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ABSTRACT
Glass formers are characterized by their ability to avoid crystallization. As monodisperse systems tend to rapidly crystallize, the most common
glass formers in simulations are systems composed of mixtures of particles with different sizes. Here, we make use of the ability of patchy
particles to change their local structure to propose them as monodisperse glass formers. We explore monodisperse systems with two patch
geometries: a 12-patch geometry that enhances the formation of icosahedral clusters and an 8-patch geometry that does not appear to strongly
favor any particular local structure. We show that both geometries avoid crystallization and present glassy features at low temperatures.
However, the 8-patch geometry better preserves the structure of a simple liquid at a wide range of temperatures and packing fractions,
making it a good candidate for a monodisperse glass former.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036963., s

I. INTRODUCTION

When a fluid is subjected to extreme conditions of low tem-
peratures or high densities but manages to avoid crystallization, its
dynamics become glassy. In this glassy regime, the system is struc-
turally similar to a liquid, in which it lacks long-range order, but the
relaxation of the system occurs over much longer time scales due
to the increasing difficulty in performing local rearrangements. For
purely repulsive particles, for example, we can picture this difficulty
as coming from particles being strongly confined to their positions
by the cage of neighbors formed around them.

To reach the glassy regime, a glass former needs to remain dis-
ordered, which is usually unfavorable compared to crystallization at
sufficiently low temperatures. A good glass former, then, is a sys-
tem that can be deeply cooled down, to the point where dynamics
become extremely slow, while reliably avoiding crystal formation.
Different methods have been proposed to enhance the ability of a
system to avoid crystallization. For example, in Ref. 1, three routes
for the design of an optimal glass former system were proposed: a
kinetic, a thermodynamic, and a topological route. The kinetic one
aims at slowing down the crystal nucleation rate: even if a fluid is
metastable with respect to the crystal (and hence supercooled), when
the typical nucleation time is much longer than the time scale of

the experiment or simulation, crystallization is effectively avoided.
The thermodynamic route suggests acting on the thermodynami-
cally stability field of the crystal by shifting it to more extreme con-
ditions of temperature and density. This can be done, for example,
by tuning the composition of a binary mixture to create a eutectic
mixture, with a freezing temperature that is lower than any other
composition.2,3 Similarly, for network glasses, valence can be used
to destabilize the crystal phase.4 Following this route, an ideal glass
former would have a melting point located below its glass tran-
sition temperature.5 Finally, the topological mechanism relies on
reinforcing local structures that are incompatible with crystal lat-
tices and cannot be replicated in three-dimensions leading to geo-
metrical frustration.6,7 This is done by modifying the interaction
between the components of the system or by changing the shape
of the particles.1,6 In practice, this last route will overlap with the
other two, as changing interactions to favor different local struc-
tures will invariable also impact the thermodynamics and kinet-
ics of the system. However, it does represent a very promising
route to design a good glass former, which we will draw on in this
work.

Most simulation studies of supercooled liquids rely on the
use of mixtures of particles of different sizes in order to avoid
crystallization.8–10
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However, while multicomponent or polydisperse systems have
been the most common subjects of simulation studies in glass
physics, it is clear that a monodisperse model would represent a
more ideal testing ground. For example, detailed mode-coupling
theory (MCT) predictions have been developed for monodisperse
cases,11 but the window in which it was possible to test this pre-
diction in a real monoatomic case is strongly limited.12 Clearly,
MCT predictions have been generalized to mixtures,13 but non-
trivial mixing effects can alter the dynamics.14 In general, binary
(and multicomponent) systems display thermodynamic fluctuations
in both density and concentration, and this can have important con-
sequences for the dynamics. For instance, as the different species
typically have different diffusion constants, we can expect different
dynamical behavior for each component. Recently, it has also been
shown that the interplay between mass diffusion and concentration
diffusion could result in effects that are specific to mixtures and
are not observed in monodisperse glass formers.15 Although these
effects may be weaker in systems with a continuous size distribution,
polydisperse systems can lead to crystallization effects facilitated by
size segregation. This may also affect the dynamics of the system in
ways that are still to be completely grasped.16

Metallic glasses are generally obtained in multicomponent
melts, and it was only recently that monodisperse glasses have
been experimentally obtained.17,18 In fact, the observation of a
monoatomic metallic glass was realized in part, thanks to a model
introduced to suppress crystallization.19 Since the seminal work of
Pusey and van Megen, colloidal hard spheres have become one of
the gold standards in testing glass theories.20–22 However, monodis-
perse hard spheres undergo crystallization well before their dynam-
ics become glassy. It is now well established that a polydispersity
of around 10% is needed to avoid crystallization.23 For practical
reasons, this is the route that is typically followed in experiments,
while in computer simulations, binary mixtures of hard spheres with
different radii are more commonly used.

