
PH
YS

IC
S

Facile self-assembly of colloidal diamond from
tetrahedral patchy particles via ring selection
Andreas Neophytoua, Dwaipayan Chakrabartia,1 , and Francesco Sciortinob,1

aSchool of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; and bDipartimento di Fisica, Sapienza Università di
Roma, 00185 Roma, Italy

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved October 14, 2021 (received for review May 28, 2021)

Diamond-structured crystals, particularly those with cubic sym-
metry, have long been attractive targets for the programmed
self-assembly of colloidal particles, due to their applications as
photonic crystals that can control the flow of visible light. While
spherical particles decorated with four patches in a tetrahedral
arrangement—tetrahedral patchy particles—should be an ideal
building block for this endeavor, their self-assembly into col-
loidal diamond has proved elusive. The kinetics of self-assembly
pose a major challenge, with competition from an amorphous
glassy phase, as well as clathrate crystals, leaving a narrow
widow of patch widths where tetrahedral patchy particles can
self-assemble into diamond crystals. Here we demonstrate that
a two-component system of tetrahedral patchy particles, where
bonding is allowed only between particles of different types to
select even-member rings, undergoes crystallization into diamond
crystals over a significantly wider range of patch widths conducive
for experimental fabrication. We show that the crystallization
in the two-component system is both thermodynamically and
kinetically enhanced, as compared to the one-component system.
Although our bottom-up route does not lead to the selection of
the cubic polytype exclusively, we find that the cubicity of the
self-assembled crystals increases with increasing patch width. Our
designer system not only promises a scalable bottom-up route
for colloidal diamond but also offers fundamental insight into
crystallization into open lattices.

colloidal self-assembly | tetrahedral networks | tetrahedral patchy particles |
diamond lattice | polytype selection

Much effort has been placed in devising fabrication routes
to diamond-structured colloidal crystals, driven by their

applications in visible photonics (1, 2). In this context, the self-
assembly of submicrometer colloidal particles has long been
recognized as a promising scalable bottom-up approach (3–6). In
this endeavor, a variety of designer building blocks with tunable
interparticle interactions have been synthesized over the years,
leading to recent success in their self-assembly into diamond-
structured crystals (7, 8). Although spherical particles decorated
with four patches in tetrahedral symmetry appeared as the front-
runner to yield a diamond crystal (9, 10), the self-assembly of a
diamond crystal from such tetrahedral patchy particles proved
challenging.

The self-assembly of a diamond crystal from tetrahedral patchy
particles faces challenges that can be of both thermodynamic and
kinetic origins, as suggested by a number of computer simulation
studies (11–14). When the particles possess narrow patches, five-
member rings form more readily as compared to six-member
rings, and clathrate structures are thus kinetically favored over
a diamond structure (14). On the other hand, when patches
are too wide, there is not a sufficiently large thermodynamic
driving force for spontaneous crystallization to occur (11).
A significant degree of supercooling is then required for the free-
energy barrier to crystal nucleation to become surmountable to
allow for spontaneous crystallization (12). As a result, crystal-
lization is preempted by the dynamic arrest of the system into an
amorphous glassy network when the attractive patches are too
wide (11, 12, 14). The glassy network has a distribution of rings,

including even- and odd-member rings (15). As diamond crystals
comprise exclusively even-member rings, the tetrahedral patchy
particles become dynamically arrested due to frustration between
the local order of the fluid and the global order of the crystal (16).

Recent studies have demonstrated that a two-stage self-
assembly scheme for triblock patchy particles via tetrahedral
clusters promotes crystallization into open crystals, where each
particle has a coordination number of six, by suppressing
the formation of five- and seven-member rings (17, 18). The
frustration caused by a distribution of ring sizes could be a
generic mechanism by which crystallization into an open lattice
is hindered. In the present computational study, we sought to
demonstrate the generality of this hypothesis by investigating
the self-assembly of diamond crystals in a system that contains
two types of designer tetrahedral patchy particles, each having
four identical patches, in a 1:1 mixture. We introduce specific
interactions, such that bond formation can only occur between
the two different types of particles, labeled A and B. Such
specificity in bond formation can be realized using DNA-
mediated interactions (19–21). Our tetrahedral patchy particles
are represented by the widely used Kern–Frenkel model (22),
where particles of different types interact via a combination
of a hard-core repulsion, with diameter σ, and a square-well
attraction modulated by an angular factor between the patches,
with a half-angle θ. The angular factor is unity only when the
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patches are properly oriented, that is, the vector connecting
the centers of the two particles passes through the patches on
their surfaces, and zero otherwise. The width of the square well,
δ, determines the range of the attraction between the patches
relative to the particle diameter and is set to δ = 0.2σ. The depth
of the square well, ε, governs the strength of the bond. Only hard-
sphere repulsion is at play between particles of the same type.

