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ABSTRACT: We use computer simulations and experiments to study the interactions between nanoparticles (NPs)
grafted with self-complementary DNA strands. Each strand ends with a sticky palindromic single-stranded sequence,
allowing it to associate equally favorably with strands grafted on the same particle or on different NPs. Surprisingly
we find an attractive interaction between a pair of NPs, and we demonstrate that at low temperature it arises purely
from a combinatorial-entropy contribution. We evaluate theoretically and verify numerically this entropic
contribution originating from the number of distinct bonding patterns associated with intra- and interparticle
binding. This entropic attraction becomes more favorable with decreasing inter-NP distance because more sticky
ends can participate in making this choice.
KEYWORDS: DNA, grafted colloids, entropic effects, crystallization, simulation

It is well-understood that colloids or nanoparticles (NPs)
grafted with single-stranded DNA can assemble into
crystal structures when they are mixed with particles with

the complementary DNA sequence at low temperatures.1−6

This well-explored fact is the basis of a rapidly evolving field of
research pairing experimental studies with theoretical and
numerical investigations.7−13 The predominant theoretical idea
in this field is to use the free energy of DNA hybridization to
predict the NP−NP interaction potential. This approach can,
for example, yield the ground-state (free) energy of different
lattices. We can then assign the one with the lowest free energy
as being the crystal structure spontaneously assumed by the
NPs. An excellent implementation of this idea is the
continuum contact model, which uses purely nearest-neighbor
energetic interactions to decide between CsCl, AlB2, and Cr3Si
structures.14 While Biancanello et al.15,16 have delineated the
underlying energetics associated with such pairings from
computer simulations, they recognize that these are effective
interactions that naturally include entropic terms. More
sophisticated approaches, such as a liquid-state model of Vo

et al.,17 go beyond the prediction of simple lattices to predict
the formation of more complex forms found experimentally.
Recently, Travesset and co-workers18 and Lequieu et al.19 have
used computer simulations to understand this assembly
process in detail and have begun to stress the importance of
entropic factors in this assembly.
Entropy plays a very important role in colloidal self-assembly

(for recent reviews see refs 20, 21). Our focus in this article is
to emphasize the less-known role played by combinatorial
entropy in defining the assembly of nanoparticles grafted with
palindromic (self-complementary) DNA sticky sequences, i.e.,
sequences that are able to pair with identical sequences, grafted
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either on the same particle or on a different one. In the case of
an isolated particle all of the DNA sequences are expected to
be paired among themselves at low enough temperatures,
giving rise to ideally inert particles. One would then expect that
NPs grafted with palindromic DNA sticky sequences should
not bind, since there is no energetic gain that can compensate
the loss of translational entropy upon interparticle binding.
Hence the naive expectation would be that there should be no
attractive interactions between two NPs as they are brought
from infinite separation toward contact.
In contrast to these ideas, experiments show that these NPs

organize into crystalline arrays, implying that there is a
favorable interaction between the NPs, one that is strong
enough to drive the particles to self-assemble into a face-
centered-cubic (FCC) crystal (see Methods section for
details). Such superlattices were created from ∼10 nm gold
nanoparticles using DNA-mediated assembly in a four-step
procedure. First, the nanoparticles were tethered with a 30-
base single-strand DNA in a 10 mM phosphate buffer with 250
mM NaCl. The details for the functionalization of DNA were
described in ref 22. Second, a 38-base extension DNA was
introduced to the solution to form a 20-base duplex sequences
with the tethered DNA. The extension DNA includes three
blocks (see Figure 1 top). At one end, there is a 20-base block,
which hybridizes with the corresponding complementary part
of the tethered DNA. In the middle a 12-base part is
hybridized with an additional added complementary single-
strand DNA to form a duplex. At the other end, there is a 4-
base (CGCG) block, which acts as the sticky end. There is one
base between each of the blocks. In the third step, a few hours
after the second step, the nanoparticles were assembled into
amorphous aggregates at room temperature. Finally, the

assembled structure was crystallized by annealing at 38 °C
(the melting temperature is ∼40 °C) for a few hours. The
structure factor, S(q), obtained from a small angle x-ray
scattering measurement, for the resulting structure in Figure 1
clearly show that colloids grafted with palindromic DNA
sequences assemble into crystalline lattices (in this case an
FCC lattice), evidently due to inter-NP binding, as discussed
above.
To understand these results, here we use computer

