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Investigating million-atom systems for very long simulation times, we demonstrate that the collective
density-density correlation time (τα) in simulated supercooled water and silica becomes wave-vector
independent (q0) when the probing wavelength is several times larger than the interparticle distance. The q
independence of the collective density-density correlation functions, a feature clearly observed in light-
scattering studies of some soft-matter systems, is thus a genuine feature of many (but not all) slow-
dynamics systems, either atomic, molecular, or colloidal. Indeed, we show that when the dynamics of the
density fluctuations includes particle-type diffusion, as in the case of the Lennard-Jones binary-mixture
model, the q0 regime does not set in and the relaxation time continues to scale as τα ∼ q−2 even at small q.
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The wave-vector (q) dependence of the dynamics of
atomic, molecular, and colloidal systems close to dynamic
arrest has been the focus of intense research [1–11].
In particular, the q region that corresponds to the near-
est-neighbor distance in glass- and gel-forming systems has
revealed a series of interesting phenomena [12,13]: (i) a
two-step relaxation for both self- and collective density
correlation functions, indicating a faster intracage motion
and a slower structural relaxation (α relaxation), respec-
tively; (ii) a significant stretching of the α relaxation, which
originates from the coupling between distinct modes
[14,15]; (iii) a deviation from the diffusive q−2 behavior
of the self-correlation time; (iv) oscillations in the q
dependence of the collective relaxation time, often in phase
with the oscillation of the structure factor; (v) a faster decay
of the self-dynamics compared to the collective one,
indicating that relative particle displacements play an
important role in the decorrelation of the system.
The region at very small q, where the wavelength is

much larger than the interparticle distance, has also been
thoroughly characterized. Here, conservation laws in one-
component systems determine a three-mode decay of the
collective correlation functions [16]: two modes associated
with damped sound waves (the Brillouin peaks) and one
to the damped decay of the heat diffusion (the Rayleigh
peak). In all three cases, the damping time follows a q−2

dependence. In the case of glasses (where the α-relaxation
time is longer than the experimental observation), a clear
crossover has been identified between the region where the
system can be considered an elastic continuum and the
region where an excess of vibrational states [17,18] is
superimposed to the Debye density of states [19–21].
In some colloidal systems, where the size of the particles

provides access to smaller ratios between the wavelength
of the probe radiation and the interparticle distance, a

q-independent (q0) relaxation mode has been reported.
From the early measurements in polymer melts in which
entanglement induces an effective transient network
[22–24], evidence of a q0 mode has been presented for
rodlike micelles [25], semidilute polymers with bonding
agents [26,27], telechelic ionomers [28], and microemul-
sion droplets in solution with telechelic polymers [29]
(where the latter provide transient links between distinct
droplets). More recently, a q0 mode has been reported for
equilibrium gels of DNA tetrafunctional nanostars [30,31]
in which a short self-complementary DNA sequence
provides a temperature-controllable link between different
particles. This q0-relaxation dynamics has been interpreted
as originating from local elasticity fluctuations propagating
through the system [22,31]. A recent simulation study of a
particle model for vitrimers, binary-mixture networks in
which the microscopic dynamics is slaved to a bond-
swapping process [32], has also reported a clear q0

dependence for the collective dynamics extending over
more than one order of magnitude in q.
In this Letter, we explore the possibility that a q0

dependence of the collective relaxation time is much more
common than previously thought, being a generic feature of
systems with slow dynamics, including systems composed
of atoms and molecules. The q0 mode can arise in a range
of q values intermediate between the hydrodynamic and the
nearest-neighbor regions when the collective relaxation is
not associated with single-particle diffusion. We simulate
slow-dynamics systems that are large enough (up to a
million atoms) to allow the numerical evaluation of the
collective relaxation over wavelengths corresponding to
distances up to 50 times larger than the typical nearest-
neighbor distance. Here we mostly focus on supercooled
water, whose dynamics has been extensively investigated
experimentally with different scattering techniques
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[33–37]. For water, a comparison between the ultrasound
data [38] and the lowest q explored with inelastic x-ray
scattering [33] suggests that a region with q0 dispersion
exists just below the experimentally accessible window.
Using simulations, we now provide clear evidence that,
indeed, there exists a wide range of wave vectors in which
the collective dynamics is q independent. We also show that
a model based on the Mori-Zwanzig formalism properly
describes the q independence of the dynamics. Finally, we
present results for two more systems, both well-known
binary models of glass formers: the Beest-Kramer-van
Santen (BKS) model for silica [39] and a binary-mixture
Lennard-Jones (BMLJ) [40]. In agreement with our explan-
ation, we observe a q0 mode only in BKS silica.
Methods.—For TIP4P/2005 [41] and BKS [39], we