If we want to avoid the use of multicomponent mixtures, the
topological route to avoid crystallization suggests tuning the inter-
actions such that the locally favored structures are incommensurate
with crystallization. Indeed, it has been found that carefully designed
interactions in monodisperse systems can suppress crystallization in
the fluid.6,19,24 This can be achieved by adding many-body interac-
tions to the potential17,19,24 or with oscillatory interactions.25–31 In
particular, these potentials are designed to promote local structures
that are typically icosahedral25–27 or tetrahedral:17,19,29 motifs that
cannot be used to tile an infinite three dimensional space. However,
both many-body interactions and oscillatory interaction potentials
are difficult to tune in experimental setups of, for example, col-
loidal particles. Here, we draw inspiration from recent advances
in colloid synthesis32–34 and focus on systems of patchy particles:
spherical particles with a limited number of attractive spots on the
surface.

The idea of using patchy particles as a monodisperse glass for-
mer is based on the observation that patchy particles have proven to
be a great tool for exploring and controlling the interplay between
the local structure and dynamics of supercooled liquids35,36 and
gels.37 We will show that the directionality embedded in the inter-
action potential is capable of drastically modifying the local struc-
ture of the fluid, which aids in avoiding crystallization. In particu-
lar, it has been shown previously that in binary mixtures of patchy

particles with an icosahedral geometry, the number of icosahedral
local structures in the system is boosted with a consequent slowdown
of dynamics.35 This geometry, however, might result in a local order
that is not representative of a typical liquid structure. Therefore, we
have also investigated the 8-patch case, a geometry that still aids in
avoiding crystallization but does not impact the fluid structure to the
same degree. We propose that this 8-patch model is therefore a good
candidate for a monodisperse glass former.

This paper is organized as follows: In Sec. II, we describe the
model we use to simulate patchy particles and the details of the
simulations. In Sec. III, we compare the crystallization behavior of
our patchy-particle systems with that of a monodisperse square-
well system and show that both geometries are capable of avoiding
crystallization at low temperatures. Since the 8-patch geometry bet-
ter conserves the structure of a simple liquid, from there we move
to a detailed characterization of the structural and the dynamical
behavior of the 8-patch case at different temperatures and packing
fractions. We finish Sec. III by discussing the nature of the relaxation
behavior of this particular geometry. Finally, in Sec. IV, we conclude
and summarize the main results of this paper.

II. METHODS
A. Model

To simulate patchy particles, we use the Kern–Frenkel model.38

This model consists of hard-sphere particles decorated with n attrac-
tive patches on their surface. Two particles interact attractively, with
a fixed bonding energy ε, when the vector that joins their cen-
ters passes through a patch in each particle. Hence, the interaction
potential is given by

Uij = UHS +∑
α
∑

γ
USW f (rij, n̂α, n̂γ, ), (1)

where the sums are taken over all patches α and γ of the two particles.
Additionally, UHS is the hard-sphere potential,

UHS
ij = {

∞, rij ≤ σ
0, rij > σ,

(2)

and USW corresponds to a square-well potential,

USW
ij = {

−ε, rij ≤ rc

0, rij > rc,
(3)

where σ is the particle diameter, rij is the distance between two par-
ticles i and j, rc is the interaction range, and ε is the strength of the
attraction. Finally, f (rij, n̂α, n̂β, ) takes a value of 1 when two patches
are face to face and 0 otherwise, where n̂α(γ) denotes the direction of
a patch α(γ) in each particle. Specifically, two patches are considered
to be facing each other when for both patches, the angle between n̂
and the vector connecting the centers of two particles is smaller than
the patch opening angle θ. Finally, we define the fraction of the sur-
face covered by the patches as χ. As long as patches do not overlap,
χ = n(1 − cos θ)/2, with n being the number of patches.

We model two cases: particles with n = 8 and 12 patches. We
choose the location of the patches on the surface of the particle such
that the distance between them is maximized. This corresponds to
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the vertices of a square antiprism39 for the former case and an icosa-
hedron for the latter. Following Ref. 7, we fix the surface coverage
χ = 40% and cutoff radius rc = 1.031σ for both systems. The
short interaction range is chosen partially to allow for easy com-
parison with earlier work on binary mixtures7,40,41 and partially to
be compatible with the typical short-range interactions found in
experimental realizations of patchy colloids.42–44

B. Simulation
We use event-driven molecular dynamics (EDMD) simula-

tions4 to explore monodisperse systems of patchy particles. Each
system consists of N = 700 particles, and we initially fix the packing
fraction η= π

6 ρσ
3
=0.56. Additionally, we explore the behavior of the

8-patch case at higher packing fractions η = 0.57 and 0.58. Finally,
as a reference point, we simulate a monodisperse system of purely
square-well particles with the same attractive range as the patchy
particle systems, at the same state points.