simulations of a simple coarse-grained model to demonstrate
in a quantitative way that a combinatorial entropic attraction
arises when DNA sticky sequences are offered the possibility to
decide to form bonds between chains from the same NP or
from other NPs. We quantify this attraction and show that it
can reach several kBT units, large enough to compensate the
unfavorable entropy associated with the overlap of the grafted
layers (“brushes”) on adjacent NPs. This competition results in
a minimum in the effective potential between two adjacent
NPs, which can be strong enough to cause the NPs to
aggregate (i.e., form either a disordered liquid-like state or even
an ordered solid under appropriate conditions). This
combinatorial contribution, which appears when the binding
sequence is palindromic (or when two complementary binding
sequences are grafted on the same NP23,24), is different from
previously discussed entropic terms for DNA-coated colloids
arising from restricted freedom of motion of the sticky ends
upon binding or from the different ways in which bonds can
form between two nearby colloidal surfaces.25,26 We performed
molecular dynamics simulations on two NPs, each of radius
RNP = 1 (which defines the elementary length scale in the
problem). The NPs were modeled as isospheres,8 created by
splitting each triangle of a regular polyhedron into four smaller

Figure 1. (Top) Schematic illustration of the DNA-grafted NPs studied in this work. (Bottom) The measured structure factor, S(q), reveals
the assembly of a superlattice formed by gold nanoparticles grafted with self-complementary DNA. The structure is indexed as a face-
centered-cubic (fcc) lattice, where calculated diffraction lines are shown in blue and the unit cell is shown in the inset. The index of the first
eight diffraction lines corresponds to (111), (200), (220), (311), (222), (400), (331), and (420) planes. The lattice constant of the observed
fcc structure is ∼39.4 nm.
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triangles, resulting in a tessellated sphere of 42 sites. A chain of
seven monomers was attached to each of these 42 sites. An
additional end sticky bead (at the free end of the chains), being
“sticky” to all other sticky beads, mimics the palindromic DNA
binding sequence. The chains were described by the Kremer−
Grest model, where adjacent monomers were connected by
FENE springs. Interactions between the non-sticky beads (and
between all chain monomers and the NPs) were modeled by a
truncated, shifted LJ potential that was repulsive everywhere.
The interaction between sticky monomers was modeled by a
short-range potential with a minimum at r = 0.3 with a deep
well such that all sticky ends pair at the studied temperature.
The parameters of all interaction potentials are reported in the
caption of Figure 2 and discussed in more depth in the

Methods section. A repulsive three-body term was then added
to enforce the single-bond per sticky site condition and, more
importantly, to facilitate the swapping of partners for the sticky
ends while leaving the energy of the system essentially
constant.27,28 Different from other bond-swapping
schemes29,30 the three-body algorithm can be naturally
encoded in molecular dynamics. This three-body term is
central to realizing equilibrium in terms of bonding when the
bonding energy is much larger than kBT, because otherwise a

pair of bonded DNA strands would essentially never unpair
and find other partners in a normal MD simulation. Since we
begin with two NPs separated by large distances and then
bring them closer, such partner exchange moves are critical to
establishing the equilibrium relative population of intra-NP vs
inter-NP DNA bonds.
Before discussing the results we note that we neglect any

bending contributions to the system free energy in the present
model. These factors could be particularly important to the
different geometries that have to be adopted by the chains to
form intra- vs inter-NP bonds. While this approximation will
likely overpredict the fraction of intra-NP bonds, we justify it
by the presence of unpaired bases (“spacers”) in the DNA
sequence (see Figure 1). The very short persistence length of
single-stranded DNA significantly reduces the bending free-
energy difference between intra- and interparticle bonds
(besides mechanically decoupling the double helix generated
by the binding process from the rest of the DNA sequence).