perform NVT simulations utilizing GROMACS 5.1.4 [42]
with a velocity-Verlet integrator and a time step of
Δt ¼ 1 fs. The temperature is controlled using a Nosé-
Hoover thermostat [43,44]. The Coulomb interactions are
included with a particle-mesh Ewald treatment [45] with a
Fourier spacing of 0.1 nm. For both the Lennard-Jones
and real space Coulomb interactions, the same cutoff rcut
is used (rcut ¼ 0.9 and 1 nm for TIP4P/2005 and BKS,
respectively). Lennard-Jones interactions beyond rcut are
taken into account assuming a uniform fluid density. The
TIP4P/2005 system consists of 2.5 × 105 molecules (1M
interacting sites) in a cubic box. We investigate three
densities (0.90, 0.95, and 1.00 g=cm3 corresponding to
box lengths of 20.26, 19.89, and 19.56 nm, respectively)
at two temperatures (240 and 250 K). The molecular
geometry is maintained using the LINCS (linear constraint
solver) algorithm [46]. The BKS system consists of 287
712 particles (1=3 Si and 2=3 O) in a cubic box. We study
three densities (2.36, 2.48, and 2.60 g=cm3, correspond-
ing to box lengths of 15.95, 15.69, and 15.45 nm) at
3500 K. As a BMLJ glass former, among the different
alternatives [47–49], we choose the Kob-Andersen model
[40]. We use the RUMD package [50] to simulate 106

particles at ρ� ¼ 1.2 and T� ¼ 0.466, where the � super-
script indicates reduced units: The unit of length is the
diameter of the large particles, σAA, the unit of mass is the
particle mass m, and the unit of energy is the interaction
strength between large particles, ϵAA. Differently from
Ref. [40], the unit of time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσAA=ϵAA

p
. The total

duration of the simulations is 20 ns for TIP4P/2005 and
BKS (20–100 times the slowest collective relaxation time
in the system) and 6 × 107 MD time steps for the BMLJ
system. The relaxation times and nonergodicity factors
obtained from fitting the correlation functions of the
TIP4P/2005 and BKS systems in the whole q range are
reported in Supplemental Material [51].
Results: TIP4P/2005.—Figure 1 shows the (oxygen-

oxygen) collective density correlation functions Fðq; tÞ
for several q values in the window 0.3 < q < 3 nm−1,
corresponding approximatively to wavelengths 7–70 times

larger than the OO nearest-neighbor distance (0.28 nm).
Fðq; tÞ is evaluated as

Fðq; tÞ ¼ hρ�qðtÞρqð0Þi; ρqðtÞ≡ 1ffiffiffiffi
N

p
XN
i¼1

eiq·riðtÞ; ð1Þ

where N is the total number of molecules, ri is the position
of the ith oxygen atom, and the average is performed over
different initial times along the MD trajectory and over all q
vectors with the same modulus q. Fðq; 0Þ coincides with
the structure factor SðqÞ. It is immediately clear from Fig. 1
that, in this q window (extending the window of q explored
with high-resolution inelastic x-ray scattering measure-
ments [33,34]), all correlation functions decay at long
times with the same characteristic timescale. Figure 1 also
shows the self-correlation function Fselfðq; tÞ, plotted with
dashed lines. In this small-q region, the Gaussian approxi-
mation holds true; that is, Fselfðq; tÞ ¼ expð−q2hr2ðtÞi=6Þ,
where hr2ðtÞi is the mean-squared displacement [16]
(comparison not shown). It is important to note that the
self-correlation functions decay at much longer times
compared to Fðq; tÞ, indicating that the decorrelation of
the collective dynamics over the probed length scales does
not require particle diffusion.
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FIG. 1. Decay of the (full lines) collective and (dashed lines)
self-density fluctuations at (a) T ¼ 240 K, ρ ¼ 0.9 g=cm3 and
(b) T ¼ 250 K, ρ ¼ 1.0 g=cm3. In both panels, q varies between
0.3 (black lines) and 3.0 (red lines) nm−1.
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To further support the idea that a single (q-independent)
characteristic time controls the decay of the density
fluctuations in this low-q region, we compare the numeri-
cally calculated correlation functions with predictions
based on the Mori-Zwanzig (MZ) formalism. For any
system, the normalized collective correlation function
ϕq ≡ Fðq; tÞ=SðqÞ formally satisfies the equation [16]

d2ϕq

dt2
þ Ω2

qϕq þ
Z

t

0

Mqðt − t0Þ dϕq

dt
dt0 ¼ 0; ð2Þ

where Ω2
q ¼ ðkBT=MÞ½q2=SðqÞ�.