We present our results in reduced units, where the σ is the
unit of length, ε is the unit of energy, and the particle mass m is
the unit of mass. Moreover, we set kB = 1. With this choice of
units, the unit of time is τ = σ

√

m/ε. We start each simulation
from an initial configuration that was generated from an EDMD
simulation of N hard spheres where the particles start off much
smaller than their final size but rapidly grow with time until a disor-
dered configuration at the desired packing fraction is reached. Sub-
sequently, we equilibrate the systems at fixed temperature for at least
t = 104 and finally perform our measurements over simulations of
at least t = 105.

In addition to EDMD simulations, we also make use of Floppy
Box Monte Carlo (FBMC) simulations to check for the possibility of
fully bonded crystal structures in the 8-patch model.45 This method
has proven effective at finding optimal packings and ground states
for a variety of model systems, including patchy particles.46,47 Specif-
ically, we simulate a single unit cell containing up to 12 particles in
a periodic box whose shape is allowed to vary during the simulation.
By slowly reducing the temperature, the system is annealed into a
highly bonded state. We perform this simulation 20 times for system
sizes N ∈ 1, . . ., 12 and a range of choices for the ratio between pres-
sure at temperature (P/T). The resulting library of annealed snap-
shots provides a set of candidate structures for the ground state of
our model.

Finally, to calculate the gas–liquid critical point and the gas–
liquid coexistence, we use successive umbrella sampling,48 previ-
ously applied to study the phase coexistence of numerous patchy
particle models49,50 as well as particles interacting with strong direc-
tional interactions.51,52 Specifically, the box size was fixed to 9σ along
all three dimensions, and the density fluctuations were calculated
splicing together 700 independent grand-canonical simulations, in
which the number of particles was constrained to fluctuate between
N and N + 1, with N = 0, . . ., 699.

C. Analysis
We characterize the global structure of each system via the

static structure factor,

S(q) =
1
N
⟨ρ(−q, t)ρ(q, t)⟩, (4)

where ρ(q, t) is the Fourier component of the microscopic density
at time t for a given wave vector q. The average is performed over
snapshots taken at different times in the same simulation.

To detect crystallization in our system, we also calculate the
structure factor S(q) in the xy-plane. This projection, equivalent to
the measured pattern in a small angle scattering experiment, gives a
clear blueprint of the structure. For a homogeneous liquid, we find
an arrangement of rings corresponding to the isotropic and homo-
geneous structure of the sample, while a crystallized system shows
well-defined peaks reflecting the anisotropy of the structure. In addi-
tion to the structure factor, an extra indicator of the phase is the
bond orientational order parameters.53,54 These order parameters
characterize the environment of each particle, based on its nearest
neighbors. As we are primarily concerned with crystallization into
close-packed lattices, we focus here on the sixfold order parameter
Q6. This quantity is defined as

Q6(i) =

¿

Á
ÁÀ

4π
13

6

∑

m=−6
∣Q̄6m(i)∣

2, (5)

where

Q̄6m(i) =
1

Nb

Nb

∑

j=1
Y6m(θ(rij),ϕ(rij)), (6)

where the sum is taken over all Nb the neighbors of particle i. Y6m
are the spherical harmonics of order 6, and θ(rij) and ϕ(rij) are the
polar and azimuthal angle associated with the vector rij connecting
particles i and j.53,54 The global average Q6 of this bond order param-
eter, taken over all particles in the system, then gives an indication of
the crystalline order in the system. For a perfect face-centered cubic
(fcc) lattice, Q6 = 0.574 52, and for a perfect hexagonal close-packed
(HCP) lattice, Q6 = 0.484 76, while typical values in the fluid phase
are much lower.53,54 Crystallization of the system is accompanied by
a discontinuous jump in Q6 across the transition.

In order to characterize the local environment of particles, we
also use the topological cluster classification algorithm.55 This algo-
rithm defines a set of nearest neighbors for each particle based on a
modified Voronoi construction and subsequently uses these nearest-
neighbor bonds to identify predefined local clusters, ranging from
simple clusters of three particles to more complex clusters of up to
13 particles. In this paper, we focus, in particular, on icosahedral and
defective icosahedral clusters that have proven to play an important
role in supercooled liquids.7,56–58

We explore the glassy dynamics of our systems by calculat-
ing the mean-square displacement (MSD) as ⟨r2

⟩ =
1
N ⟨∑

N
i=1[ri(t)

−ri(0)]2⟩, where the average is performed on equilibrium trajecto-
ries. Additionally, to quantify the structural relaxation time of our
systems, we calculate the time-dependent intermediate scattering
function (ISF),

F(q, t) =
⟨ρ(−q, t)ρ(q, 0)⟩
⟨ρ(−q, 0)ρ(q, 0)⟩

. (7)

We extract a relaxation time from the long time decay of F(q, t) by
fitting it with a sum of two stretched exponential functions,
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f (t) = (1 − fq) exp [−(
t
τa
)

γa

] + fq exp [−(
t
τb
)

γb

], (8)

where f q, γa(b), and τa(b) are fitting parameters. This procedure is
also used to identify the non-ergodicity parameter f q. We define the
relaxation time τ0.3 as the time where F(q, t) has decayed to 0.3 f q.

