2) × f different ways [(2f − 2) is the number of avail-
able patches in the two free ends and f is that in the new attached
particle]. Particles forming a chain of length (n − 1) can be arranged
in (n − 1)!/2 different ways, where the factor 2 avoids overcount-
ing of chains with the same sequence of particles from right to left
and from left to right. Since the new particle can be located in n/2
locations, we have

Ωchain
n = Ωchain

n−1 [f (2f − 2)]n
2

= f 2

2
[f (f − 1)]n−2n!. (4)

For simplicity, we assume that successive bonds are decoupled
so that the integral in Eq. (3) can be split into a product of (n − 1)
integrals, one for each bond Vb. Supposing that translations and
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rotations can also be decoupled in the KF model, the configurational
integral for each bond can be approximated by

Vb = 4π[1 − cos θmax

2
]

2 (σ + Δ)3 − σ3

3

= π(1 − cos θmax)2(σ2Δ + σΔ2 +
1
3
Δ3). (5)

We note, since we are going to use this value in the follow-
ing, that for the case Δ = 0.03, the bonding volume is given by
Vb = 0.0971(1 − cos θmax)2. Putting everything together, the par-
tition function of a chain of n particles can be written as

Qchain
n = V

σ3n
f 2

2
[f (f − 1)]n−2Vn−1

b e−βϵ(n−1). (6)

Once the partition function is known, it is possible to evaluate
the probability of observing that cluster in a simulation. Indeed,
this probability is directly proportional to the value of its partition
function,40,41

Nchain
n = Qchain

n (N1σ3

V
)
n

, (7)

which only requires Qchain
n and the monomer number density

ρ1 = N1/V. For the case of chains considered here, this gives

Nchain
n = V

σ3n
f 2

2
[f (f − 1)]n−2Vn−1

b e−βϵ(n−1)(N1σ3

V
)
n

. (8)

The number of chains of size n, Nchain
n , and ρ1 can be measured in

equilibrium simulations of the fluid, and it allows one to double
check the quality of the simulation data and, at the same time, the
quality of the proposed theoretical partition function (i.e., the eval-
uation of the integral as product of independent bonding volumes)
by comparing the left and right hand sides of the following equation
for different cos θmax values:

Nchain
n eβϵ(n−1)

Vρn1V
n−1
b

= f 2

2
[f (f − 1)]n−2. (9)

Note that the T at which the simulation is performed is irrelevant
since it enters in a known way and it is factored out. As shown in
Fig. 6, the agreement between the simulation and the approximation
of independent bonds worsens for longer chain lengths. However,
for all n, there is clearly no patch width dependence in Qchain

n beside
the (1 − cos θmax)2 included in Vb, as predicted by the theory.

Let us move now to the case of a ring of size n. Its partition
function can be written as

Qring
n = Ωring

n

σ3nn!
VΩ′e−βϵn, (10)

where now the number of bonds is n and the integral in the phase
space, Ω′, is over all configurations in which all particles have two
bonds.

The number of possible ways of forming a ring with
n distinguishable particles with f distinguishable patches is
given by

FIG. 6. Left and right hand sides of Eq. (9). The left side (symbols) is evalu-
ated from simulation data at ρ = 0.03 [Δ = 0.03 and hence Vb = 0.0971(1 −
cos θmax)

2]. Specifically, we calculate the number of chain forming clusters
Nchain

n of different sizes n and the monomer (chain of length 1) number density
from equilibrium simulation. The right hand side (dashed lines) is the expected
f 2[f (1 − f )]n−2/2 theoretical prediction. Note that no dependence on the patch
width θmax is observed (beside the one included in Vb). Since the topology of the
cluster is fixed, the number of bonds is always n − 1 and thus the Boltzmann fac-
tor entering in the partition function is a priori known, rendering the value of the
simulation T irrelevant.

Ωring
n = (n − 1)!

2
[f 2 × [(f − 1)f ]n−2 × (f − 1)2]

= (n − 1)!
2
[f n(f − 1)n]. (11)

This expression is obtained considering that there are f 2 different
ways of creating the first bond between two particles. For each one of
these f 2 configurations, there are f (f − 1) possibilities of adding each
of the n − 2 following bonds (or equivalently each of the n − 2 other
particles). Finally, the last particle must bind with the first one. It has
f − 1 sites available for binding and must connect to one of the f − 1
sites available for bonding in the first particle. Thus, patches con-
tribute a term proportional to f 2[f (f − 1)]n−2(f − 1)2 = [f (f − 1)]n.
The term (n − 1)!/2 accounts for the number of different rings of dis-
tinguishable particles. Finally, the partition function can be written
as

Qring
n = f n(f − 1)n

2nσ3n VΩ′e−βϵn, (12)

where

Ω′ = ∫
′

dr⃗21, . . . ,dr⃗n1dΩ1, . . . ,dΩn. (13)

Now, the prime indicates that the integral is restricted to those con-
figurations in which all the particles have two bonds. The evaluation
of Ω′ is less straightforward in the case of rings. It can be approx-
imated by Vn−1

b R, where R counts the number configurations for
which, when n − 1 bonds are formed, a last bond that closes the loop
is automatically present. Thus, the number of n-membered rings is
given by