Chains of particles in the two-component system considered
here can only form closed bond loops in the cases where the
first and last particles in the chain are of different species. The
contrasting scenarios between the formation of rings in a one-
component and a two-component system of tetrahedral patchy
particles are shown in Fig. 1 A and B, vividly demonstrating the
selection of even-member rings imposed by the constraint of
interspecies binding only. The two-component system of tetra-
hedral patchy particles can, of course, form cubic and hexagonal
diamond crystals, representative views of which are shown in Fig.
1 C and D, respectively, and in SI Appendix, Fig. S1. Addition-
ally, we recognize that the two-component system of tetrahedral
patchy particles should effectively suppress the formation of
s-I and s-II clathrates (both lattices requiring odd-member rings),
but it can still stabilize the s-III clathrate, which is composed of
four- and six-member rings, as shown in Fig. 1D (23). However,
due to the presence of four-member rings, this structure can
only form when θ ≥ 9.75◦; additionally, the six-member rings
found in this structure are planar, as compared to the boat and

Fig. 1. Design strategy for the selection of even-member rings in a system
of tetrahedral patchy particles using specific interactions. (A) Examples of
four-, five-, six-, and seven-member rings that can form in a one-component
system of tetrahedral patchy particles. (B) Examples four- and six-member
rings that can form in a two-component system of tetrahedral patchy
particles, where bonds can form only between distinct species, labeled A
(colored yellow) and B (colored pink). Examples of five- and seven-member
rings are also shown to highlight that odd-member rings cannot form in such
a two-component system of tetrahedral patchy particles, as they require A–
A or B–B bonds. (C–E) Example crystal structures that can be stabilized by a
two-component system of tetrahedral patchy particles: (C) cubic diamond,
(D) hexagonal diamond, and (E) clathrate s-III. The thin black lines represent
the edges of the respective unit cells of the crystal structures. We highlight
representative six-member rings present in the cubic and hexagonal dia-
mond crystals in the chair and boat conformations, respectively. Additionally,
we show the underlying network in the clathrate s-III structure with dashed
lines to highlight that the four- and six-member rings in the unit cell are
arranged such that they form a truncated octahedron.

chair conformations found in the diamond crystals (as shown in
Fig. 1 C and D) (11). Due to the frustration associated with the
formation of four- and planar six-member rings, we anticipate
our design rules for diamond will not suffer any competition from
the clathrate s-III crystal.

Results and Discussion
A two-component system of tetrahedral patchy particles with
specificity of interactions to allow for only interspecies binding
then appears as a propitious route to a diamond crystal. To
explore whether this is indeed the case, we carried out Monte
Carlo simulations of one-component and two-component sys-
tems of N = 1000 tetrahedral patchy particles in the canonical
(NVT) ensemble. We used an equal number of A and B particles
in the two-component system (i.e., NA = NB = 500). Addition-
ally, we considered systems where the patch half-angles for the
tetrahedral patchy particles were chosen such that diamond was
not expected to be kinetically accessible in the one-component
system.

In Fig. 2, we compare the self-assembly observed in a one-
component (Fig. 2 A–C) and a two-component (Fig. 2 D–F) sys-
tem of tetrahedral patchy particles with θ = 12◦ at ρ∗ = Nσ/V =
0.3. We find that both systems undergo a first-order phase tran-
sition upon gradual cooling; the one-component system forms
a clathrate structure, while the two-component system forms
a diamond structure instead. This is reflected in Fig. 2 A and
D, where we compare the evolution of the average number of
rings of length l (NRl ) with temperature for the one-component
and two-component systems, respectively. The first-order phase
transition in the one-component system is marked by a dominant
growth of five-member rings, as one would expect for a clathrate
structure (14). In contrast, a sharp increase in six- and eight-
member rings in the two-component system signals self-assembly
into a diamond crystal. The characteristic peaks in the probability
distribution for the translational order correlation parameter, d3
(defined in Materials and Methods), as evident in Fig. 2 B and
D, confirm the respective crystal structures. Fig. 2 C and F shows
representative snapshots of the clathrate and diamond structures
self-assembled in the one-component and two-component sys-
tems, respectively.