RESULTS AND DISCUSSION

To calculate the effective interaction potential (the potential of
mean force, PMF) between two NPs, we use umbrella
sampling,31 spanning an interval of distances from the closest
distance at which the two particles feel each other down to
distances for which Veff(d) = 50kBT. We use a harmonic
potential with the mean separation between the NPs and its
width being the two control variables. We used 38 different
mean separations to systematically calculate the PMF as a
function of the interparticle distance d. The resulting PMF is
shown in red in Figure 3 as a function of the separation
between the centers of the two particles. For distances greater
than ∼11, the potential is effectively zero, implying that there
are no interactions between the two NPs. For shorter distances

Figure 2. (A and B) Snapshots of two NPs with grafted chains,
where the sticky ends on the two NPs are colored red and orange,
respectively. The core is colored in gray, while the nonsticky chain
monomers are in black and made artificially smaller to emphasize
the sticky ends. The two NP centers are separated by (A) d = 8RNP
and (B) d = 4RNP. Notice the increased number of red-orange pairs
in (B).

Figure 3. Calculated potential of mean force as a function of the
center-to-center distance d between two NPs (red line) grafted
with polymeric chains ending in a (palindromic) sticky end. The
black line  which only captures the contribution from brush
entropy  results by preventing any pairing of sticky ends across
the two NPs, while allowing the chain ends on a single NP to pair.
The brown points joined by the brown line shows the difference of
the total PMF and the repulsive brush contribution (black line
minus red line). The magenta curve is calculated according to eq 1.
Note that the good agreement of these last two estimates illustrates
that we have a full understanding of the two-body PMF. The inset
shows an enlargement of the same curves, to highlight the strength
of the attraction arising from combinatorial entropy. Typical error
bars are also shown.
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the potential is negative (favorable) with a minimum value of
ca. −2kBT for a separation of ∼8. Below this distance the
particles repel each other, with the potential increasing to
∼50kBT for a separation of ∼5. To highlight the effect of the
interparticle bonding, we repeat the above calculation but
explicitly prevent the bonding of sticky ends from distinct NPs,
while confirming that the total number of bonds between
sticky ends is identical in both cases. This is technically
performed by turning off the sticky−sticky potential between
sticky sites belonging to distinct particles. This calculation
provides a measure of the brush distortion entropy
contribution, which is found to be always repulsive, stressing
that this contribution is always unfavorable (black line in
Figure 3). The difference between the two calculated effective
potentials provides a measure of the added entropy afforded by
the sticky ends having a choice of picking ends from the same
NP or from the second NP to pair.
To provide evidence that this binding entropy difference

arises from the ability to bond with sticky ends from the same
vs distinct NPs, we theoretically evaluate the combinatorial
contribution originating from the pairing of the sticky ends.
We define N(r) as the number of sticky ends of each particle
that, for each NP separation r, could bind with sticky sites of
the distinct partner particle (i.e., those sticky ends that can
reach a potential partner on the other NP when the NP centers
are separated by r). If only intraparticle bonds are allowed,
then the number of possible different bonding patterns is
[(N(d) − 1)!!] for each NP (or [(N(d) − 1)!!]2 for the two
NPs). Here the double factorial !! originates from the fact that
each bond eliminates two sticky sites from the ensemble of the
N(d) sticky sites. If interparticle bonding is instead allowed,
the expression is identical, but N(d) must now be substituted
with 2N(d). The entropy difference arising from the increase in
the number of possible bonding patterns when interparticle
bonding is allowed can thus be expressed as
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This expression embodies our estimate of the extra
combinatorial entropy because of the ability to bond with
sticky ends from the same vs the second NP. While a
theoretical estimate of N(d) is not straightforward, the number
of bonds Nb

inter that can form between sticky ends on different
NPs for each separation r is a quantity available from the
numerical simulations; Nb

inter provides an exact measure of
N(d). Indeed, assuming random mixing, Nb

inter = N(d)/2 (out
of the N(d) bonds, one-quarter are between sticky ends of the
first particle, one-quarter are between sticky ends of the second
particle, and half of them are interparticle bonds). Figure 4
shows Nb

inter as a function of d. It thus becomes possible to
precisely evaluate the importance of the radial dependence of
the combinatorial entropy of eq 1. The stabilizing combina-
torial entropy contribution to the PMF is plotted in Figure 3.
The fact that this entropy exactly matches the difference
between the total PMF and that arising from the brush
distortion alone implies that ΔScomb(d) provides a full
quantitative understanding of the effective interactions
between a pair of NPs with palindromic sticky sites. It also
clearly demonstrates that the strength of the sticky−sticky
interaction (modeling the binding free energy between
palindromic sticky strands) does not affect the strength of
the interaction. Going further it also illustrates that the