III. RESULTS
A. Square well

As a starting point, we explore the behavior of a monodisperse
short-range square-well (SW) system with a fixed packing fraction
η = 0.56. As discussed below, the SW model has been studied in
great detail in the literature, and the purpose of this section is solely
to have a benchmark case for the original results that we will dis-
cuss in the rest of this paper. This will allow us to compare our
patchy-particle models directly to a similar monodisperse system
with isotropic interactions.

Square-well models with short interaction ranges have been
studied extensively in the past as they represent a good model for col-
loidal systems. They have a phase diagram that differs from the typi-
cal van der Waals picture, showing a metastable liquid–liquid phase
separation59 and an isostructural solid–solid transition.60 From the
dynamical point of view, they are known to show reentrant behavior
in both their dynamics and crystallization as a function of temper-
ature.41,60–65 In particular, a number of studies have demonstrated
reentrant dynamical behavior resulting from a crossover between an
attractive and a repulsive glass. Although both of these glass states
are arrested, the mechanism driving the arrest is different. At high
temperatures, the arrest is mainly due to the high packing fraction
of the system, while at low temperatures, attractions dominate. In
between these regimes, the attractive interactions are not yet strong
enough to drive arrest but do help to reduce the pressure, recovering
some freedom of movement for the particles and hence speeding up
dynamics.

A similar mechanism affects crystallization. Upon lowering
the temperature, the crystal transform from being relatively loosely
packed, with few bonds, to a tightly bound crystal where particles
are within the bonding range of their neighbors. At intermediate
temperatures, the crystal phase is less favored, opening up a window
where crystallization is more difficult.60 To see how this affects spon-
taneous crystallization, we plot in Fig. 1 the behavior of the bond
order parameter Q6 as a function of temperature for the square-well
system. At high temperatures, the system readily crystallizes into
an fcc crystal, as indicated by the high values of Q6. Note that the
spontaneous crystallization typically results in the presence of grain
boundaries and other defects, which tend to decrease Q6. At lower
temperatures (yellow region in Fig. 1), crystallization is avoided,
resulting in a glassy disordered state. At even lower temperatures,
we again observe crystallization, favored by the strong attractions.
In this regime, the resulting crystal phase is packed more densely
than the original system to accommodate strong bonding between
the particles, resulting in a coexistence with a lower-density fluid or
gas.66 This is seen most clearly at the lowest temperature investigated
and illustrated in the snapshot in Fig. 1.

It is important to note here that we rely on spontaneous crys-
tallization here to determine the phase behavior. Hence, even in the

FIG. 1. Q6 as a function of temperature for a monodisperse system of square
well at the packing fraction η = 0.56. Yellow regions correspond to a fluid phase,
and green regions to a crystallized phase. The dashed line is the Q6 value of a
perfect fcc lattice. Below each region, we illustrate the phase with a corresponding
snapshot. Note that at the lowest temperature, we see signs of phase separation.

regime where the system remains fluid, it is likely that the ther-
modynamically stable phase is crystalline but that its formation is
prevented on the time scales accessible to our simulations. However,
for the purposes of designing a good glass former, the observation
that the system does not crystallize on the longest possible simula-
tion run-time is sufficient: many traditional glass forming models
have been shown to have a stable crystal phase in the temperature
regime of interest (see, e.g., Refs. 16 and 67–69).

In Fig. 2(a), we show the structure factor of the SW system for
the low temperature crystal and for a liquid at intermediate tempera-
ture. The structure factor of the SW liquid displays the standard fea-
tures of a simple liquid, and therefore, it will be our reference point
of a “normal” liquid. As one might expect, the crystal phase presents
strong peaks at specific wavelengths due to the translational order in
the crystal. Note that the high degree of noise in the S(q) is related to
the defects and dislocations in the (spontaneously formed) crystal.
In Figs. 2(b) and 2(c), we show the structure factor in the xy-plane

FIG. 2. (a) Structure factor of the square-well system with potential range of
rc = 1.03σ of a crystallized system at T = 0.5 and a liquid system at T = 0.6.
(b) Projection of the structure factor of the same crystallized system in the plane
xy. (c) Projection for the corresponding liquid state.
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FIG. 3. Q6 as a function of temperature for the two patchy cases: (a) n = 12 patches
and (b) n = 8 patches at a packing fraction corresponding to η = 0.56. Yellow
regions correspond to a fluid phase and green regions to a crystallized phase, and
dashed line is the Q6 value of a perfect fcc lattice.

for the crystal and the liquid, respectively. Indeed, the anisotropic
ordering of the crystal phase is clearly visible in Fig. 2(b), whereas
the liquid presents the usual ring pattern of a liquid [Fig. 2(c)].