The distribution of d3 is routinely used to identify the forma-
tion of diamond in systems of tetrahedral patchy particles, since a
pure cubic diamond structure has a single peak at d3 =−1, while
hexagonal diamond and also random stacking diamond have an
additional peak centered at d3 =−0.115 (9, 11, 12, 24, 25). The
peak at d3 =−1 arises due to the presence of bonded pairs of
particles (i.e., two particles that share a patch–patch bond) with
staggered patches, while the peak at d3 =−0.115 corresponds
to bonded particles with eclipsed patches. Fig. 2B reveals that
the one-component system contains exclusively eclipsed bonds–a
characteristic feature of the clathrate structures (26). In contrast,
Fig. 2E shows that the two-component system contains predom-
inantly staggered bonds, with some eclipsed bonds, suggesting
that a mixture of cubic and hexagonal diamond has formed.
At higher densities, we find that the one-component system
crystallizes into a diamond structure only 10% of the time, along-
side forming an amorphous clathrate phase (14), as shown in
SI Appendix, Fig. S2.

Fig. 3 shows a comparison between the self-assembly of a one-
component (Fig. 3 A–C) and a two-component (Fig. 3 D–F)
system of tetrahedral patchy particles with a larger patch width
having θ = 25◦ at ρ∗ = 0.5. This θ value is well into the regime
where a one-component system of tetrahedral patchy particles is
known to become dynamically arrested into a glassy state upon
cooling (11, 14). Fig. 3A shows that a distribution of rings with
l ∈ [4− 8] indeed emerges in the one-component system, with
no signature of crystallization taking place, as revealed in Fig. 3B
by the lack of well-resolved peaks in the distribution of d3. The
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Fig. 2. Comparison of the self-assembly in one- and two-component systems of tetrahedral patchy particles with narrow patches. Self-assembly in (A–C)
one-component and (D–F) two-component systems of N = 1000 tetrahedral patchy particles with patch half-angle θ = 12◦ at ρ∗ = Nσ3/V = 0.3. (A and D)
Evolution of the average number of rings of length l (NRl

) with temperature. (B and E) Probability distribution function of the translational order correlation
parameter d3, defined in Materials and Methods, at a temperature of kBT/ε = 0.1. (C and F) Representative snapshots of the crystalline configurations in
the two systems at a temperature of kBT/ε = 0.1.

broad distribution in d3 in this case suggests that there are a
number of particles which form bonds that are neither staggered
nor eclipsed. This implies that the resulting structure is truly
amorphous, and not disordered because of polycrystallinity. In
contrast, the two-component system readily crystallizes into a
diamond structure, with the evolution of the number of rings
with temperature, and the distribution of d3 at low temperatures,
closely matching those of the two-component system with nar-
rower patches, as evident in Fig. 3 D and E, respectively. Fig.
3 C and F shows representative snapshots of the configurations
in the two systems at a low temperature, confirming the lack of

crystalline order in the one-component system as opposed to the
two-component system.

We have thus established that our two-component system
of designer tetrahedral patchy particles readily crystallizes into
diamond crystals, even for patch half-angles where the diamond
crystals are kinetically inaccessible for the one-component sys-
tem. The facile crystallization of diamond for a two-component
system of tetrahedral patchy particles can be predominantly
attributed to the removal of kinetic traps containing odd-member
rings from the energy landscape. However, in order to assess
whether crystallization is also facilitated in the two-component

Fig. 3. Comparison of the self-assembly in one- and two-component systems of tetrahedral patchy particles with wide patches. Self-assembly in (A–C)
one-component and (D–F) two-component systems of N = 1000 tetrahedral patchy particles with patch half-angle θ = 25◦ at ρ∗ = Nσ3/V = 0.5. (A and D)
Evolution of the average number of rings of length l (NRl

) with temperature. (B and E) Probability distribution function of the translational order correlation
parameter d3 at a temperature of kBT/ε = 0.1. (C and F) Representative snapshots of the configurations in the two systems at a temperature of kBT/ε = 0.1.
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system from thermodynamic considerations, we evaluate the
thermodynamic driving force for crystallization (i.e., the chem-
ical potential difference between the crystal and fluid phases:
Δμ= μcrystal − μfluid). Fig. 4 A and B shows the temperature and
θ dependence of Δμ for the one-component (Δμ1c) and two-
component (Δμ2c) systems, respectively. At higher temperatures,
where the fluid is more stable than the crystal, we see that
Δμ2c >Δμ1c for all θ values considered, implying that the two-
component fluid phase is more stable than its one-component
counterpart, relative to their respective crystalline phases. This
additional stability can be mainly attributed to the entropy of
mixing: ΔSmix/(NkB) =−

∑
i=A,B

Ni
N

ln(Ni
N
), which is present in

the two-component fluid, but not in the one-component fluid
(27, 28).