presence of attractive interactions between sticky ends across
the two NPs does not cause any (measurable) change in the
entropy of the brush layer. This result arises from the fact that
the interactions between sticky beads for all pairs are identical,
and hence there is no energetic reason to further distort the
chains.
To probe this idea, we consider the distribution of chain

ends and chain monomers as a function of distance r from the
center of the NP to which they belong. Figures 3 and 4 show
that for distances r greater than ∼11, there are no inter-NP
bonds. This implies that the maximum distance of the ends
from the center of the NPs is 5.5. The distribution functions in
Figure 5 clearly show that the chain ends are mainly confined

to distances smaller than this value, providing an internal
consistency check. The chain ends are predominantly localized
to the “ends” of the brush, but there are ends present for all
distances ≥ 2. Before we use this distribution of chain ends to
quantify the number of bonds formed between the two NPs
(i.e., the data in Figure 4) we note that the distributions of
chain ends, and also for the other chain monomers, are
independent of the NP−NP separation. This argues that the

Figure 4. Interparticle distance dependence of the total number of
bonds Nb

total between sticky ends separated in its intra- Nb
intra and

inter- Nb
inter particle components. The blue line indicates the

expected Nb
inter assuming binding proportional to the overlapping

surfaces of the two NPs of ∼(1 − d/dmax) (see text).

Figure 5. Distribution of monomers (left group of curves) and
sticky ends (right group of curves) from the center of the NP to
which these chains are bonded. The various curves correspond to a
variety of inter-NP distances d, but all of the curves superpose
within the uncertainties of the simulations.
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chain conformations are unaltered when the NPs approach
each other. We believe that the chains accommodate these
constraints by essentially splaying along a direction normal to
the vector joining the two centers without changing their
conformations, e.g., by pivoting about the graft point.
For completeness we examine if and how the PMF can be

modeled by known ideas in polymer physics. The repulsive
part of the potential is expected to be similar to that proposed
by Likos et al. for the case of star polymers.32,33 Indeed, in
agreement with these ideas, we find that the far-field
contribution (i.e., for d ≥ 8) can be modeled by a Yukawa
form as expected by these workers, suggesting that theories
based on the repulsion between star molecules are sufficient to
model this part of the inter-NP interaction. For shorter
distances we find that a Gaussian dependence fits the data (see
Methods section).
We now switch to understanding the variation of the

number of bonds across different NPs, i.e., the data in Figure 4.
The simplest model is to consider an Alexander brush,34 where
the chain ends are at the edge of the brush. While this is a
crude approximation relative to the simulation estimates in
Figure 5, it is the easiest model to use in this context. We then
accept the idea that chain conformations are not affected by
the approach of the second NP and thus estimate that all the
chain ends whose projections along the line joining NP centers
are beyond the midpoint connecting the two NPs that are
bonded. This simple model will yield that the number of bonds

follows − d d(1 / )N
4 max
b
total

, where dmax indicates the distance at

which interparticle bonds becomes possible. As shown in
Figure 4, this model works almost quantitatively for d ≥ 8, i.e.,
above the minimum in the PMF. For smaller values there are
quantitative differences between the model predictions and
simulation data. While we can use the known end distribution
to have a better estimate of this quantity, we did not deem this
as necessary since the fits, by definition, would be model
sensitive and hence dependent on the details of the simulation
parameters used.
Before concluding, we examine why these DNA-grafted

colloids form crystal phases as against disordered liquids, both
of which will be stabilized by these combinatorially driven
attractions. Referring now to the Lennard-Jones potential, it is
known that the triple point occurs when the reduced
temperature is ∼0.6, namely, when the attractive well depth
of the potential is ∼−1.67kBT.35 All stronger attractions would
lead to a direct coexistence between a gas phase and a solid.
Our simulations (see also Methods section) suggest that, with
only 42 grafted strands, the combinatorial attractive minimum
is ∼−2kBT. In the Methods, we show that this is strong enough
to allow for the condensation of NPs into a dense phase and
eventually to crystal formation. These results are, of course,
strongly dependent on the number of grafts per NP and
presumably the geometry of the NP, and thus we cannot
unequivocally determine if liquids or crystals will form when
these attractive interactions between the NPs becomes
important.
We would also like to emphasize that the use of two NPs to