B. Patchy particle systems
We now turn our attention to the patchy models. First, we ana-

lyze the phase behavior of the monodisperse system with n = 12
patches by calculating the S(q) for all investigated temperatures. As
one might expect, at high temperatures, where the patches have lit-
tle effect, the system still crystallizes into an fcc structure. However,
upon cooling below T ≤ 0.6, the directional attractions imposed by
the patches allow the system to remain as a fluid for all remaining
temperatures that were investigated. This phase behavior is reflected
in the calculation of Q6 shown in Fig. 3(a). At low temperatures, Q6
is close to 0, while at higher temperatures, the corresponding val-
ues of Q6 are significantly higher, indicating crystallization. Clearly,
the directional interactions effectively aid in suppressing crystalliza-
tion. We attribute this to the changes in the local structure caused by
the anisotropic interactions, which interfere with the crystallization
mechanism. However, this does raise the question: does this mecha-
nism enforce an “atypical” liquid structure? To answer this question,
in Fig. 4, we show the structure factor of each of the temperatures

FIG. 4. Structure factor of the 12-patch system corresponding to temperatures
where the system has not crystallized. The inset shows the projection of the
structure factor in the xy-plane at T = 0.3.

where the system is in the fluid phase. In comparison to the isotropic
case, the structure factor develops a split second peak upon cooling,
a feature previously linked to icosahedral order.25 This indeed indi-
cates that the fluid structure undergoes strong changes due to the
directionality imposed by the attractions, and in particular, it can be
related to the formation of icosahedral clusters, as will be shown later
on. These changes in the structure are strong enough to disrupt the
formation of crystalline order.

To also explore a model that does not strongly enforce icosa-
hedral order, we also have particles with n = 8 patches. Similar to
the previous case, the 8-patch particles also avoid crystallization in
the low-temperature regime, although this regime is reached only
for temperatures T ≲ 0.4 as shown in Fig. 3(b). However, the local
structure of the 8-patch particles is much less strongly affected by
the directional interactions than in the 12-patch case. We show in
Fig. 5(a) the structure factor at the temperatures where the system
is in a fluid phase. Note that in this case, we reach lower tempera-
tures: as we will show later, the dynamics of the 8-patch system are
faster than the 12-patch system at equal temperatures. The 8-patch
structure factor shows a slight change as a function of temperature,
suggesting that the structure remains close to that of a “typical” liq-
uid. In particular, we do not observe a split of the second peak, and
even at low temperatures, the structure factor remains highly similar
to that of the square-well fluid (taken at the lowest temperature that
avoids crystallization, see Fig. 5(b).

To explore the structural features of these different models (8-
patch, 12-patch, and SW) in more detail, we characterize their local
structure.7 We use the Topological Cluster Classification (TCC)55

algorithm to detect the prevalence of different local clusters of par-
ticles in the fluid. In particular, we focus our attention to icosahe-
dral and defective icosahedral clusters, which have both been linked
to slow dynamics in glass formers.7,56–58 In Figs. 6(a) and 6(b), we
show the fraction of particles involved in icosahedral and defective
icosahedral clusters, respectively, as a function of temperature for

FIG. 5. (a) Structure factor of 8-patch fluids. The inset shows the two-dimensional
structure factor in the xy-plane at T = 0.3. (b) Comparison between S(q) of the
8-patch system and a SW liquid.
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FIG. 6. (a) Fraction of particles in an icosahedral cluster as a function of temper-
ature for the temperatures where the system is a fluid. (b) Fraction of particles in
a defective icosahedral cluster. The inset shows an illustration of the icosahedral
and defective icosahedral cluster, respectively.

the three studied cases. As expected, at low temperature, we find a
sharp increase in the number of icosahedral clusters and defective
icosahedral in the n = 12 case. Indeed, in the 12-patch fluid at low
temperatures, almost all particles are involved in at least one defec-
tive icosahedral cluster, which is likely linked to the strong changes
in the structure factor. This is significantly higher than is typically
observed in common glass forming models.7,70 More importantly,
as shown in the supplementary material, the high concentration of
icosahedral and other polytetrahedral local clusters strongly differ-
entiate the 12-patch fluid from the metastable fluids of both the
monodisperse SW model and simple hard spheres. In contrast, the
8-patch and the SW case show little icosahedral order, and this order
tends to decrease with decreasing temperature. This demonstrates
that while both the 8-patch and 12-patch geometries are able to
avoid crystallization at sufficiently low temperatures, the two patch
geometries have dramatically different effects on the local structure.
Remarkably, none of the clusters captured by TCC become more
prevalent when going to lower temperatures in the 8-patch case (see
the supplementary material). By its nature, TCC only detects a lim-
ited number of local configurations (based on low-energy packings
associated with several different model systems). Hence, any local
structures that emerge in the 8-patch system are not ones that are
detected by TCC. Nonetheless, the absence of strong changes in
the structure factor suggests that the changes in the local structure
made by the n = 8 geometry are subtle in comparison to the n = 12
case such that the overall liquid structure remains largely unchanged
by going to lower temperatures. While there is no “ideal” structure
for a glass former, the fact that the 8-patch system does not drasti-
cally disrupt the liquid structure, as the 12-patch system does, makes
it a more attractive candidate as a monodisperse simple glass for-
mer. For this reason, the rest of this paper will be focused on a
detailed characterization of the 8-patch model at different packing
fractions.