In contrast, at low temperatures where the crystal is the sta-
ble phase, we find that Δμ2c <Δμ1c. This is most clearly evi-
dent for the systems with the widest patch half-angle (θ = 26◦),
where there is very little driving force for crystallization in the
one-component system. This is because the one-component sys-
tem with wide patches is able to form a fully connected liquid
phase, whose stability competes with that of the crystal phase
(11–13). Above a critical θ, the fully connected liquid becomes
the thermodynamically favored phase at low temperatures due to
a configurational entropy contribution to the free energy, thereby
preventing crystallization into diamond (13). However, even for
patch half-angles narrower than this critical value, crystallization
is not observed, as we have shown in Fig. 3 A–C. Additionally, the
highly associative nature of these particles leads to a significant
slowdown in dynamics at low temperatures, making the system
essentially a guaranteed glass former (12, 15).

In the two-component system, each particle has only N /2
potential bonding partners as compared to N − 1 in the one-
component system. As a result, the probability of forming a bond
in the two-component fluid must be reduced relative to that of the
one-component fluid. This is apparent in SI Appendix, Fig. S3,
where we show that the bonding probability for the one-
component system with θ = 25◦ is indeed larger than that of the
corresponding two-component system prior to crystallization.
This explains why there is a greater thermodynamic driving
force for crystallization in the two-component system than in
the one-component system upon cooling to moderately low
temperatures. Therefore, introducing specificity of interactions
to program even-member ring selection rules into a system of
tetrahedral patchy particles promotes crystallization not only
by reducing the frustration experienced by the system, through

the removal of kinetic traps, but also by providing an additional
thermodynamic driving force.

Additionally, we note that, as we move from the one-
component to the two-component system, through the intro-
duction of specific interactions, the coexistence temperature
at P∗ = 0.03 changes. As shown in Fig. 4C, the coexistence
temperature shifts to lower and higher values for narrower and
wider patches, respectively, with the cross-over occurring around
22◦. Again, this can be understood by considering how the
relative contributions of energy and entropy to the free energy
of the respective fluid phases affect the behavior of the system.
The two-component system is less prone to bonding, as shown in
SI Appendix, Fig. S3 and apparent from the energies per particle
of the fluid phases at the coexistence temperature (Fig. 4D). Fig.
4E shows that the coexistence is with a “gas” phase in the case of
the one-component system for low θ values, but crosses to one
with a dense liquid phase for higher θ values when we compare
the coexistence densities with the corresponding critical densities
(29). For the two-component system, the coexistence appears to
be always with the “gas” phase. As a result, crystallization occurs
via different nucleation mechanisms in the two models, leading
to the different θ dependence of T ∗

coex, and to the consequent
crossing of T ∗

coex between the two models (Fig. 4C). For one-
component systems with wider patches, where a network fluid
can form, the energy in the liquid phase reaches values similar to
the one of the crystal (Fig. 4D), and crystal formation becomes
essentially controlled by an entropic balance (13).

Our finding that there is an additional thermodynamic driving
force for crystallization in the two-component system, involv-
ing specificity of interactions, raises the question of whether
augmentation of specific interactions would further favor the
self-assembly of a diamond crystal. In order to address this
question, we considered a two-component system of tetrahedral
patchy particles where the four patches are of distinct “colors,”
allowing for the formation of bonds only between patches of
the same color, provided that the patches belong to particles
of different species. This two-component system of “chromatic”
patchy particles, which resembles systems that have previously
been investigated for the self-assembly of a diamond crystal
(6, 30, 31), maintains the same ring selection rules previously
imposed to favor crystallization, while increasing the specificity of
the interactions. Therefore, we might expect the thermodynamic
driving force for crystallization in such a system to be even greater
than the two-component system where the patches are not distin-
guished (30). SI Appendix, Fig. S4 shows the results of our Monte