The memory function, which is the autocorrelation of
the stochastic force [16], and Ω2

q completely specify the
dynamics. Guided by the q independence of τα, we
approximate MqðtÞ as

MqðtÞ ¼ γ0q2δðtÞ þMs
qðtÞ;

Ms
qðtÞ≡ Asq2 exp ½−ðt=τsÞβ�;

ð3Þ

where γ0q2δðtÞ describes the damping associated with
the fast microscopic dynamics and Ms

qðtÞ models the
structural relaxation. This function is characterized by
the three parameters As, τs, and β, defining, respectively,
the amplitude and the time dependence of Ms

qðtÞ. All four
parameters (γ0, As, τs, and β) are, in principle, functions
of q. Consequently,

d2ϕq

dt2
þΩ2

qϕq þ γ0q2
dϕq

dt
þ
Z

t

0

Ms
qðt − t0Þ dϕq

dt
dt0 ¼ 0:

ð4Þ

In deriving Eq. (4), we have neglected the coupling
between density and temperature fluctuations and the
thermal diffusion contribution which is (in the hydro-
dynamic limit) proportional to Cv=Cp − 1 [54]. For water,
this is a reasonable approximation, since at the temperature
of maximum density Cv ¼ Cp [54].
We solve the time dependence of Eq. (4) numerically (in

Fourier space), searching for the values of the parameters
which minimize the differences with the correlation func-
tions evaluated from the simulated trajectories. We find
that, in the range 0.3 < q < 3 nm−1, it is possible to
represent all correlation functions in the entire time window
by using q-independent values for γ0, As, τs, and β. Figure 2
compares the q-independent model predictions with the
numerical data for two different state points. Such excellent
agreement provides strong evidence that a collection of
local relaxation processes (as indicated by the value
β ¼ 0.5) fully describes the q-independent decay of the
collective dynamics at small q. The prediction of Eq. (4) for
q smaller than the ones numerically accessed [black lines in
Fig. 2(b)] visually demonstrates the crossover to the
hydrodynamic limit (having neglected the T fluctuations,

the limit coincides with the damped harmonic oscillator
model with adiabatic sound speed vs ¼ Ωq=q [15,16]). In
general, hydrodynamics sets in when the timescale of the
nonstructural component becomes comparable with τα.
Selecting the period of the sound wave as the typical time,
the wave vector below which the relaxation time loses its q0

character is reached when q ≪ 2π=ðvsταÞ. Therefore, upon
approaching the glass transition, as τα becomes longer and
longer, the region of q in which a q0 mode is expected
becomes larger and larger, provided that SðqÞ does not vary
significantly.
Results: BKS and BMLJ.—We next investigate two of the

most commonly studied binary-mixture glass-former mod-
els. BKS silica [39] generates a structure in which the
(positively charged) Si atoms form a prevalently tetrafunc-
tional open network in which the (negatively charged) O
atoms mediate the Si─Si bonds. As expected for charged
systems, there are essentially no large wavelength concen-
tration fluctuations [55]. By contrast, BMLJ [40] generates
a dense structure in which each particle is surrounded by
particles of both species. BMLJ particles are electrically
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FIG. 2. Simulation (symbols) and theoretical (lines) results for
(a) ρ ¼ 0.90 g=cm3 and T ¼ 240 K and (b) for ρ ¼ 1.0 g=cm3

and T ¼ 250 K, in the same q window as in Fig. 1. For the
prediction of Eq. (4), in (a) γ0 ¼ 0.4 and Ms

qðtÞ ¼ 7.3q2 exp
½−ðt=15Þ0.5�, while in (b) γ0 ¼ 0.3 and Ms

qðtÞ ¼ 10q2 exp
½−ðt=1.05Þ0.5� (with t in picoseconds, q in nm−1, γ0 in
ps−1 nm2, and Mq in ps−2). In (b), the black lines show
predictions for very small q vectors (from right to left, qn ¼
0.0016 × 2n−1 nm−1 with n ¼ 1, 2, 3, 4, 5), to highlight the
crossover from structural relaxation to hydrodynamics.
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neutral, and concentration fluctuations do not vanish in
the small-q limit. This crucial difference is evident in the
Bhatia-Thornton concentration-concentration structure fac-
tors [56] (reported in Supplemental Material [51]). In the
small-q region explored in the simulation, the decay of the
collective total-density fluctuations in the two binary
systems is completely different. While BKS (Fig. 3)
behaves as TIP4P/2005 water and displays an almost q0

