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Abstract
Empty liquids represent a wide class of materials whose constituents arrange in a random
network through reversible bonds. Many key insights on the physical properties of empty
liquids have originated almost independently from the study of colloidal patchy particles on
one side, and a large body of theoretical and experimental research on water on the other side.
Patchy particles represent a family of coarse-grained potentials that allows for a precise
control of both the geometric and the energetic aspects of bonding, while water has arguably
the most complex phase diagram of any pure substance, and a puzzling amorphous phase
behavior. It was only recently that the exchange of ideas from both fields has made it possible
to solve long-standing problems and shed new light on the behavior of empty liquids. Here we
highlight the connections between patchy particles and water, focusing on the modelling
principles that make an empty liquid behave like water, including the factors that control the
appearance of thermodynamic and dynamic anomalies, the possibility of liquid–liquid phase
transitions, and the crystallization of open crystalline structures.
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In contrast to simple liquids, whose properties are determined
by hard-core repulsive interactions (and which find in the hard-
sphere model [1] or the power-law repulsive pair-potential [2]
accurate reference systems), empty liquids represent a class
of systems whose properties are based on the formation of a
random network through directional bonds. The definition of
empty liquids first appeared in the context of the phase behav-
ior of patchy particle models [3, 4]. Patchy particles represent
a family of coarse-grained potentials that, while simplifying
the atomistic details of the interactions, allow for a precise
control of both the geometric and the energetic aspects of
bonding. Patchy particle models, introduced in the mid-80’s as
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models for associating liquids [5–9], have received a consid-
erable interest in the last decade once it has been realized that
they can be quite accurate in modelling the interaction between
colloidal particles of new generation with strong directional
interactions [3, 10–12]. They have thus found successful appli-
cations in the field of soft matter systems, especially in the
colloidal realm [13–15]. The interest in patchy models has
further increased when it has been realized that these mod-
els can provide an intermediate coarse-grained representation
of protein-protein interactions [16–19], nucleic acid base pair-
ing [20], not to mention smart applications in material design
[21–23] and self-assembling into complex target structures
[24]. From a physics point of view, the renewed interest in
patchy colloids has brought to the attention of the scientific
community several unexpected phenomena. Without trying to
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be exhaustive we mention: (i) the effect of tuning the valence
(the number of possible patch–patch bonds) on the gas–liquid
(colloidal poor—colloidal rich) phase separation [3], with the
remarkable effect that the density of the coexisting liquid
approaches zero when the valence approaches two, a con-
cept which is nowadays encoded in the empty-liquid wording.
(ii) The related opening of an intermediate region of densi-
ties between the coexisting liquid and the dense-glass states
and the associated equilibrium gel concept [25], e.g. the for-
mation of a highly bonded network forming system without
resorting to the mechanism of arrested phase separation [26].
(iii) The possibility to generate equilibrium gel states which
have a free energy lower than all possible crystalline struc-
tures even at very low temperatures [27, 28]. (iv) The interplay
between phase separation, percolation, Fisher lines in the limit
of valence approaching two [29, 30]. (v) The possibility to dis-
entangle aggregation and phase separation to clarify their rela-
tive role in the thermodynamic description of the system [31].
(vi) The possibility to design quasicrystal and open ordered
structures through a proper selection of the number of patches
and their angular position [22, 32, 33]. In order to guide exper-
iments towards the realization of colloidal diamond, a tetra-
hedral crystalline structure with photonic properties [24, 34],
tetrahedral patchy particles models have been extensively stud-
ied to uncover the basic assembly principles of these coveted
crystals [21, 23, 35].

Many of the new ideas developed in the study of patchy
particle models have then found their way back to the study
of water [36], which shares a lot of structural similarities
with tetrahedral patchy particles, albeit at very different length
and energy scales. Here we would like to build on the orig-
inal application of patchy colloids as coarse-grained models
for associating liquids to focus on water. Water is a simple
molecule, but it is not a simple liquid. It has arguably the
most complex phase diagram of any pure substance [37], and
a puzzling amorphous phase behaviour [38–41], whose con-
nections with the equilibrium phase diagram is a very active
research topic [37, 42–50]. Molecules in an almost ideal tetra-
hedral coordination coexist with molecules exploring denser
and more disordered geometries. As a result of the strong
directional hydrogen-bond interactions and the limited num-
ber of bond that a molecule can form, fluctuations in den-
sity, energy, and entropy assume a temperature dependence
that is quite different from the one of simple (packing con-
trolled) liquids. In particular, on supercooling water, response
functions increase significantly, a phenomenon which has been
connected to the presence of a metastable liquid–liquid critical
point [51].

Accurate descriptions of these properties can only be
obtained by resorting to computationally expensive models of
water [52–57], but their complexity often precludes a sim-
ple understanding of what makes a liquid behave like water.
Luckily, many of the questions that motivate the water com-
munity are aimed at understanding water-like behaviour, that
is universal to a large family of potentials [58]. Since the
first spectroscopic evidence for the V-shaped geometry of the
water molecule was obtained [59], water-like behaviour has
increasingly been associated with that of a random tetrahedral