A B C

D

E

Fig. 4. Thermodynamics of crystallization in one- and two-component systems of tetrahedral patchy particles as a function of patch width. Dependence of
the chemical potential difference between the cubic diamond (cd) and fluid phases for (A) one-component (Δμ1c) and (B) two-component (Δμ2c) systems
of N = 216 tetrahedral patchy particles on temperature (kBT/ε) and patch half-angle (θ) at a pressure of P∗ = Pσ3/ε = 0.03. Here, Δμ = μcd − μfluid,
β = (kBT)−1, and θ = 10◦, 12◦, 14◦, 16◦, 18◦, 20◦, 22◦, 24◦, 26◦. The arrows show the direction of increasing θ. (C–E) Dependence of the coexistence
temperature, T∗

coex, the fluid potential energy (V∗
coex), and the fluid density (ρ∗

coex) at the coexistence temperature on the patch half-angle θ for the one-
component and two-component systems at P∗ = 0.03. The θ-axis label appears only for E.
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Carlo simulations of a two-component (1:1) system of N = 1000
chromatic tetrahedral patchy particles in the NVT ensemble with
θ = 25◦. We find that, indeed, only even-member rings form as
per our ring selection strategy, but we do not observe crystal-
lization during the course of our simulations, suggesting that this
chromatic two-component system is “overspecific,” and particles
struggle to identify four neighbors in their immediate vicinity
with the right patches available for bonding. This observation
also suggests the possibility of a trade-off between increasing the
height of the kinetic barriers associated with crystallization and
increasing the thermodynamic driving force for crystallization
upon introducing specific interactions to a system of tetrahedral
patchy particles.

The two main diamond polytypes, cubic and hexagonal dia-
mond, differ only in a single dimension, and can, in fact, be
viewed as the limiting cases of a series of diamond polytype
structures (32, 33). These different polytype structures can be
considered as stacking hybrids of cubic and hexagonal diamond;
however, the periodicity of any such polytype can always be
described by a hexagonal unit cell (33). Generally, it has been
observed that the self-assembly of tetrahedral patchy particles
into diamond gives rise to one of these hybrid diamond polytype
structures, rather than a pure cubic or hexagonal diamond crystal
(11, 12, 34). It is reasonable to anticipate that self-assembled
diamond structures will consist of approximately equal propor-
tions of cubic and hexagonal polytypes, due to a marginal free-
energy difference between them (11). Similar observations and
arguments have been made for the related tetrastack crystals
formed from triblock patchy particles (17, 26, 35). However,
it was shown that the geometry of the patches influenced the
relative stability of cubic and hexagonal tetrastack structures
(35), with cubic tetrastack found to become more stable relative
to hexagonal tetrastack with increasing patch width, most likely
due to the cubic polytype having a more favorable rotational
entropy (35, 36).

The influence of patch geometry on the relative stability of the
two diamond polytypes composed of tetrahedral patchy particles,
and their relative abundance in self-assembled diamond crystals,
has not previously been investigated. This is presumably due
to the limited window of patch widths where the spontaneous
crystallization of diamond can be observed for a one-component

Fig. 5. Dependence of diamond polytype selection on the patch width in
the two-component system of tetrahedral patchy particles. (A) Patch half-
angle (θ) dependence of the chemical potential difference (Δμ) between
the cubic diamond (cd) and hexagonal diamond (hd) crystal structures of
a two-component system of N = 1800 tetrahedral patchy particles at a
temperature of kBT/ε = 0.1 and pressures of P∗ = Pσ3/ε = 0.0, 0.1. The
error bars represent the SE in the values, as determined by block averaging.
(B) Relative fractions of particles in a local cubic diamond (fcd) and hexag-
onal diamond (fhd) environment following spontaneous crystal formation
in systems of N = 4000 two-component tetrahedral patchy particles with
varying θ, at a constant density of ρ∗ = Nσ3/V = 0.3 and ρ∗ = 0.5. Each
data point corresponds to the average over 25 independent simulations.
Note that spontaneous nucleation is observed at different temperatures for
different densities and patch half-angles.

system of tetrahedral patchy particles (9, 11, 14). As we have
established, the two-component system under consideration here
provides access to the diamond crystals, via self-assembly, for a
much wider range of patch half-angles. Fig. 5A shows the de-
pendence of the chemical potential difference between the cubic
and hexagonal diamond structures (Δμcd−hd = μcd − μhd) for the
two-component system as a function of the patch half-angle θ.
As expected, we find that the chemical potential difference is
relatively small, and is, in fact, of the same order as the free-
energy difference between the face-centered cubic and hexagonal
close-packed structures formed by hard spheres (37, 38). We find
hexagonal diamond to be marginally more stable for systems with
narrow patches (θ � 12◦), whereas cubic diamond is the more
stable polytype for larger θ values.