C. Detailed characterization of the 8-patch system
We now explore the thermodynamic and dynamic behavior of

the 8-patch system in more detail. We start this investigation by
measuring the temperature dependence of the energy and pressure
for three different packing fractions (η = 0.56, 0.57, and 0.58). The
results are shown in Fig. 7. Note that at higher packing fractions,
the system crystallizes for temperatures above T = 0.3. In the fluid
phase, as shown in Fig. 7(a), the potential energy U of the system is
not strongly dependent on the packing fraction. Note that the quan-
tity U/N is exactly −1/2 times the average number of bonds formed
by a particle in the system. For all investigated packing fractions,
the number of bonds increases monotonically as the temperature is
reduced. At the lowest temperature, most particles are involved in
at least six bonds (U/N < −3), and around 20% of the particles are
fully bonded, i.e., all eight of their patches are bonded to a neigh-
bor. Although the potential energy of the system is still decreas-
ing at the lowest investigated temperature for all packing fractions,
some saturation of the number of bonds is visible, especially for
η = 0.58. As such, it is not clear whether the bonding geometry
of these particles permits the formation of a fully bonded disor-
dered fluid state in the low-temperature limit.4 In contrast, this sys-
tem can, in principle, form at least one fully bonded crystal phase.
In particular, using FBMC simulations,45 we found fully bonded
unit cells for crystal phases for packing fractions above η = 0.649.
The densest version of this phase corresponds to a face-centered
cubic (fcc) crystal, as shown in the inset of Fig. 7(a), which deforms
into a body-centered tetragonal (BCT) structure at lower pressures.
To examine the stability of this crystal structure at low tempera-
tures, we performed simulations in which this crystal phase coex-
isted directly with a low-density fluid and estimated the coexis-
tence density of both phases. Below a temperature of approximately
T ≃ 0.28, we indeed find a broad coexistence region, indicating that
in the glassy regime, the fluid is indeed metastable with respect to

FIG. 7. (a) Average energy per particle as a function of temperature of the n = 8
patches. Inset shows a fully bonded face-centered cubic crystal structure at close
packing. Each particle is bonded to eight neighbors. (b) Dimensionless pressure,
note that at temperatures lower than the ones studied here (T ≈ 0.18 or lower),
the system might present phase separation.
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crystallization. At higher temperatures, the coexistence region is
expected to become more narrow, and other crystal phases (includ-
ing plastic crystals) will take over. Since the details of the crystal
phase are not relevant for the glassy behavior, we do not perform
an exhaustive search here. In any case, from our simulations, it is
clear that in the low-temperature regime, crystallization is kineti-
cally avoided due to the strong dynamical slowdown induced by the
patchy interactions.

In Fig. 7(b), we plot the pressure P for the same systems. As
expected, the pressure decreases with decreasing temperature. A lin-
ear extrapolation to lower T (below the investigated range) would
suggest that the pressure comes close to vanishing for T ≈ 0.18, at
least for the two lower packing fractions. This suggests that these
isochores hit the gas–liquid binodal close to this temperature. Thus,
for T < 0.18, at these two packing fractions, we expect the system
to attempt to phase separate into coexisting gas and liquid phases.
However, the extremely slow dynamics at these state points will
likely lead to gelation. For the higher packing fraction η = 0.58,
both the pressure and the energy level off near T = 0.20, and hence,
this scenario may be avoided. Note that such a transition has also
been noted for glassy binary mixtures of square-well particles71,72

as well as for polydisperse systems.66 The critical temperature asso-
ciated with this binodal is strongly dependent on the range of the
attraction.73

To locate the gas–liquid curve for our model, we use Succes-
sive Umbrella Sampling (SUS) simulations.48 In Fig. 8, we show the
gas–liquid coexistence and the estimated critical point correspond-
ing to Tc = 0.1996 and ηc = 0.26. Additionally, we draw in the same
plot the estimated gas-crystal coexistences in the low-temperature
regime, which we estimate from direct coexistence simulations start-
ing from a seed of the fully bonded crystal from Fig. 7 placed in
contact with a vacuum. Under these conditions, particles evaporate
from the crystal surface until the chemical potential of the particles
in the gas phase equals the one in the crystal phase. We find that