determine effective interactions is likely to have significant
corrections from three- and higher body interactions. In
particular, we see that the grafted chains circumvent the
potential conformational frustration that is introduced when
two NPs approach each other by splaying the chains in a
direction normal to the line joining the NP centers. This allows

us to minimally perturb chain conformations, but this method
of relieving frustration will not be available if additional NPs
are present. How this effect modifies the effective NP
interactions and thus our predictions for phase equilibria
remains open.
The presence of this combinatorial attractive interaction

between interacting NPs is reminiscent of the mean field ideas
of Zilman et al.,36 who examined the role of telechelic polymers
on the phase behavior of microemulsion droplets. In that
particular model, it was assumed that the end monomers
preferred to locate themselves in the microemulsion droplets,
while the remaining chain monomers preferred the (back-
ground) solvent. These workers then predicted an attractive
interaction between the microemulsion droplets because some
of the telechelic chains chose to bridge between two
microemulsion droplets vs planting both ends in the same
droplet.37,38 Differently from Zilman et al.36 we compare
accurately the PMF with the theoretical predictions, essentially
without any fit parameter. The parallels of our work to Safran’s
idea for the emergence of attractive interactions between
microemulsion droplets decorated by telechelic polymers or in
the competition between branching and chaining39,40 empha-
size the subtle but generalizable role of entropy in the assembly
of heterogeneous materials with a “sticky” polymer constituent.
We also note that when a particle is grafted with equal
quantities of sticky ends and its complementary sequence

̅ , a phenomenology similar to the one we have discussed here
is observed.23,24 Finally, we note that while we have based our
study in the low-T limitto stress the independence of the
attraction from the strength of the hybridization free energy of
the palindromic sequencethe combinatorial entropy mech-
anism acts also when the number of bonds is controlled by
temperature (or by salt concentration). This effect can be
accounted for by including the binding probability (which
depends on the salt concentration and temperature) as a
prefactor in N(d). We also note that the strength of the
combinatorial entropy contribution can be modulated based
on the DNA grafting density. One can also envision conditions
in which the grafted strands are a mixture of palindromic and
nonpalindromic sequences. In this case the combinatorial
attraction would be complemented by the attraction generated
by the finite concentration of nonpalidromic strands, providing
a means to further tune the NP−NP interaction.

CONCLUSIONS
We use computer simulations to show that there are attractive
interactions between pairs of NPs grafted with palindromic
single-stranded DNA sequences. This contribution arises
purely from combinatorial entropy, i.e., from the chains
deciding if they want to pair with chains from the same vs
different NPs. We evaluate theoretically and verify numerically
this entropic contribution originating from the number of
distinct bonding patterns associated with intra- and inter-
particle binding. This entropic attraction, which becomes more
favorable with decreasing inter-NP distance, allows for the NP
to form condensed phases in good agreement with experi-
ments.

METHODS/EXPERIMENTAL
Experimental Details. The structures of the assembly were

characterized by synchrotron-based small-angle X-ray scattering
(SAXS) techniques. The SAXS experiments were conducted at the
Complex Material Scattering beamline, National Synchrotron Light
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Source II. The scattering data were collected with a Pilatus area
detector and converted to 1D scattering intensity vs wave vector
transfer, q = (4π/λ) sin(θ/2), where λ = 0.918 Å and θ are the
wavelength of incident X-ray and the scattering angle, respectively.
The wave vector transfer was calibrated using silver behenate as a
standard. The structure factor S(q) was calculated as I(q)/p(q), where
I(q) and p(q) are background-corrected 1D scattering intensities
extracted by angular averaging of images for the assembled system and
dissociated particles, respectively.
Model Details. We model a nanoparticle grafted with DNA

strands with a simple coarse-grained potential. The nanoparticle, the
scaffold to which the DNA strands are grafted, is modeled as a rigid
isosphere,8 created by splitting each triangle of a regular polyhedron
into four smaller triangles, resulting in a tessellated sphere of 42 sites.
The radius RNP of the sphere is chosen as the unit of length. The 42
sites of the isosphere interact via a truncated and shifted Lennard-
Jones potential with σ = 0.63 and ϵ = 1.0 up to distances r = 21/6σ
(the position of the Lennard-Jones minimum). Each of the 42
interacting site is also bonded to its closest six neighbors via a FENE
potential