Nring
n = f n(f − 1)n

2nσ3n VΩ′e−βϵn(N1σ3

V
)
n

, (14)
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FIG. 7. Probability R that the position and orientation of the first and last particles
in a chain allow for the formation of a bond, transforming the chain into a ring, as
a function of cos θmax [evaluated as shown in Eq. (15)]. Here, Δ = 0.03 and hence
Vb = 0.0971(1 − cos θmax)

2; ρ1 and Nring
n are calculated from MC simulations

at ρ = 0.03 and T selected such that pb(T) = 0.175.

from where R can be evaluated,

R = Nring
n eβϵn2n

Vρn1V
n−1
b f n(f − 1)n . (15)

As can be seen in Fig. 7, when n = 5 and n = 6, R increases signifi-
cantly with the angular patch width cos θmax, explaining the prefer-
ential formation of pentagonal (and to less extent hexagonal) rings
in particles with small patches. These results indicate that the almost
perfect match between the internal angle of the pentagon and the
tetrahedral angle is the reason why pentamers are preferentially
formed for tetrahedrally patchy particles with highly directional
interactions.

IV. SUMMARY AND CONCLUSIONS
In summary, we have found that the assembly of tetrahedral

patchy particles can be governed by tuning the patch width. Whereas
particles with large patches (2θmax ≳ 40○) lead to disordered glass
states, particles with intermediate size patches (20○ ≲ 2θmax ≲ 40○)
assemble into a diamond crystal, and those with small patches
(2θmax ≲ 20○) show a competition between diamond and clathrate
structures.

A more extensive study of the nucleation of clathrates from a
low density fluid of tetrahedral particles with narrow patches shows
that there are several nucleation paths. Whereas in some trajec-
tories the system assembles into large sII clathrate aggregates, in
some other instances, nucleation starts from a sII nucleus, diamond
nucleating later on the surface on this nucleus. Finally, the remain-
ing trajectories follow a rather different path, in which the sys-
tem assembles into a rather disordered aggregate formed by small
icosahedral three-shell clusters. Taking a general perspective from
the three different scenarios, it seems that nucleation often starts
from dodecahedral cages. This is a consequence of the higher ten-
dency of the fluid to aggregate into five-membered rings as patch
width decreases. These cages can grow into sII clathrate or into an
icosahedral shell cluster. Given that the second shell of particles

in the icosahedral cluster is in almost perfect tetrahedral environ-
ment (they are identified as cubic diamond by CHILL+), this struc-
ture is probably less strained than that of small sII fragments. We
speculate that this is the reason why the formation of shell cluster
might be favored in some trajectories. Free energy calculations evi-
dence that clathrate structures are never thermodynamically stable
for tetrahedral particles regardless of their patch size or interaction
range. Thus, nucleation of clathrates must be the result of kinetic
factors, linked to the increasingly lower free energy of pentagonal
rings—compared to hexagonal and larger rings—as the patch width
decreases.

The results presented here also shed light on the propen-
sity of water molecules to form in the liquid state a significant
fraction of five membered rings. This is expected since a map-
ping of several water classical potentials into a KF model sug-
gests an equivalent cos θmax ≳ 0.92.13 Pentagonal rings have indeed
received attention in the past both as candidates of low-density
regions topologically distinct from the nucleating icelike (diamond)
structures, providing resilience to crystallization,42 and for their
role in promoting a decrease in the density on cooling31 (and
of the other thermodynamic anomalies slaved to the existence of
a temperature of maximum density43–45). In a very recent study
based on the TIP4P-200546 potential, a structural model based on
fused dodecahedral cages for low density water was investigated.47

Although molecular dynamics simulations predict that these clus-
ters are rather unstable, the calculated spectral behavior and scat-
tering behavior are consistent with the experimental data. Inter-
estingly, another recent study of heterogeneous nucleation using
the coarse-grained monoatomic mW water model reported that,
under slow nucleation conditions, water formed nanostructures
with a high proportion of pentagonal rings, similar to those found
here.48

As a consequence of the fivefold symmetry axes (which are
incompatible with crystalline growth), present both in the dodecahe-
dral and barrelianlike pentagonal cages, it seems reasonable to think
that it might be possible to use these subunits to build a quasicrys-
tal. Indeed, dodecahedral and pentagonal cages were used in previ-
ous work to decorate a three-dimensional Penrose quasilattice with
the aim of finding a tetracoordinated quasicrystal.49 In future work,
it would be interesting to study whether the 100 particle clusters
identified here can be arranged into extended periodic or aperiodic
ordered structures.

The results presented here are of high relevance for those seek-
ing to produce open colloidal crystals. Assembly of clathrates from
patchy particles has been often assumed to be rather challenging
due to the complexity of their unit cell. Consistent with this, all the
soft matter systems that have been found to assemble into clathrates
involve some degree of complexity, e.g., using mixtures of patchy
colloids50 or oscillating isotropic models51 in simulations and trian-
gular bipyramid nanoparticles interacting via DNA strands in exper-
iments.52 Here, we propose a much simpler route for producing
these complex crystals.
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