FIG. 8. Phase diagram of the 8-patch system. The gas–liquid region, obtained from
successive umbrella sampling simulations, is colored in orange. The coexisting
densities are marked by black filled circles, and the location of the critical point
is marked by a red filled square. The low-temperature gas-crystal coexistence,
estimated from direct coexistence simulations, is denoted with green circles. Green
stars correspond to simulations where the system crystallizes, and orange ones
correspond to simulations in the fluid phase.

both the gas–liquid binodal and the glassy regime occur in the part
of the phase diagram that is metastable with respect to gas-crystal
phase separation. Indeed, short-ranged attractive interactions tend
to make the gas–liquid critical point metastable with respect to crys-
tallization, as has been previously demonstrated for both SW74 and
patchy model systems.75 Note that we here assume that the relevant
crystal structure is the fully bonded one found in floppy box Monte
Carlo simulations. While this assumption is reasonable in the limit
of low temperatures, other crystal structures may appear at higher
temperatures, resulting in shifts in the coexistence lines. However,
any more stable crystal structure will only enlarge the gas-crystal
coexistence region. The presence of other relevant crystal (or plas-
tic crystal) phases becomes more likely with increasing temperature.
As these structures are not relevant to the glassy behavior as long as
the system remains fluid, we do not further explore crystallization
here.

Despite the presence of a stable crystal phase, in the time
window examined here, our systems behave as a metastable fluid.
Indeed, many monodisperse and binary glass models have been
shown to be metastable with respect to a crystalline or quasicrys-
talline phase.16,68,69 However, within their metastable liquid phase,
these systems still behave as good glass former.

In the phase diagram, we immediately note a large portion
of the parameter space with T ≤ Tc and η > ηc where a glassy
(meta)stable liquid can be produced. The advantage of the direc-
tional patchy interaction aids in enlarging this region for two rea-
sons: both by suppressing crystallization and by moving the location
of the critical point to lower packing fractions and temperatures in
comparison to isotropic interactions.76

Having obtained a clear idea of the location of the (meta)stable
liquid region for the 8-patch case, we turn our attention to its
dynamical behavior. To do so, we calculate the intermediate scat-
tering function (ISF) and the mean-squared displacement (MSD).
In Fig. 9(a), we show the MSD for a fixed packing fraction η = 0.56

FIG. 9. (a) Mean-squared displacement of the 8-patch fluid at a fixed packing frac-
tion η = 0.56. (b) Corresponding intermediate scattering function. The inset shows
a close-up of the region where the first decay in the ISF happens.
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and for some of the temperatures where the system is a fluid. As
expected, at short times, the particles undergo ballistic motion. At
intermediate times, the particles are caged and we observe the typi-
cal two-step relaxation of glassy fluids. Decreasing the temperature,
however, we observe that the localization length decreases, as indi-
cated by the reduced height of the plateau. This a clear indication
that the particles are strongly localized by the bonds with their neigh-
bors.41 Finally, at long time scales, the dynamics become diffusive.
Note that the dynamics for the case T = 0.2 are extremely slow,
and the system did not fully relax on the time scale of our sim-
ulation. In Fig. 9(b), we plot the ISF. Even at this relatively low
packing fraction, the system displays glassy behavior at all tem-
peratures where the system is fluid, as evidenced by the two-step
relaxation of the ISF. Note, however, that at low temperatures, the
plateau in the ISF is very close to 1, again pointing at the strong
localization of the particles at short time scales. As expected for a
glass former, we see a dramatic increase in the structural relaxation
time as the temperature is decreased. The behavior at higher pack-
ing fractions is qualitatively the same as the one at η = 0.56 but
shifted to longer time scales as the system goes deeper into the glassy
regime.

In order to investigate the importance of collective rearrange-
ments in the monodisperse glass, we calculate the self ISF and we
compare it with the total ISF. From both intermediate scattering
functions, we extract the relaxation times τ0.3 and τS

0.3, respectively,
with the last one corresponding to the relaxation time extracted from
the self ISF. In Fig. 10, we show both relaxation times for all the
packing fractions and temperatures of the 8-patch case. The two
relaxation times are consistently on the same order, suggesting that
single-particle diffusion is the main driving force behind structural
relaxation on the nearest neighbor length scale.

Consistent with the increasing relaxation times, the dif-
fusion becomes slower as the packing fraction increases. In
Fig. 11(a), we show the diffusion coefficient D calculated
from the MSD through the Einstein diffusion equation,
D = limt→∞

1
6Nt ⟨∑

N
j=1[rj(t) − rj(0)]2⟩. Based on the diffusion coef-

ficient, we define the diffusion time τD = 1/D, associated with the
typical time it takes a particle to diffuse one diameter. In Fig. 11(b),
we plot this diffusion time against the collective relaxation time τ0.3
for all the packing fractions studied and the temperatures where the

FIG. 10. Relaxation times of the n = 8 case for all the investigated packing fractions.
Dashed lines and empty symbols correspond to the ones extracted from the self-
intermediate scattering function, and continuous lines correspond to the collective
one. Both sets of data refer to qσ = 7.1.

