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Hydrodynamic instability and flow reduction
in polymer brush coated channels

Sofia Biagi, *ab Lorenzo Rovigatti, b Mehdi Abbasi,a Lionel Bureau,a

Francesco Sciortino bc and Chaouqi Misbah *a

A polymer brush is a passive medium. At equilibrium the knowledge of its chemical composition and

thickness is enough for a full system characterization. However, when the brush is exposed to fluid flow

it reveals a much more intriguing nature, in which filamentous protrusions and the way they interact

among themselves and with the surrounding fluid are of outmost importance. Here we investigate such

a rich behavior via numerical simulations. We focus on the brush hydrodynamic response at low

Reynolds numbers, observing a significant fluid flow reduction inside a polymer-brush coated channel.

We find that the reduction of the flow inside the channel is significantly larger than what would happen

if the brush effect consisted only in reducing the effective channel width. This amplified reduction is

understood as being due to the morphological instability of the brush–liquid interface which is shown to

have an elastic origin: the mechanical stress acting on the brush due to the imposed flow is partially

released by the interface modulation. In turn, this modulation dissipates more energy than a flat interface

in the surrounding fluid, causing a reduction of flow velocity. Our results and interpretations provide an

explanation for recent experimental measurements.

1 Introduction

Polymer brushes are three-dimensional matrices of densely
grafted polymers, providing filamentous surface coatings. From
the synthetic point of view they can be manipulated in many
ways (e.g. polymer species, surface geometry, and grafting
architecture) in order to finely tune the physico-chemical
properties of a desired surface (the grafted substrate);1–4 however,
they also constitute the intriguing ingredient of many mammalian
organs.5–7 In the first case, experimentalists exploit the brush
equilibrium features and the versatility of the polymerization
process to control its responsiveness to different electro-
chemical stimuli. In the second case, since many of the
polymer-decorated organs are concerned with the flow or draining
of biological fluids, the research is centered on non-equilibrium
features, with the aim to reveal polymer brush dynamics and,
consequently, understand why they have been awarded by
Evolution to be the most adequate organ coating.

In order to achieve a complete description of the hydro-
dynamic response of a polymer brush, one should scrutinize
the system by mediating between a continuum point of view,

i.e. the possibility of integrating the fluid flow streamlines, and
a detailed characterization of the polymer dynamics, zooming
in the length scales. The majority of studies, instead, has
focused on only one of those two aspects.8–12 For instance, a
recent work reported on microfluidic experiments in glass
capillaries coated with artificial polymer brushes. It has been
found that the fluid velocity is reduced significantly more than
expected from a channel diameter reduction due to the
presence of the brush.12 Such a surprising and non-trivial
outcome, however, could not be directly related to a precise
brush dynamics, since the experiments lacked resolution on
the scale of polymers (the brush thickness ranging in the order
of few hundred nanometers). Here, we offer a complementary
point of view to those experiments: we model the flow in a
channel coated by a dense polymer brush with a mesoscale
approach, which allows for an investigation of the fluid stream-
lines together with a detailed description of the actual polymer
dynamics. In qualitative agreement with the experiments we
find a significant reduction of the flow velocity in the channel,
which we relate to the brush features: indeed, we attribute the
main origin of this peculiar behaviour to the brush surface
deformation. Such a deformation, appearing even at low
Reynolds numbers, takes the form of a monochromatic travelling
wave, a phenomenon which has been thoroughly characterized in
ref. 13. In the cited study the wave, experienced for different flow
strengths, is detailed in frequencies, wavelengths and oscillation
amplitudes and it is also associated with a fluid backward flow
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00185 Roma, Italy
c Istituto Sistemi Complessi (ISC), Via dei Taurini 19, 00185 Roma, Italy

Received 29th April 2021,
Accepted 25th August 2021

DOI: 10.1039/d1sm00638j

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
1 

O
ct

ob
er

 2
02

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
' d

i R
om

a 
L

a 
Sa

pi
en

za
 o

n 
10

/2
8/

20
21

 1
0:

59
:0

8 
A

M
. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-2845-689X
http://orcid.org/0000-0001-5017-2829
http://orcid.org/0000-0002-2418-2713
http://orcid.org/0000-0001-5793-8102
http://crossmark.crossref.org/dialog/?doi=10.1039/d1sm00638j&domain=pdf&date_stamp=2021-10-01
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/d1sm00638j
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM017040


9236 |  Soft Matter, 2021, 17, 9235–9245 This journal is © The Royal Society of Chemistry 2021

measured in the vicinity of the brush interface. Here, in addition,
we ascribe the appearance of the surface wave to an instability
induced by hydrodynamic shear modes and provide a general
condition for its onset. Thus, the present paper develops an
analytical study to understand the onset of instability for a
polymer brush, treated as an elastic medium. This study supports
the numerical study based on mesoscale self-consistent
simulations, which produce a direct observation of a brush
surface modulation under certain conditions. The results and
interpretations presented here offer an explanation for recent
microfluidic experiments and allow us to include polymer brushes
among those boundaries which induce flow instabilities in a fluid
at low Reynolds numbers.

2 Methods

We aim at reproducing the dynamics of a simple Newtonian
fluid, modelled explicitly, and of densely grafted polymers.
Enclosing both the hydrodynamics and the polymer dynamics
in the same numerical simulation requires a model able to grasp
the physics at the mesoscale. We thus resort to coarse-graining
methods and opt for the Dissipative Particle Dynamics (DPD)
technique.14–17 A DPD particle does not represent a single
molecule, but rather a certain amount of them. Our DPD code
applies a uniform coarse-graining both to solvent particles and
monomers, actually following the evolution in time of clusters
of fluid particles and blobs of monomers. The forces to be
integrated at each time step are then adjusted for the
zooming-out of length scales. A detailed description of the code
implementation with the analytical expressions of forces is
reported in Appendix; so, here, we just recall the main features
of the method. In the DPD method there are three types of
forces: a conservative one, a dissipative one and a stochastic one.
The first one is a soft-core repulsive force, allowing for the
overlapping of clusters: the DPD particle must not have a strict
spherical symmetry, due to rearrangement of the real micro-
scopic molecules. The high or low ease of such a rearrangement,
meaning the viscous resistance, is represented by the second
force, while the third force accounts for the number of collisions
among real microscopic molecules. Since all these three DPD
forces act between particle pairs and are central in order to
enforce local momentum conservation, the correct hydro-
dynamics at long times is guaranteed. We underline that fluid
particles exchange momentum with polymer chains, dragging
them. The model is, thus, self-consistent, accessing both the
polymer dynamics, influenced by the imposed flow, and the flow
field, perturbed by the presence and motion of the brush.