dependence for all three investigated densities, the same
function in BMLJ manifests a strong q−2 dependence [see
the main panel and inset in Fig. 4(a)]. We also show the
(non-normalized) partial correlation functions for qσAA ¼
0.4 in Fig. 4(b). All the correlation functions decay
similarly in the whole q range considered, and the asso-
ciated relaxation times always display a q−2 dependence.
Thus, in contrast to the one-component water case and the
two-component silica case, the small-q α-relaxation proc-
ess in BMLJ does not acquire a q-independent behavior.
Discussion and conclusions.—The reported investiga-

tion of the low-q collective dynamics in atomic and
molecular systems exhibiting slow dynamics provides
indisputable numerical evidence of the existence of a large
region of q, corresponding to wavelengths larger than the
interparticle distance, in which the relaxation time is q
independent. These findings demonstrate that a q0 mode is
not a prerogative of soft-matter systems, but it is a genuine
feature of many slow-dynamics systems, either atomic,
molecular, or colloidal. The q independence of Fðq; tÞ can
be equivalently expressed as a q independence of the
memory function within the MZ formalism.
Interestingly, from the point of view of the mode

coupling theory (MCT), which neglects crystallization,
the difference between the q dependence of the memory
functions associated with the structural relaxation of dis-
ordered one-component systems and binary mixtures can

be traced back to the conservation of the overall momentum
of the system [14,57]. In the one-component MCT, con-
sistent with what we have found, Mq is predicted to be q
independent at small q. In the case of binary mixtures,
momentum conservation is not observed by each compo-
nent, since only the sum of all partial momenta is
conserved. As a result, the MCT relaxation times might
display a q−2 dependence [14,57]. Therefore, within this
framework, our results seem to indicate that binary mix-
tures for which the large-wavelength concentration fluctu-
ations are suppressed behave, at large length scales, as
effective one-component systems. A comparison between
the kinetic and thermodynamic contributions to the inter-
diffusion constant of the BMLJ and BKS systems clearly
demonstrates the presence of strong cross-correlations only
in the latter (see Supplemental Material [51]) [16,58,59].
These predictions have never been carefully tested due to
the numerical difficulties of simulating very large systems
over very long periods of time. Our results will definitively
stimulate novel theoretical analysis to properly frame the q0

phenomenon. In particular, it will be interesting to under-
stand in more depth under which conditions binary mix-
tures do or do not exhibit a q0 mode. The reported results
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will also stimulate new small-angle neutron and x-ray
experiments, where a confirmation of the predicted behav-
ior can possibly be achieved. The results presently available
for water [33,34] (reaching a lowest q of 1 nm−1) are
consistent with the numerical findings discussed here.
Although the memory function formalism provides a

deep formal understanding of the q independence, it does
not offer a physical picture of the local processes responsible
for probing all different available microstates at small length
scales. Different systemswill relax locally in different ways,
possibly via rototranslational motion (as proposed for water
[60]), bond swapping, or bond flickering in networks.
Despite these differences, the effect of such local decorre-
lations on the small-q dynamics is system independent. The
local changes of elasticity brought in by these local events
possibly propagate via the vibrational modes of the system
[31] resulting in the decay of the collective density (N=V)
fluctuations at large distances controlled by changes not in
the number of particles N but in the volume V.
Finally, we observe that in the q0 regime equilibration in

systems of very large size can be achieved only if
simulations can be run for times longer than τα (since τα
does not grow with decreasing q). This is not the case for
BMLJ (and possibly other binary Lennard-Jones glass
formers [47–49]), for which doubling the system size
requires 4 times longer equilibration times, making it
essentially impossible to generate very large structurally
and compositionally equilibrated configurations. Indeed, in
these cases the diffusion of individual particles is required
to relax frozen-in long wavelength concentration fluctua-
tions. The observed q0 mode in binary systems, shown here
for BKS and previously for binary-mixture vitrimers [32],
can possibly originate from the suppression of the small
wave-vector (large wavelength) concentration fluctuations.
For BKS, this effect stems from the electrostatic nature of
the Si and O interactions [55]. By contrast, in the vitrimer
system [32], it is the precise stoichiometry of the mixture
and the bonding mechanism, which can act only between
unlike particles, that prevents the occurrence of small-q
concentration fluctuations.
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