Given the small chemical potential difference, we would not
anticipate one polytype to be noticeably favored over the other in
self-assembled diamond crystals. To verify whether this is indeed
the case, we show, in Fig. 5B, the θ dependence of the relative
fraction of particles in cubic diamond (fcd) and hexagonal dia-
mond (fhd) environments following spontaneous crystallization in
two-component systems ofN = 4000 tetrahedral patchy particles
in Monte Carlo simulations. We investigated tetrahedral patchy
particles with θ = 10◦, 12◦, . . . , 26◦, where, for each of the nine
values of θ considered, we performed 25 independent simulations
at two different densities: ρ∗ = 0.3 and ρ∗ = 0.5. We find that
hexagonal diamond is more abundant than cubic diamond for
systems with narrow patches (θ � 14◦), while the opposite is
true for systems with wider patches. Additionally, the relative
proportion of cubic diamond, given by the cubicity, gradually
increases (and, hence, the relative proportion of hexagonal di-
amond gradually decreases) with increasing θ at both densities
considered. This trend generally agrees with our free-energy
calculations; however, we find that Δμcd−hd plateaus around
θ = 16◦. Therefore, it is likely that there is an additional kinetic
driving force whose effect is also dependent on the patch width.
This mirrors observations that have been reported regarding the
crystallization of ice, where it has been shown that kinetics play
a dominant role in determining the relative fraction of cubic and
hexagonal ice in large crystallites (39, 40).

In order to determine whether the cubicity in the self-
assembled crystalline structures depends on the size of the
system, we performed additional sets of 25 independent
simulations for two-component systems of N = 1000, 8000, and
16,000 designer tetrahedral patchy particles in a 1:1 mixture
with θ = 20◦ at a density of ρ∗ = 0.5. SI Appendix, Fig. S5 shows
the average cubicity as a function of the system size at T ∗ =
0.155. It appears that there are some small finite size effects
in systems with N < 4000 in our simulations, but the cubicity
does not noticeably change from a value around 54% when
N ≥ 4000. We therefore further compare the average cubicity
for two-component systems of N = 4000 and 8,000 particles
with θ = 25◦. We also find that the cubicity, on average, does
not practically change, with a value around 65%. These results
suggest that the trend in the cubicity (also in the relative fraction
of hexagonal diamond) presented in Fig. 5 is not an artifact of
finite size effects.

Conclusions
The self-assembly of the diamond lattice, either cubic, hexagonal,
or mixed, from a melt of identical tetrahedral patchy particles,
despite being thermodynamically favored, is hampered by the
propensity to form disordered arrested states for wide patches
(13), and to form five-member ring–rich structures (clathrates)
for narrower patches (14). We have established here the con-
ditions to overcome these two bottlenecks and demonstrated a
reliable bottom-up route to diamond, simply going from a one-
component to a two-component system of tetrahedral patchy
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particles, where interactions are only allowed between patches
on particles of different species.

Our two-component system of designer tetrahedral patchy par-
ticles crystallizes into diamond much more readily, as compared
to the one-component system, due to two factors: 1) there is no
driving force for the formation of odd-member rings, thereby
removing kinetic traps from the energy landscape; 2) there is an
enhanced thermodynamic driving force for crystallization from
the fluid phase due to a decrease in the concentration of potential
bonding partners (i.e., particles of another species) for each
particle. The removal of kinetic traps from the energy landscape
is “programmed” into the design of the two-component system,
while the enhanced thermodynamic driving force can be consid-
ered as an emergent feature of our design rules, also favoring
the formation of diamond. Understanding the mechanism for the
promotion of crystallization via the selection of correct ring sizes
in the context of colloidal diamond will have general implications
for programmed self-assembly of colloidal open crystals. Such
mechanistic understanding may also provide insight into the
crystallization process at the molecular level in related systems
(e.g., tetrahedral network-forming liquids, including water, silica,
and silicon).