We show in Fig. 1 a sketch of the studied set-up: a paralle-
lepiped box of sides Lx, Ly, Lz containing N coarse-grained DPD
particles. A portion of them mimics the simple liquid (not
shown), while the rest, Nm (in light red), make up the brush
monomers. For the sake of ease and computational time we
attach polymers only to the bottom wall z = 0. All polymers have
the same molecular weight (or polymerization degree): each of
the Nch linear polymer chains is composed of n identical

monomers so that Nm = nNch. Monomers of the same chain
are connected by an additional force, derived by a finite
extensible nonlinear elastic potential (FENE).18 The grafting
point coordinates are randomly chosen from a uniform
distribution and located on the bottom surface according to
the imposed grafting density sgraft, defined as sgraft = Nch/(LxLy).

We recall that in a slit-pore geometry a laminar flow takes a
parabolic shape, as shown in Fig. 1. In order to produce a
parabolic flow inside the channel (e.g. along the x direction)

a constant acceleration
-

A = Ax̂ is applied to all fluid particles:

m _~v fluidi ¼ ~F fluid
ij þm~A: (1)

Analytically, this choice is fully equivalent to the application of
a pressure drop at the inlet/outlet of the channel and
more convenient for simulations where periodic boundary con-
ditions are employed. No-slip at the walls is imposed by applying
the bounce-back boundary condition.19 Different values of A
allow us to probe different dynamic regimes, here embodied
by the value of the Weissenberg number Wi, defined as

Wi � tbrush

tflow
, where tbrush is a brush characteristic timescale and

tflow is a timescale introduced by the flow. Later in the text we will
introduce a specific definition for the Weissenberg number,
which arises naturally when dealing with a surface instability.

Physical units are established by comparison with the
physical reference system, namely the microfluidic experiments
reported in ref. 12 and the biopolymer brush called endothelial
glycocalyx, which covers the inner vessel walls of
mammalians.20 From the ratio of the spacing between different
filaments of the glycocalyx network, dglyco = 20 nm,21 over the

average distance between anchor points of our brush, dgraft ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=sgraft

p
¼ 0:82 we thus fix the physical length scale lphys:

lphys = dglyco/dgraft = 24 � 10�9 m.

The physical mass and time scales, mphys and tphys, are
extracted by the ratio of viscosities and by the ratio of particle

Fig. 1 A sketch of the set-up system, showing the xz section of the slit-
pore channel. Two rigid walls are placed at z = 0 and z = Lz. The bottom
wall is coated by a (homodisperse) polymer brush, whose thickness is
denoted as hb. The velocity profile inside the channel is parabolic and vmax

signals its maximum value.
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energies:

mphys ¼
Zphys
ZDPD

tphyslphys;

tphys ¼
lphys

vphys
¼ lphysffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kBTphys

mphys

s ;

where Zphys = 10�3 Pa s is the viscosity of water at Tphys = 300 K,
kB is the Boltzmann constant and the DPD viscosity ZDPD = 0.84
is estimated by a simulation of the slit-pore velocity profile in a
bare channel, using Z = rAR2/(2vmax) with vmax the maximum
velocity at z = R. Solving the system of equations, we obtain
tphys = 1.8� 10�6 s and mphys = 5.1� 10�17 kg. With such choices,
the physical values for the brush thickness hb and for the
maximum fluid velocity vmax inside the channel are, respectively,
of the order of 500 nm and 1 cm s�1.

3 Results

At equilibrium the brush conformation results from the balance
between configurational entropy, which tends to make chains
visit the whole available space, and excluded volume interactions,
which disfavors contact between monomers. Theoretical
models (mean-field or scaling theories22,23), experiments
(especially neutron scattering24,25) and numerical simulations
(Monte Carlo and molecular dynamics methods26,27) agree in
predicting the monomer distribution, the layer thickness and
the way it should scale with the grafting density sgraft and the
polymerization degree n. Indeed, at equilibrium the brush is
accurately described by the profile r(z), which is the probability
distribution of finding a monomer at a distance z from the
grafting wall. In Fig. 2 we show r(z) for sgraft = 1.5 and n = 40
(the brush thickness is hb ¼ 2

Ð
zrðzÞdz

�Ð
rðzÞdz ¼ 24:8 in DPD

units20) and, in the inset, a comparison between brushes with
different grafting densities sgraft = 0.1, 0.3, 0.5, 0.8, 1.0, and 1.5
simulated in a box of size (Lx, Ly, and Lz) = (30, 5, and 50).
At equilibrium, the scaling properties of polymer brushes do

not depend on the way the free ends are modelled, being
retained in simulations of polymer brushes in a good
solvent28 or in theoretical treatments assuming that all free
ends are at the maximum distance from the grafting wall
(Alexander model29–31) or can move over the whole brush
thickness (self-consistent mean-field theory22,23). Regardless
of the model used, and hence of the way free ends are included
in the description, the interface between the brush and the rest
of the channel is always smooth, as highlighted in Fig. 2 by the
dashed circle. The precise configuration of the free ends thus
makes no significant contribution to the brush equilibrium
behavior. By contrast, it turns to be crucial if the brush is
subdued to the flow, since the free ends determine the brush
elastic properties in general, and the shear modulus in particular,
which can couple to hydrodynamics even at low Reynolds
numbers, as we will show in the following. Therefore, we stress
that the smooth decay of the density profile does constitute a
peculiarity of the filamentous coating and it must be considered
for a correct understanding of the polymer brush under non-
equilibrium conditions.