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
= − −V r

K
d

r
d

( )
2

ln 1FENE FENE
2

FENE

2

(2)

with K = 100 and dFENE = 0.742.
A grafted DNA strand is modeled as a chain of seven identical

monomers. The monomer−monomer and chain monomer−surface
monomer interactions are modeled with a truncated and shifted
Lennard-Jones potential with σ = 1.045 and ϵ = 1.0. The polymer
topology and the binding of the first monomer with the grafting site is
enforced with the FENE potential, this time with K = 100 and dFENE =
1.056. Finally, the palindromic sticky end is represented as an
additional monomer connected to the free end of each polymer. This
sticky site interacts with other chain monomers and with surface
monomers with a truncated and shifted Lennard-Jones potential this
time with σ = 0.48 and ϵ = 1.0. The sticky site is bonded to the
seventh monomer with a FENE potential with K = 100 and dFENE =
0.54. Hence, all interactions, except the sticky−sticky interaction, are
repulsive. The interaction between sticky monomers is modeled by a
short-range potential chosen such that all sticky ends pair at the
temperature studied. The sticky end−sticky end interaction is
modeled as
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with ϵs = 206.89, σss = 0.3, and rc = 1.5σss, resulting in a short-range
potential with a minimum at rmin = 0.3 and depth Vsticky

min = −14kBT.
The potential vanishes at r = rc, and it is assumed to be zero for r > rc.
The resulting interaction potentials are shown in Figure 6
To mimic the selectivity of the DNA sticky sequences and, at the

same time, favor establishment of thermal equilibrium and proper
sampling of several distinct bonding configurations, we implement the
swap-algorithm described in ref 27. This consists of adding a three-
body repulsive interaction between close-by triplets of sticky sites.
This three-body interaction is

∑=V V V r V r( ) ( )
i j k

ij ikthreebody sticky
min

, ,
3 3

(4)

where V3(r) = 1 for r ≤ rmin and
V r

V

( )sticky

sticky
min for rmin ≤ r ≤ rc. With this

definition all terms V3(r) are between 0 and 1, and correspondingly
Vthreebody is positive and at most equal to Vsticky

min for each triplet. Thus, if
a sticky site moves close to an existing bond, then the gain of forming
one additional bond is compensated by the equally relevant repulsive
three-body term. The swap process thus takes place on an essentially
flat potential energy surface. The three-body potential also
significantly discourages the formation of aggregates formed by
three or more sticky sites due to the overwhelming resulting

repulsion, effectively implementing the single-bond per patch
condition, an essential condition to model the specificity of the
DNA association. We finally note that the evaluation of Vthreebody does
not require significant additional calculations, since it is expressed in
terms of already calculated pair interaction energies.

Second Virial Coefficient of the Effective Potential. From the
effective potential, it is possible to evaluate the second virial
c o e ffi c i e n t B 2 ( T ) , d e fi n e d a s

∫π= − − ≈ ×β∞ −B r dr2 (e 1)) 5 10V r
2 0

2 ( ) 3eff . B2 does not depend

on temperature since it is based on an entropic effective potential. At
the level of B2, the equation of state, βP = ρ + B2ρ

2, has a maximum at
ρ = −1/2B2 ≈ 10−4.

Gas−Liquid Phase Coexistence. Starting from the numerically
evaluated effective potential (Figure 2), we have evaluated the gas−
liquid coexistence by performing Monte Carlo calculations in the
grand canonical ensemble, fixing kBT = 1, L = 60 (where L is the side
of the cubic box simulated), and fixed chemical potential μ. The
probability of finding N particles in the system is then given by

=
∑ =

∞P N
z Q V T N

z Q V T N
( )

( , , )
( , , )

N

N
N

0 (5)

where z = eβμ, V = L3, and Q(V, T, N) is the canonical partition
function of a system with N particles. The distribution P(N) is
unimodal in thermodynamically stable states (and in this case the
equilibrium density is ρ = ∑NP(N)/V). When μ describes a
coexistence state, then P(N) has two equal area peaks, one describing
the gas and one describing the liquid state. The two coexisting
densities can be estimated by averaging N limited to the area under
each peak.