FIG. 11. (a) Dimensionless diffusion of the n = 8 patch for different packing
fractions. (b) Relaxation times τ0.3 as a function of the diffusion time τD.

system is in a fluid state. Interestingly, although the dynamics are
extremely slow in all investigated systems, the two time scales grow
at the same rate, consistent with the Stokes–Einstein relation. This is
in contrast to most glass-forming liquids, where this relation tends
to break down in the glassy regime.77,78

We note, however, that one downside of the model presented
here is its relatively high computational expense. In comparison to,
e.g., the isotropic square-well potential, simulating patchy particles
comes at a significant additional computation cost. In particular, the
simulation has to take into account the rotational motion of the par-
ticle and numerically predict collisions between the patches.4 As a
result, the simulations of patchy systems are approximately a factor
10–20 times slower than simulations of a comparable hard-sphere
system, when we compare the time it takes to simulate one Brown-
ian time unit τB = σ

√

m/kBT. This limits our ability to equilibrate
the system deep inside the supercooled regime. Hence, we cannot
exclude the possibility that the Stokes–Einstein relation will break
down at deeper supercooling.

In order to better characterize the relaxation of the systems
over different length scales, we also determine the behavior of the
relaxation time τ0.3 as a function of the wavelength q. The results
are shown in Fig. 12(a), where we plot τ0.3(q) for the three differ-
ent packing fractions and two different temperatures. The relaxation
time shows a peak at the wavelength q corresponding to the first
peak of the S(q). This effect is in contrast with the one seen for
binary mixtures where the low q limit is where the maximum of the
relaxation time is attained as a mixing effect.15,79 We clearly see here
the advantage of having a monodisperse glass former where these
mixing effects are not present.
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FIG. 12. (a) Collective relaxation time as a function of q-vector. Continuous lines
correspond to T = 0.25, and dashed lines correspond to T = 0.3; different col-
ors correspond to different packing fractions η. (b) Corresponding non-ergodicity
parameter.

Finally, more information about the nature of the glass can be
obtained by the non-ergodicity parameter f q. We show in Fig. 12(b)
the f q for the two lowest temperatures and packing fractions.
Broadly speaking, the values of f q are close to 1 over a wide range
of length scales, indicating that the structure of the system is highly
rigid until bonds start breaking. As one might expect, this is partic-
ularly true at the lowest temperature, where the number of bonds
in the system is highest. This is a typical characteristic of an attrac-
tion driven glass, where the dynamical arrest of the system is driven
by strong short-ranged attractions. However, it has been argued that
attractive glasses are always an idealization and that in reality, they
represent a transient regime of a repulsively dominated glass.41,66,80

This regime, however, remains relevant under many experimental
conditions due to its long relaxation time.

IV. CONCLUSIONS
We have exploited the anisotropic interactions of patchy parti-

cles to design a monodisperse glass former. In general, a good glass
former preserves a liquid structure within large windows of relax-
ation times, while always avoiding crystallization. We have shown
that this feature is fulfilled by a properly designed monodisperse sys-
tem of patchy particles. In particular, we have explored the cases
with n = 8 and n = 12 patches. The 8-patch system preserves a
simple liquid-like structure factor deep into the glassy regime, in
contrast to the 12-patch system that, while avoiding crystallization
over a wider range of temperatures, presents a strong disruption
of the local structure. For the 8-patch system, we also demonstrate
that glassy behavior can be observed well before the gas–liquid bin-
odal is reached. Hence, by properly choosing a patch geometry, we
can simultaneously suppress crystallization and avoid phase sepa-
ration at low temperatures and high densities. This opens up an
extensive region of (meta)stable fluid where glass formation can be

observed in a monodisperse glass former. Moreover, this is achieved
without the use of, e.g., oscillatory potentials or many-body inter-
actions that would be exceedingly hard to realize in an experimen-
tal colloidal system. Hence, the 8-patch model may be an excel-
lent candidate model for studying the glass transition by ruling out
any effects that could occur in mixtures such as demixing, separa-
tion of time scales between the species, or formation of complex
multicomponent crystals.

Finally, we note here that we have only explored two patch
geometries that result in two glass formers with dramatically differ-
ent local structures. For future work, it would be extremely interest-
ing to explore the detailed effects of tuning, e.g., the placement and
size of the attractive patches, both in order to optimize the resistance
of the system to crystallization over a wide range of temperatures and
to create ideal model systems for revealing the interplay between the
local structure and dynamics in glassy systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information about the
structure of the 8-patch case.
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