In the following the simulation results we will present have
been obtained with brushes with sgraft = 1.5, corresponding to a
polymer brush with an average distance between filaments of
E20 nm and a thickness in the range 300–1000 nm to mimic
the endothelial glycocalyx.20 We also define the brush surface
position S as the averaged position of the farthest monomer
from the grafting wall. At equilibrium, this corresponds to
S = S0 = 29.1 (DPD units).

3.1 Hydrodynamic instability of the flat brush surface

3.1.1 Surface morphological instability has an elastic origin.
It has been recently shown that under specific conditions of a
parabolic flow the brush polymers co-ordinate the recursive
motion of their free ends and give rise to a collective effect,
namely a traveling wave over the brush surface.13 The idea of
the present study is to attribute the presence of the wave, that
is, of finite-amplitude oscillations, to an instability driven by
hydrodynamics.

The occurrence of surface protuberances can be attributed
to a morphological instability of an elastic origin. Indeed, it is
quite well established that a surface subject to an axial stress
(such as shear stress) stores elastic energy which can be partially
released in the form of a surface deformation, which has a lower
energy than a flat one. An example of a such a behaviour is known
as the Asaro–Tiller–Grinfeld32,33 instability discussed in the
context of solid surfaces,34 where the modulation takes place
thanks to mass rearrangement (surface diffusion, for example).
Another context where surface instabilities appear is the clamped
gel problem,35 where the bottom surface of a thermoresponsive
gel is fixed to a solid surface. Upon varying the temperature, the
gel experiences a uniaxial stress leading to surface modulation
which is not due to mass rearrangement but to buckling-like
modes. Similarly, when an elastic medium is in contact with
a fluid under a shear flow, the elastic medium is under a
uniaxial stress and a surface deformation leads to a partial
release of the stress.36 In all these three cases a linear stability

Fig. 2 Density profiles r(z) for n = 40. In the inset: comparison between
density profiles at different grafting densities sgraft = 0.1, 0.3, 0.5, 0.8, 1.0,
and 1.5. In the main frame, a zoom for sgraft = 1.5, with the circle
highlighting the smooth decay even in the higher volume fraction case.
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analysis has been performed showing the occurrence of a surface
instability. The third case is the most relevant for our study.
The linear stability analysis was performed in ref. 36. However, no
simple analytical expression is available. Here, we have simplified
the analysis making it more adequate for a polymer brush instead
of a gel, and precisely (i) in ref. 36 the gel (in our case the brush)
has a visco-elastic behavior and an inertial contribution, while we
neglect (legitimately) inertia and consider the brush to be purely
elastic (given the fact that the flow is almost absent within the
brush at low Wi); (ii) in ref. 36 the gel-fluid interface is endowed
with surface tension, while we show that this is not only
unnecessary (a cut-off wavenumber is ensured by gel elasticity
and fluid viscosity) but the notion of surface tension does not
make sense in our case; (iii) in ref. 36 the fluid has a finite extent
in the z-direction, whereas here we took the assumption that the
system is infinite (meaning that the system size is large as
compared to the wavelength of interest, which is a quite legitimate
assumption in the experiments of Lanotte et al.12 and in our
numerical set-up). In both works the medium is taken to be
incompressible. Our simplifying assumptions have the advantage
of yielding a simple analytical expression for the dispersion
relation.

3.1.2 Linear stability analysis. Since the flow close to the
walls is of shear type, we consider the following set-up: an
imposed linear shear flow ux = _gy (where _g is the shear rate) with
a geometry similar to that in Fig. 1 but with a large Lz (actually
infinite; this is legitimate as long as the brush thickness and
wavelengths of interest are small as compared to Lz, two
fulfilled conditions).

The fluid obeys the Stokes equations

�rp + ZDv = 0 (2)

r�v = 0, (3)

where v is the velocity, p the pressure and Z the viscosity. The
brush is taken to be a linearly elastic domain described by the
Lamé equations. Due to rotational symmetry in the plane of the
planar brush–fluid interface the dispersion relation depends
only on the modulus of wavenumber. For this reason it is
sufficient to consider a 2D model (the system is supposed to
be invariant in the y direction). In this case it is convenient to
make use of the Airy function37 w, related to the elastic stress
tensor sij by

sxx ¼
@2w
@x2

; szz ¼
@2w
@z2

; sxz ¼ �
@2w
@x@z

; (4)

The Lamé equation (equilibrium equation for an elastic med-
ium) reduces to solving37

D2w = 0 (5)

The Airy function obeys a bi-harmonic equation. Once w is
determined one can extract the stress tensor from eqn (4), and

the displacement field u, upon using Hooke’s law,

exx ¼
1þ n
Y
ð1� nÞsxx � nszz½ �;

ezz ¼
1þ n
Y
ð1� nÞszz � nsxx½ �

exz ¼
1þ n
Y

sxz;

(6)

where Y is the Young’s modulus, n the Poisson ratio, and
eij = (qiuj + qjui)/2 is the strain tensor.

For a planar interface the shear stress in the fluid is constant
(equal to the imposed one) and is equal to that in the brush
(due to mechanical equilibrium). Linear stability analysis is
performed by considering that the interface z = hb + h(x, t) is
deformed with a small amplitude e. While the Stokes and Lamé
equations are linear, the solution is a nonlinear function of h.
Linear stability consists in retaining only linear terms in
deformation amplitude. As in a linear regime modes do not
couple, it is sufficient to consider a single Fourier mode so
that interface equation reads z = hb + eeiqx+ot + c.c., where q is
wavenumber and o is the attenuation/growth rate of the
perturbation (Re(o) 4 0 signals an instability). c.c. stands
for complex conjugate and will be omitted in what follows.
All solutions of the linear problem follow the same dependence
on x and t.