To evaluate P(N) efficiently, we have implemented the successive
umbrella sampling technique. In this methodology, the explored range
of N values (0 < N < Nmax) is partitioned into Nnmax subranges [Ni, Ni
+ 1], with 0 < Ni < Nmax. Then Nnmax-independent GCMC simulations
at the same z are performed, each of them constrained to explore only
the interval [Ni, Ni + 1] to generate accurate values of the ratio P(Ni +
1)/P(Ni). Splicing together all ratios and properly normalizing the
resulting distribution (∑P(N) = 1) provides the requested
distribution. This method is particularly suited for large CPU clusters,
where each node explores its own [Ni, Ni + 1] interval. We also note
that histogram reweighing techniques may be applied to optimize the
value of z and detect coexistence, especially because we have the
entire N dependence. We also note that this method is particularly
suited to study phase coexistence since large barriers, if present, are
also split among several [Ni, Ni + 1] intervals.

Figure 6. Graphic representation of the different interaction
potentials used in the present study. The combination of the
truncated and shifted Lennard-Jones potential with the FENE
potential results in an anharmonic minimum that defines the
bonding distance. The potential V3 is defined in the text. It has
been multiplied by Vsticky

min for clarity.
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The resulting P(N) for βμ = −7.478 is shown in Figure 7. The
density of the gas phase is 5 × 10−6, while the density of the liquid
phase is 2 × 10−3.

Effective Potential in the Absence of Sticky Interactions. To
extract the role of the combinatorial entropy in the effective potential,
we have also simulated the same model described above but setting
the amplitude of the sticky−sticky interaction at zero (ϵs = 0). The
resulting purely repulsive potential is shown in Figure 2. Here we
show possible parametrization of the resulting potential based on two
functional forms. A reasonable global fit, but which does poorly in the
regime of interest, i.e., for βVeff < 5, is offered by the Gaussian function

β σ= = =σ−V A Ae with 320 6.54r
eff G

/2
G g

2
g
2

The region βVeff < 5 is instead well-represented by a Yukawa
functional form, the characteristic functional form describing star
polymers:33

β σ= = × =
σ−

V A
r

A
e

with 5.83 10 0.63
r

Yeff Y

/

Y
6

Y

The quality of the fit is shown in Figure 8.
Numerical Details. Umbrella Sampling. To evaluate the

effective potential, we have performed simulations of the model
described here with an additional harmonic contribution constraining

the particle−particle distance around a fixed value. Specifically, we
have added the potential

= −V K d d
1
2

( )US US US
2

(6)

and explored 38 distinct values of dUS. Figure 9 shows the evolution of
the distance between the two particles during the simulation, for all 38

independent runs. For all runs βKUS = 100. The selected values of dUS
are 4.3, 4.5, 4.8, 4.9, 5.0, 5.1, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0,
7.25, 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, 9.0, 9.25, 9.50, 9.75, 10.0, 10.25,
10.5, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.50, 12.75, and
13.00. By combining together the 38 histograms P(d), the effective
potential, can be calculated implementing standard methodologies.31
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Figure 7. Distribution of the density fluctuations observed in a
grand canonical simulation at the gas−liquid coexistence chemical
potential. The cubic simulation box has side 60RNP, where RNP is
the particle radius, corresponding to about 500 particles at the
highest reported density. Note the 60 or more order of magnitude
variation of P(N) is made possible by the use of the successive
umbrella sampling method.

Figure 8. Analysis of the distance dependence of the repulsive
potential originating from the polymer−polymer interactions. The
region βVeff(d) < 3 is well represented by a Yukawa decay. The
region between 3 < βVeff(d) < 50 can be well described by a
Gaussian functional form.

Figure 9. Evolution in time of the distance between the two NPs,
for all 38 runs, differing in the value of dUS. The significant overlap
between adjacent values of dUS allows us to extract the effective
potential.
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