The specificity in the interactions between patches on different
species of tetrahedral patchy particles in the two-component
system can be experimentally realized through the use of DNA-
mediated interactions (19, 21). The two-component system,
therefore, presents itself as a synthetically feasible approach for
the self-assembly of a diamond lattice of spheres, which remains
a major outstanding problem. Our simulations predict the self-
assembly of a mixture of cubic and hexagonal diamond in this
route. However, the width of the patches can be used as a handle
to control their relative proportions, with wider patches leading
to a greater proportion of the cubic polytype. This is likely
to be of particular importance in the context of the photonic
applications of the self-assembled structures. It was recently
shown that randomly stacked diamond structures can display
complete photonic band gaps, with those possessing more cubic
character generally having superior photonic properties (18).

Materials and Methods
Model. We employ the Kern–Frenkel pair potential (22), which has been
extensively used to study patchy particles in general and tetrahedral patchy
particles in particular (9, 14, 24, 35, 41). Each spherical particle is considered
to have a hard core, whose surface is decorated with four circular attractive
patches in a tetrahedral symmetry. The effective potential for a pair of
patchy particles vij is given by

vij(rij ,Ωi , Ωj) = vhs
ij (rij) + vsw

ij (rij)

4∑
α,β=1

f(rij , n̂α
i , n̂β

j ), [1]

Where rij = |rij| is the center-to-center distance between particles i and j,
and Ωi and Ωj describe the orientations of particles i and j, respectively; vhs

ij
is the hard-sphere pair potential,

vhs
ij (rij) =

{
∞ if rij < σ

0 otherwise
, [2]

with σ representing the hard-sphere diameter; vsw
ij is a square-well potential

given by

vsw
ij (rij) =

{
−ε if σ ≤ rij ≤ (1 + δ)σ

0 otherwise
, [3]

where ε is the well depth, and δ controls the range of the attraction. Finally,
the factor f(rij , n̂α

i , n̂β
j ) controls the angular dependence of the interaction

between two patches, and is given by

f(rij , n̂α
i , n̂β

j ) =

{
1 if n̂α

i · r̂ij > cos θ and n̂β
j · r̂ji > cos θ

0 otherwise
, [4]

where n̂α
i is a normalized vector from the center of particle i in the direction

of the center of patch α on its surface, and thus depends on Ωi . Similarly,

n̂β
j is a normalized vector from the center of particle j in the direction of

the center of patch β, and thus depends on Ωj . The width of the patches is
controlled by θ, which represents the half-opening angle of the patches. The
pairwise additive approximation is used to obtain the total potential energy
of the system, V .

For the one-component system, all particles are considered to be identical,
and are decorated with patches that are taken to be of equal size, range, and
strength. In the two-component system, the two types of particles, labeled A
and B, are distinct, despite having the same diameter and attractive patches
equal in size and range of interactions. The particles are distinguished as
εAA = εBB = 0 and εAB = ε. That is, there is thermodynamic driving force for
bonds only between the two distinct types of particles.

In the present study, we used reduced units: the length in units of σ,
the energy in units of ε, and the temperature in units of ε/kB, with the
Boltzmann constant kB taken to be equal to one.

Monte Carlo Simulations. All Monte Carlo simulations, unless otherwise
stated, were carried out with systems contained in a cubic box under
periodic boundary conditions, using the minimum image convention. Each
spherical particle with decorated patches is treated as a rigid body, whose
orientational degrees of freedom were represented by quaternions. The
potential energy was calculated using a spherical cutoff of 1.2σ, and a cell list
was used for efficiency (42). For NVT Monte Carlo simulations, each Monte
Carlo cycle consisted of N translational or rotational single-particle moves,
chosen at random with equal probabilities. Additionally, during each cycle
of an isothermal–isobaric (NPT) Monte Carlo simulation, a volume move was
attempted with a probability of 1/N (42).

Crystal Structure Characterization. In order to assign particles to local envi-
ronments of cubic diamond, hexagonal diamond, or clathrate structures, we
used the translational order correlation parameter dl(i, j), which is based on
the Steinhardt bond-orientational order parameters (43, 44),

qlm(i) =
1

NB(i)

NB(i)∑
j=1

Ylm(rij), [5]

where NB(i) is the number of first nearest neighbors (a particle shares a
patch–patch bond with its nearest neighbors) of particle i, rij is the vector
connecting the centers of particles i and j, and Ylm is the spherical harmonic
with total angular momentum l and projection−l ≤ m ≤ l. The translational
order correlation parameter can then be defined as (12, 26, 45–47)

dl(i, j) = Re

(
ql(i) · q∗

l (j)

|ql(i)||ql(j)|

)
, [6]

where ql(i) · q∗
l (j) =

∑l
m=−l qlm(i) · q∗

lm(j), and ∗ indicates the complex
conjugate.