3.1.2.1 Hydrodynamic solution. Taking the curl of eqn (2)
eliminates the pressure and one obtains D(qzvx � qxvz) = 0.
Using continuity eqn (3) one obtains iqvx + qzvz = 0 allowing us
to express vx in terms of vz. Using qzvz = �iqvx (eqn (3)), implying
that qzvx = �iqzzvz/q; one easily finds that vz obeys the degenerate
equation

(qzz � q2)2vz = 0, (7)

so that the general solution of vz is given by (recall the system is
taken to be semi-infinite along z and we retain only the decaying
solution in z)

vz = (A + Bz)e�qzeiqx+ot (8)

where A and B are integration constant.

3.1.2.2 Elastic problem. w (see (4)) has the following solution

w = [(C + Dz)e�qz + (C0 + D0z)eqz]eiqx+ot (9)

with integration constants C, D, C0 and D0. vx can be determined
from the relation with vz evoked above and using the Stokes
equation p can be determined. Once these quantities are known
the hydrodynamic stress can easily be determined, using Pij =
�pdij + Z(qivj + qjvi). We have thus 6 different constants A, B, C
and D, and C0 and D0, plus the interface deformation amplitude
e.

3.1.2.3 Boundary conditions. Using the boundary conditions
at the brush interface, z = hb + h(x, t) (and developing them to a
linear order in e), one obtains homogeneous algebraic equations
for the amplitudes. The boundary conditions are (i) continuity of
normal stress, (ii) continuity of tangential stress, (iii) zero
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displacement at the bottom wall (ux = uz = 0), (iv)) continuity of
velocity (vx and vz) at the interface. These 6 conditions allow us to
express the 6 integration constants as a function of e. Finally,
imposing a continuity of interface velocity (given by qth(x, t)) with
that of the fluid velocity vz provides an additional relation
resulting in a homogeneous equation for e and a nontrivial
solution exists only if the prefactor is non-zero (alternatively,
we could use that the determinant of the full system of algebraic
equations be zero for a non-trivial solution to exist). This results
in a dispersion relation relating o, q and control parameters.
In the limit of the Poisson ratio n = 1/2 (incompressible gel) the
dispersion relation takes a relatively simple form (after algebraic
manipulations which are straightforward)

q2 þ 1� cosh 2ðqÞ
� �

o2 � 2o sinhðqÞ coshðqÞ

þ i
Wiq2

3
� q2 � cosh 2ðqÞ ¼ 0:

(10)

where q is the dimensionless wavenumber related to the physical
wavenumber q̃ by q = q̃hb (we recall that hb is the brush
thickness) and Wi will be referred to as the Weissenberg number
defined by Wi = _gZ/G. In this definition for Wi we have equated
tflow = (_g)�1 and tbrush = Z/G. We have also used the relation
between the Young’s modulus Y and shear modulus G, Y = 3G
(for an incompressible material). The physical growth rate ~o has
been scaled by the shear rate _g, so that in eqn (10) the growth
rate o is dimensionless. It has a real and imaginary part and it
will be written as o = or + ioi. An instability is signaled by a
positive value of or. A typical shape of or(q) is given in Fig. 3a,
while Fig. 3b reports the frequency as f (q) = oi(q)/2p. We can
notice that there is a critical value of Wi beyond which there is a
band of wavenumbers corresponding to positive or, signaling an
instability of the surface. We see that the critical value of Wi is
around 25, meaning that for an instability to arise in our simple
model the shear stress should be about 25 times larger than
the bulk shear modulus G. Note that we are considering an
incompressible brush, so that at q = 0, or = �N, meaning that
any homogeneous (q = 0) compression of the brush is stable, its
relaxation time being instantaneous. In reality a brush has a
finite compressibility, so that at q = 0 we expect or to take a finite
value. This means that in reality the curves in Fig. 3a will be
shifted upwards and hence the critical value of Wi will be
smaller. In other words, we predict that the instability of a real
(compressible) brush would take place when the shear stress
reaches values of few times the elastic modulus.

The above linear study has an indicative value showing the
existence of an instability and of the accompanying band of active
modes (unstable modes). While it may be possible to extend the
model to explicitly take into account the compressibility of the
brush, the elastic response of the brush considered here, which
will be discussed in the next section, has a nonlinear response in a
quite large range of shear stress. Therefore, a full quantitative
theory would require the development of a nonlinear elastic
theory for the brush to take on the study of its linear and
nonlinear instability with respect to surface modulation, which
is beyond the goal of the present paper.

We note in passing that the smallest wavelength below
which the surface is stable (l2, corresponding to the largest
value of q at which the upper curve in Fig. 3a crosses the q-axis),
represents a ‘‘microscopic’’ cut-off suppressing short wavelength
instabilities. Usually the presence of a cut-off is connected
to surface tension.36 By contrast, here the cut-off length is
controlled by the brush elastic modulus. The presence of a
cut-off means that, if the simulation box Lx is smaller than l2,
then no instability mode can fit in the box and the surface is
stable. We will see numerically in Section 3.2 that increasing the
box size Lx the surface becomes morphologically unstable and
that this instability causes a strong flow reduction, as observed
experimentally.12

3.1.3 Linear and non-linear elastic response of the brush.
In the model sketched above we have treated the brush as a
linear incompressible elastic medium (the Poisson ratio is set
to 1/2). We have attempted to investigate this matter further by
analyzing numerically the response of the brush to an imposed
stress. Fig. 4a shows the relationship between an imposed
compression and the corresponding stress response of the
brush. We simulate a surface force apparatus experiment and
compress the brush by means of an ideal plate posed at a
certain distance from the grafting wall; the plate behaves as a
rigid wall of infinite mass for monomers, while it is transparent
to solvent particles. The stress is estimated as P = F/A, where F is
the time average of the total DPD conservative force exerted by
each monomer on the plate surface of area A. In Fig. 4b, on the
other hand, we show the relation between a shear stress exerted
on the brush and the corresponding shear strain. The shear

Fig. 3 Real and imaginary parts of the growth rate o as a function of
wavenumber q for different values of Wi: (a) the dispersion relation
showing the real part of o; (b) the frequency f obtained from the imaginary
part of o divided by 2p. In (a) the big dot at q = 1.73 marks the wave number
of the most unstable mode extracted from simulations in the channel with
Lx = 180, as explained in Section 3.2.
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stress s is imposed by the flow and it is calculated as s = Z _g,
where _g = vmax/zmax with vmax the maximum velocity measured
at the corresponding z = zmax. We recall that for our system Z =
0.84 in DPD units. The shear strain is the average of the
component along the flow direction of the end-to-end vector,
Dx = hRee,xi. It is evident from the two figures that those
relations are linear for small strains only. As a consequence,
the polymer brush has a nonlinear elastic character that comes
into play as the imposed flow gets higher, and it gets stiffer and
stiffer on increasing the rate of compression/strain.

In the region of small deformations, we extract the values of
the two elastic moduli, Y and G. A linear fit yields Y = 1.4 and
G = 0.59 and hence nE 0.19, confirming the compressibility of
the brush.

We also estimate the shear stress at the brush outer surface
layer S as sS = Zdv(z)/dz|z=S, where dv(z)/dz|z=S is obtained from
the linear slope of the velocity profile v(z).

Here we follow ref. 13 where it has been shown that the wave
appears when the velocity profile exhibits a flow inversion close to
the brush surface. Fig. 5 shows the minimum of the velocity profile
as a function of Wi for the system with (Lx, Ly, Lz) = (30, 5, 50).
The Weissenberg number in our simulation is calculated as
Wi ¼ Z=G�_g, where �_g ¼ vmax=ðzmax � hbÞ is a measure of the
imposed flow. Indeed, even if the imposed flow is parabolic,

in the brush vicinity the fluid velocity is close to zero and the
flow can be legitimately linearized. The data show that the flow
inversion, and hence the appearance of the surface wave,
occurs at Wi E 0.25, which corresponds to sS E 0.3 (see inset).
This value is comparable with the value of G reported above.
In other words, the instability takes place as soon as the brush
experiences at its surface a shear stress comparable with its
shear modulus G. As we have seen in the dispersion relation
(eqn (10)), Wi is the only parameter entering there, and we have
seen that the instability takes place for Wi B 1 (meaning that
the shear stress is of the order of the shear modulus). Thus, we
indicate in the following relation

sS B G (11)

the necessary condition for the onset of such instability. Below
such a threshold we expect the polymer brush to reduce the
flow as if it was a regular rigid wall, without inducing any
anomaly in the velocity profile.

Furthermore, as explained in ref. 13, the instability manifests
itself as a travelling wave. The linear stability presented here
shows that o has an imaginary part (see Fig. 3b), and thus the
modulation has a travelling wave character. The frequencies
extracted from the linear analysis are reported in Fig. 3b and
are in good agreement with the ones obtained from simulations
(see Fig. 4(c) of ref. 13). To compare those results we should first
notice that the Weissenberg number used in ref. 13 is different
from the Wi defined in this paper and that the range {137, 218}
in ref. 13 corresponds to our Wi = {0.31, 0.47}. Then, it is
sufficient to scale the frequencies shown in ref. 13 by a factor
Z/(G*Wi) to obtain frequencies dimensionalized by shear rate in
the order of 0.2 (in DPD units), therefore in the same order of
magnitude as those appearing in Fig. 3b.

The prominence of the shear moduli G compared to other
elastic moduli in determining brush instabilities resides in the
observation that a polymer brush, and polymers in general, can
be more easily sheared than compressed. In our simulations we
find Y/G E 2, but it is worth noticing that in real polymer
brushes Y/G E O(102).38,39 As a result, a hydrodynamic load
more easily excites shear modes rather than compression
modes. The gap between those two elastic features is not
surprising if we consider how anisotropic a polymer brush is,

Fig. 4 The brush nonlinear response to compression (a) and to strain (b).
S0 is the averaged position of the farthest monomer from the grafting wall
at equilibrium. As the applied normal or tangential load increases,
the brush stiffens. The blue lines are linear fits in the region of small
deformations yielding an estimation of the brush Young’s modulus (a) and
the shear modulus (b).

Fig. 5 The minimum of the velocity profile as a function of the Weissen-
berg number Wi for the (Lx, Ly, Lz) = (30, 5, 50) system. The inset shows the
dependence of the shear stress at the brush outer surface layer, sS, on Wi.
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by construction. Fig. 6 shows a series of images of a macro-
scopic brush (Fig. 6a) that highlights this property: although
the brush can sustain the weight of the wooden substrate
(Fig. 6b), revealing a non-negligible compression resistance, it
can be easily sheared just by slightly left–right shaking one
hand (in Fig. 6c–e).

3.2 Flow reduction in the bulk channel as the effect of the
brush surface instability

An interesting experimental result was reported regarding the
influence on flow properties of a polymer brush coating the
internal surface of a glass capillary.12 Given a pressure-driven
flow, one would expect the maximum velocity in the capillary
center to be that given by a Poiseuille profile with a radius
reduced by the brush thickness. By contrast, the measured
maximum velocity was found to be less than expected, as if the
brush were twice thicker than its real value. In terms of
numerical values, let us denote by v0 the maximum velocity

for the bare capillary (in the absence of the brush), and v
0
0 that

of a capillary having a radius equal to the bare value minus the
brush thickness (as if the brush effect was to only reduce the

capillary radius). The measured velocity12 v
00
0 was found to be

lower than v
0
0 by 30%. Our numerical results show that the

morphological instability, discussed above, is a plausible
candidate to explain this behavior.