In this analysis, dl(i, j) is used to determine whether the local envi-
ronments of particles i and j are sufficiently similar, and hence share a
crystalline bond. Those particles, which possess a certain threshold number
of crystalline bonds, are labeled as crystalline. Therefore, dl(i, j) can be used
to directly count the number of solid particles in a system (45). Here, we
followed a protocol similar to what was laid out in ref. 12: Particles in a
crystalline environment were identified using d3(i, j), where two particles
were considered to share a staggered bond if −1 ≤ d3(i, j) ≤ −0.85 and
an eclipsed bond if −0.3 ≤ d3(i, j) ≤ 0.1. Particles with exactly four bonds
were taken to be crystalline, and their local environments were further
characterized as cubic diamond (four staggered bonds), hexagonal diamond
(three staggered bonds plus one eclipsed bond), or clathrate (four eclipsed
bonds), depending upon the number of staggered and eclipsed bonds each
particle possessed.

Ring Statistics. We calculated the number of rings (NRl
) with sizes

l ∈ [4 − 8], in a system of N particles using a graph theoretical approach. In
this approach, a configuration is represented by a periodic undirected graph
G, where the vertices (VG ) of the graph denote the particle centers, and
the edges (EG ) denote the bonds between the particles. Two particles are
considered “bonded” if there is an attractive interaction between patches
on them, and we define a ring as a closed path in this graph (i.e., a path
whose first and final vertices are the same). For each vertex Vi

G in the graph,
we determine all distinct paths using a depth-first search (DFS) traversal, up
to the chosen maximum l, making sure to prune paths with edges between
nonadjacent vertices along the path to ensure any potential ring does not
contain any internal edges. Then, rings are identified as paths where the first
and last vertices are the same. In order to avoid overcounting the number
of rings in the system, following the extraction of all relevant paths starting
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from vertex Vi
G (and hence rings containing Vi

G ), all edges connected to that
vertex are removed from the graph prior to initiating the DFS traversal from
the next vertex. We also take into consideration the double counting of a
ring, which results from the undirected nature of the graph.

Free-Energy Calculations. We used thermodynamic integration to determine
the chemical potential of the different phases formed by the one- and two-
component patchy particle systems as a function of temperature along an
isobar. The working expression to perform these calculations is (42, 48)

β2μ(N, P, T2) = β1μref(N, P, T1) −
ˆ T2

T1

dT

〈
H(N, P, T)

NkBT2

〉
T

, [7]

where β = (kBT)−1, H = V + PV is the enthalpy, and μref is a reference
chemical potential. We performed a series of NPT simulations at the chosen
pressure to determine the enthalpy at discrete temperature intervals; the
integrand in Eq. 7 was then evaluated numerically using a cubic spline
interpolation. Reference chemical potentials were determined from refer-
ence free energies and the equation of state using the relation βμref =

β(fref + PV/N), where fref is a reference free energy per particle at the
chosen thermodynamic state (42, 48).

The reference free energies of the fluid phase were determined by
thermodynamic integration along an isochore, using the hard-sphere fluid
as the reference at β = 0 (42, 49),

βfref(N, V , T) = βfhs(N, V) +

ˆ β

0
dβ′

〈
V(N, V , β′)

N

〉
β′

, [8]

where fhs is the free energy per particle for the hard-sphere fluid, which
was evaluated using the Carnahan–Starling equation of state (50). For the
two-component fluid, it is necessary to also include the entropy of mixing in
this expression (27, 28). As before, we carried out a series of NVT simulations
to determine the potential energy at discrete temperature intervals, and the
integrand in Eq. 8 was evaluated numerically.

The reference free energies of the cubic and hexagonal diamond crystals
were calculated using the Einstein crystal method (24, 42, 48, 51). We note
that there is an extra configurational entropy contribution to the free
energy of the two-component crystalline phases that accounts for the fact
that two degenerate structures exist for each crystal, where the particle
identities are swapped: Sconf/(NkB) = ln(2)/N. When comparing the chemi-
cal potentials of the two diamond polytypes, Monte Carlo simulations were
performed in an orthorhombic cell commensurate with both structures.
The edge lengths of the orthorhombic cell, during NPT simulations, were
allowed to fluctuate independently.

Data Availability. Datasets and software have been deposited in the
University of Birmingham edata Repository and can be accessed from
https://edata.bham.ac.uk/711/.
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