We find that wherever a surface wave is present, a significant
reduction of the bulk maximum velocity as function of the
channel length is also observed. Here we analyze channels
whose width is Lz = 140 and fix Wi = 1.29, but the following
description holds also for different values of Lz (ref. 20).
We first recall that in a channel the expected fluid velocity
profiles have a parabolic shape, as analytically obtained in the
case of Stokes flow in a slit-pore geometry. Since in our

simulations polymers have been grafted only at the z = 0 wall,
the centre of the parabola does not coincide with the centre of
the channel. Parabolas are thus fitted by

vxðzÞ ¼
rA
2Z

Rmax �Að Þ2� z�Að Þ2
� �

; (12)

where the pressure gradient has been substituted by the
imposed force per unit volume DP/L = rA, Rmax is the z-coordinate
corresponding to the maximum velocity and A is a fitting
parameter. If the length of the channel is Lx = 30, we find A B
hb and the velocity profile (Fig. 7, black curve) can be almost
perfectly overlapped with the velocity profile of a channel of width
Lz � hb (Fig. 7, orange curve). This means that in a short channel,
even if a surface wave of small amplitude is present, the polymer
brush behaves as a rigid compartment which effectively reduces
the channel width. Increasing the channel length from Lx = 30 to

L
0
x ¼ 6Lx ¼ 180 results in a pronounced decrease of the fluid

bulk maximum velocity, which seems to saturate when Lx reaches

Lx ¼ L
00
x ¼ 12Lx ¼ 360. Under these conditions the maximum

velocity is around 60% lower than that obtained when the brush
is almost flat (Lx = 30). We associate such reduction to the
occurrence of the surface instability. We note from Fig. 3a that
for Wi B 30 the largest values of q beyond which there is no
instability is about 2 and changing Wi does not affect this value
too much (we have checked from our dispersion relation that for
Wi = 100 the threshold is about 3). This provides a cut-off length,
which is the minimum box length below which no instability
should be present, of about Lmin = 2phb/2 = phb B 78. In our
simulations we find that the wave already settles in channels
whose length is Lx = 30, but that those cases are not accompanied

Fig. 6 Elastic properties of a macroscopic brush (a), which serve as
guidelines to infer polymer brush elastic properties: (b) filaments can
sustain the weight of the wooden substrate, meaning that the Young’s
modulus is not negligible; (c–e) the brush is easily shearable, as shown by
the deformed filaments, together oscillating under a light shear impressed
by a lateral movement.

Fig. 7 Comparison between the flow profiles inside channels of increasing
lengths: Lx = 30 (black curve), Lx = 180 (turquoise curve) and Lx = 360 (violet
curve). The width is fixed at Lz = 140 and the imposed acceleration is A =
0.01 in all cases. The orange plot corresponds to the parabolic velocity
profile in a channel of reduced width Lz � hb. A significant reduction of the
maximum velocity as function of the channel length is observed. The trend
of such velocity decrease shows a saturation around 60%, associated with
the surface wave. We show pictures of the brush surface wave which settles
in the longer systems (in red color the simulated system, with its nearest
replicas in grey, to convey the impression of the periodicity of the surface
modulation). Wi = 1.29 in all cases.
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by the flow reduction. In spite of this mismatch, we find a
good agreement with the fastest growing wavelength. The
dimensionless fastest growing wave number has a value of around
1.4 (see Fig. 3a) corresponding to a wavelength l = 2phb/1.4 B
110 (in DPD units). Referring to the grey data of Fig. 8, showing
the first coefficients of the Fourier power spectra in the spatial
domain, we find that for the Lx = 180 system the dominant
harmonic corresponds to a wavelength which is half the system
length (a value of 90), thus comparable to the theoretical value
110. For a direct comparison with theory, we mark in Fig. 3a the
wave number of such a most unstable mode by placing a big dot
at q = 2phb/90 = 1.73. Differently, in the Lx = 30 the dominant
wavelength is basically selected by the system size. Indeed, it
is not the fastest mode, but the smallest wavelength that fits in
the simulation box and corresponds to an unstable mode
that appears. In addition, since the wavelengths and frequencies
(see Section 3.1.3) in simulations and theory are comparable,
we conclude that the travelling speeds obtained numerically
and analytically agree with each other in terms of the order
of magnitude. Further increasing the box size makes more
wavelengths be excited: Fig. 8 (red data) shows that when the

length of the channel is L
00
x ¼ 12Lx ¼ 360 the surface modulation

is no more simply a monochromatic wave.
We propose that the hydrodynamics–brush coupling

modifies the energy balance: the flow excites one or more
natural mode frequencies of the brush and the supplied energy,
instead of increasing the bulk fluid velocity, feeds the
instability. Therefore, the brush motion is enhanced, as
revealed by the aspect of the wave (see Fig. 7). This viewpoint
is in line with the outcome of an experiment by Kumaran and
Muralikrishnan devoted to the characterization of viscous flow
past a soft interface: beyond a certain threshold for the
applied shear stress, the transport of energy disfavours the
average flow and an increase in the fluid apparent viscosity is
measured40, which is coherent with the decrease of the
maximum velocity shown in Fig. 7. Again, this analogy is
an additional hint that polymer brushes can develop
hydrodynamic-induced instabilities. Interestingly, thanks
to the mesoscale nature of our simulations we are able to
directly observe the oscillations of the soft interface, which
were only inferred in ref. 40.

3.3 Comparison with experiments

We have seen above that that the morphological interface
instability can drastically reduce the flow, which in our simulations
is decreased by E60% compared to the planar case. However,
Lanotte et al.12 measured only a E30% reduction. A possible
reason for this discrepancy is the polydisperse nature of the brush
investigated in ref. 12. On a qualitative level it has been shown that
polydispersity changes how the surface wave appears and
behaves,20 although a thorough quantitative investigation of its
effects is beyond the scope of the current work.

Another likely source of difference between the numerical
and experimental results is provided by system size and inter-
face geometry. Because of computational costs our system size
along the flow direction cannot be as long as it is in real
experiments. Indeed, with the level of description we chose
the lateral size Lx cannot be more than a few (2 to 4) times the
instability wavelength. This means that higher wavelength
modes cannot fit in the simulation box, and this will most
likely affect the nonlinear evolution of the surface wave, such as
its amplitude, and its temporal dynamics. Moreover, as we have
previously observed in Fig. 7, the more the velocity reduction
the more the deviation of the wave front from a simple
sinusoidal shape. Here, we have attempted to extract the role
of interface geometry for the maximum velocity change.
We used a lattice Boltzmann simulation41 to draw the flow
field between two rigid walls which display a fixed modulation
mimicking the brush deformation. We have focused on two
cases, as shown in Fig. 9: a sinusoidal modulation and a
cycloidal modulation. The main results are reported in
Fig. 10, which shows the evolution of the maximum velocity
as a function of the deformation amplitude A and compares the
two geometries. We see that a velocity reduction of E25%

Fig. 8 Spatial Fourier coefficients of surface modulation for different
system sizes.

Fig. 9 Velocity pattern in the channel with a modulation of interfaces:
(a) a sinusoidal modulation, with ztop/Lz = A sin(�x/(2p)) + 1 for the upper
wall and zbottom/Lz = A sin((x/2p)) for the bottom wall, and (b) a cycloidal
modulation, with ztop/Lz = A/2(1 � cos(�x/(2p)) + 1 for the upper wall and
zbottom/Lz = �A/2(1 � cos((x/2p)) for the bottom wall. The color code refers
to the modulus of the velocity. Here A= 0.3 in units of the channel width.
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(closer to experiments) is obtained for a wall modulation which
is 20% of the channel width. However, in the cited
experiments12 such velocity reduction is found for a brush
thickness which is only 5% of the channel width. This indicates
that it is likely that the anomaly in the maximum velocity
measured actually comes from an interplay between the brush
and the flow and it is not only a matter of geometry of the
boundary. This bolsters the idea of the elastic instability as the
leading mechanism destroying the flow field more with respect
to what is expected for the flow field past rigid bodies at low
Reynolds numbers.

4 Conclusion

We have discussed the behavior of a polymer brush exposed
to a parabolic flow in a slit pore geometry. Our mesoscale
investigation accounts for the specific dynamics of the polymer
free-ends exposed to flow: driven by the long-range of hydro-
dynamics, they can generate collective effects, namely a travelling
wave at the brush surface. By analogy with solid elastic films we
have quantified the Young’s and shear moduli and indicated the
wave as the onset of a shear instability induced by hydrodynamics.
We have found a criterion for the onset of the instability which,
recalling eqn (11), reads:

sS B G

where sS is the shear stress exerted by the flow on the brush
surface S and G is the brush shear modulus. Such an outcome
is in line with a previous theoretical result36 found for flow past
a soft gel and widens the range of hydrodynamic interactive soft
media to embrace polymer brushes. We stress the importance
of G in determining the threshold: this effect can be traced
back to the difference between the values of the two moduli,
with the shear modulus being much smaller than Y, differently
from what is expected in standard solid matter for isotropic
materials. Beyond such threshold, brush instabilities can take
place and waves can form. Moreover, in the presence of waves
of big oscillation amplitudes, the imposed pressure drop feeds

the instability, resulting in a strong flow reduction in the
channel. We thus offer a numerical counterpart to the micro-
fluidic experiments of ref. 12, providing a long-sought plausible
interpretation of the results reported therein. We emphasize
such an interpretation, since we have also proved that a rigid
interface model is not a good approximation for a polymer
brush under flow: in the end, at low Reynold numbers, a
polymer brush, with its dynamical protrusion inside the fluid,
displays a richer dynamics than a sharply-cut interface does,
even tailoring its geometry for very complicated shapes.

It is worthwhile noticing that our case study can be related
to blood circulation: the chosen set-up resembles the micro-
capillary environment and the simulated polymer brush is a
simpler model for the endothelial glycocalyx. Interestingly, the
shear modulus of the endothelial glycocalyx layer has been
measured to be G = 6.7 Pa39 and under physiological conditions
shear stresses at the microcapillary walls are of the same order
of magnitude (few Pascals). Thus, the criterion condition of
eqn (11) can be fulfilled and the surface wave we have
discovered might come into play under physiological conditions.
We speculate that if the discussed instability and flow reduction
do take place at the microcirculation level, they could serve as a
control in regulating the blood velocity and hence the shear
stress felt by the vascular walls.

As outlined in Fig. 4, a polymer brush is not simply linearly
elastic: it becomes stiffer and stiffer upon increasing the Wi.
Moreover, the properties of the brush also depend on temperature
(or, equivalently, solvent quality).42 Thus, a full clarification of
the brush phenomenology will require a more complex model
encompassing nonlinear dynamic sources and thermal effects.
We remark that our DPD simulations contain almost one million
particles and that a further increase of the system size is frustrated
by computational limits. The construction of a continuum model
to solve the Navier–Stokes equations with adequate boundary
conditions to mimic the brush layer in order to investigate the
behavior also in the case of flowing objects is an interesting task
for future investigations.
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Appendix: details of the DPD method

DPD is a coarse-graining of MD, employing both spatio-temporal
averaging of interaction potentials as well as grouping of atoms into
single particles (the DPD particle). It was introduced by Hooger-
brugge and Koelman in 199214 to simulate isothermal Navier–Stokes
equations. It thus grasps hydrodynamics interactions and covers
bigger timescales and bigger length scales than the usual MD ones.

Each of the N point-like DPD particles evolves in time
according to Newton’s equation

m _~vi ¼
XN
jai

~Fij (13)

Fig. 10 Maximum velocity divided by that corresponding to a straight
channel as a function of surface deformation. Comparison between the
sinusoidal wall modulation (black) and the cycloidal one (red). Notice that
the modulation thickness T reported on the x-axis is T = A for the cycloidal
case and T = 2A for the sinusoidal case.
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(with an obvious choice of symbols). The forces
-

Fij acting on
pairs have three contributions: a conservative one,

-

FC(rij),
a dissipative one,

-

FD(rij), and a stochastic one,
-

FS(rij). These
are all central forces such that

-

Fij = �-

Fij, thereby guaranteeing
local momentum conservation. All of them act within the
same distance range rc, that is chosen as the unit of length.
The conservative force has the following expression:

~FC rij
� 	

¼
aab 1� rij

rc


 �
r̂ij rij � rc;

0 rij 4 rc

8><
>: (14)

with the definitions -
rij = -

ri �
-
rj for the vector distance between

the i-th and j-th particle, rij = |-rij| and r̂ij = -rij/rij. It is a
conservative soft-core repulsive force, corresponding to the
following potential

VðrijÞ ¼
�aab rij �

rij
2

2rc
� rc

2


 �
rij � rc;

0 rij 4 rc

8><
>: (15)

where the constant value aabrc/2 has been added to shift the
potential to zero at r = rc. According to standard DPD, the
functional shape of eqn (14) comes from averaging a Lennard-
Jones 12-6 potential over short time scales and small length
scales, thus measuring the effective potential between clusters
of liquid molecules.16 Fast dynamics (the number of collisions
with neighbors, known as the cage effect of simple liquids) is
averaged out, resulting in a purely repulsive interaction. The
softness is justified by the blob nature of DPD particles that,
containing also empty space, should have the possibility to
overlap. We note that the absence of divergences in eqn (15)
entails one of the advantages of DPD with respect to MD: while
a hard-core potential imposes a maximum integration time-
step to avoid excessive forces, the soft-core interaction allows
for bigger time step values. The constant aab measures the force
between two completely overlapping particles, where the
indexes a, b indicate the particle type: fluid (F) or polymer
(P), in our case. It controls the density fluctuations of the
system and it is cast from the compressibility of the modeled
fluid.43

The two other extra forces account for the loss of details in
the coarse-graining procedure, namely the huge amount of
collisions occurring between real molecules and constituting
the microscopic foundation of transport properties, such as
viscosity and diffusivity. The dissipative force takes the
following form:

-

F D(rij) = �gwD(rij)(r̂ij�-vij)r̂ij, (16)

where the ‘‘weight function’’ wD(rij) we used is

wDðrijÞ ¼
1� rij

rc


 �2

r̂ij rij � rc;

0 rij 4 rc:

8><
>: (17)

Precisely, eqn (16) accounts for the energy loss, introducing
a friction among particles proportional to the relative velocity

-
vij = -

vi �
-
vj and to a factor g that depends on the temperature T.

To balance the dissipative force, a random force is also
necessary:

~FSðrijÞ ¼ swSðrijÞyijðDtÞ�
1
2r̂ij (18)

where s is related to temperature, wS(rij) is another weight
function and yij is a random number extracted from a Gaussian
distribution that has zero average hyij(t)i = 0 and is uncorrelated
in time and among particle pairs: hyij(t)ylm(t0)i = (dildjm +
dimdjl)d(t � t0). The condition yij = yji has to be verified in order
to locally conserve momentum. The factor 1=

ffiffiffiffiffi
Dt
p

in eqn (18)
comes from the discretization procedure of a Wiener process
and ensures that the particle self-diffusion coefficient is
independent of the time step value.43 The two forces

-

FD(rij)
and

-

FS(rij) act as a thermostat.
It has been proved that to reproduce the correct equilibrium

probability distribution of the NVT ensemble the dissipative
and random forces have to verify two constraints44:

wDðrijÞ ¼ wSðrijÞ
� �2

and g ¼ s2

2kBT
: (19)

In addition to these basic DPD forces, other kinds of
interaction can be included in the DPD frame according to
the specific simulated system. In the present case, to mimic
polymers, linear chains of DPD particles are connected by a
finitely extensible nonlinear elastic potential (FENE)18

~FFENE
ij ¼ �2kR2 rij � req

R2 � rij � req
� 	2r̂ij rij � req oR (20)

where k is the spring constant, req the neighbor equilibrium
distance and R the maximum allowed extension. An extra
monomer is added to each chain as an anchor, i.e. grafting
point. Grafting point coordinates are randomly chosen from a
uniform distribution and located on a flat surface z = zwall

according to the imposed grafting density sgraft, defined as
sgraft = Nch/(LxLy) with Nch the number of chains composing the
brush. The anchor centers of mass are aligned with the wall z
coordinate and their position is not updated. Note that
polymers are non-ideal ones since they also interact via the
DPD repulsive force, which operates as an excluded volume
potential.

Given the softness of the conservative interaction potential,
a repulsive force of the kind in eqn (14) is not enough to prevent
particles from escaping the box. It is then necessary to
implement an additional mechanism to bring back particles
that cross the wall and we opted for the bounce back reflection,
in which the whole particle velocity vector is reversed -

v - �-
v.

The bounce-back mechanism, by construction, is consistent
with the no-slip condition at the wall.

We integrate the equations of motion with a modified
velocity Verlet algorithm, as is commonly done in DPD
simulations.43

We chose the DPD units such that rc = 1, mi = 1 and kBT = 1.
The integration time step is Dt = 0.02. We underline that such a
value is at least one order of magnitude bigger than the usual
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ones set for MD simulations and, thanks to the softness of the
potential, is enough to make the system reach the equilibrium/
steady state. We set the system number density r = N/(LxLyLz) =
3.43 The number of monomers per chain is set to n = 40 and the
grafting density sgraft spans from sgraft = 0.1 to sgraft = 1.5. Since
the total number of DPD monomers Nm is subtracted from the
total amount of particles N, the actual number of solvent
particles is Ns = N � Nm = rLxLyLz � nsgraftLxLy. Following ref.
43, we fix the solvent–solvent interaction parameter aFF relating
it to the dimensionless compressibility of water kT

�1 =
1/(rkBTkT), where kT is the fluid compressibility, so that aFF =
75kBT/rrc

4 = 25. We assume that the polymer–polymer inter-
action parameter has the same value (e.g. aFF = aPP), while we
select a smaller value for the fluid–polymer parameter aFP =
20 (good solvent conditions). For the interaction with walls we
set aw = 6 o aFF to avoid an artificial depletion zone along the
walls. The noise amplitude is fixed to s = 3.43 It is worth
noticing that with higher values for s the code takes more time
to reach the equilibrium/steady state. For the FENE potential
we use req = 0.86, R = 1 and k = 50.
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17 R. M. Füchslin, H. Fellermann, A. Eriksson and H.-J. Ziock,

J. Chem. Phys., 2009, 130, 214102.
18 G. S. Grest and K. Kremer, Phys. Rev. A: At., Mol., Opt. Phys.,

1986, 33, 3628–3631.
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