network, held together by strong directional bonds [60] (the
hydrogen bonds in the case of water). The tetrahedral hydrogen
bond network of water is prone to a particle description based
on a limited number (four) of strong directional interactions.
The primitive models of water [7], one of the first example
of what we call today a patchy model, represented water as
a hard-sphere decorated by four interaction sites located on a
tetrahedral geometry, where the site-site interactions replace
the electrostatic charges [5, 6, 61, 62]. Despite the short-range
nature of the attractive interaction, the molecularly enforced
tetrahedral geometry suffices in creating a network that can
compare with the geometries revealed by neutron experiments,
offering the possibility to shed light on the intimate nature of
the anomalous behavior. The Mercedes-Benz models [63, 64]
and the mW model [65, 66] also belong to the class of coarse
grained potentials. The appeal of coarse grained potentials is
motivated by their high computational efficiency compared to
atomistic models, allowing to considerably extend length and
time-scales of simulations making it possible, for example, to
study rare events like homogeneous nucleation in direct sim-
ulations [67–69]. Recently coarse grained models have also
been used to interpolate between water-like and simple-liquid
behaviours, studying how these properties change with varying
one of the potential parameters. For example, one of the most
famous coarse-grained model of water, the mW model, is a
parametrization of the Stillinger–Weber [70] potential with an
appropriate strength of its three-body interaction, establishing
a direct connection between the anomalous behaviour of other
tetrahedral materials [71–75] and water [65, 66]. The ability
to control local tetrahedrality by tuning a single parameter (the
tetrahedrality parameter) has opened the door to the study of
how water-like behaviour emerges in a continuous way from
simple liquid behaviour [72, 76, 77].

Here we will review some of the key design principles of
patchy particles models that have successfully been applied to
understand the strange behaviour of water. We first introduce
some general properties of patchy particles, highlighting what
are the minimal ingredients that are needed to make a fluid
behaving like water. In particular we will characterize water
as an empty liquid, and study the conditions that give rise to a
liquid–liquid transition, a transition between two liquid forms
differing in their density. We will then study the connection
with water’s thermodynamic anomalies, and see how they also
emerge naturally from the properties of the underlying tetrahe-
dral network. We will then focus on the crystal phase, and see
how the solid–liquid phase transition is affected by the param-
eters of patchy particles potentials. We will also highlight the
conditions that disfavor the crystalline state, and illustrate two
important properties that emerge from this suppression, i.e.
ultra-stable liquids [27] and crystal-clear liquid–liquid phase
transitions [78]. We then conclude with an overview on the
dynamical properties of patchy particles models, and what
they teach us about water’s glassy states. Our methodology
will make use of simple mean-field methods to describe the
general behaviour of these systems, and we will review both
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numerical and experimental results that first supported these
conclusions.

1. Prologue

The property that first comes to mind when thinking about
the uncommon behaviour of water is the density maximum
at 4◦C at ambient pressure. The maximum density is around
ρm = 1 g cm−3, and it is not as high as the name would suggest.
To compare this density with that of other liquids it is conve-
nient to express the number densityρ in non-dimensionalunits,
selecting as unit of length the nearest neighbour distanceσ (the
position of the first peak in the radial distribution function).
The choice σ = 0.28 nm, gives for water ρσ3 � 0.73. Typical
values for simple liquids are about or larger than ρσ3 ∼ 1. For
example,ρσ3 � 1.05 for liquid argon at T = 87 K, ρσ3 � 1.37
for benzene, ρσ3 � 0.95 for methanol at ambient conditions.
Unless otherwise stated, in the following we will express tem-
peratures in units of ε/kB, where ε is the typical interaction
energy, volume in units of σ3 and number densities in units of
1/σ3, where σ is a typical microscopic length scale.

How hard it is to have liquids with low densities? For parti-
cles interacting with spherically symmetric attractive interac-
tions (in addition to the hard core repulsion), the width of the
liquid–gas phase separation at sufficiently low temperatures is
quite wide in the T–ρ plane, precluding the possibility of hav-
ing a low-density stable liquid phase. To illustrate this point,
in figure 1 we plot the liquid–gas coexistence lines for com-
mon spherically symmetric potentials: the Lennard Jones (LJ)
potential (continuous line), and the square well (SW) potential
for different values of the width λ of the attractive well (sym-
bols). The figure shows that for all potentials, and irrespective
of the range of the attraction, the liquid branch of the coexis-
tence curve extends to arbitrary high densities, being limited
only by the domain of stability of the crystalline state (not
shown). The SW model allows us to understand the effect of
the range of the attraction, and shows that reducing the range
has the effect of drastically suppressing the critical tempera-
ture, but with a relatively small effects on the critical density.
The fact that the liquid branch extends to arbitrary high densi-
ties, eventually intersecting the glass transition line [82], is the
thermodynamic mechanism for the formation of colloidal gels
[26, 83, 84].

Thus figure 1 shows that most isotropic liquids always lose
their stability against phase separation at sufficiently low tem-
peratures. It is clear that to stabilize liquids at low densities
(and low temperatures) a different mechanism is needed. This
mechanism was first highlighted in the context of patchy par-
ticles, where the term empty liquid was first introduced [3].
In the following we will present some basic considerations on
the physics of bonding, and then introduce patchy particles and
their connection to empty liquids.

2. Physics of bonding

2.1. The golden rule

The structure of liquid water is that of a tetrahedral net-
work held together by short-range directional interactions, i.e.

Figure 1. Liquid–gas coexistence lines for the LJ model (line) and
the SW model with different values of the well width λ (symbols).
LJ data is taken from [79], SW data from [80, 81], while data close
to the critical point is obtained from a cubic fit of the coexistence
curve. Temperature is in units of ε/kB, where ε is the well depth for
the SW model and the potential minimum for the LJ model. Density
ρ is in units of 1/σ3, where σ is the particle diameter in the SW
model, and the distance at which the pair potential is null in the LJ
model.

hydrogen bonds. From a statistical mechanics point of view,
the bonding between two particles can be viewed as a competi-
tion between the energy gained from the formation of the bond
and the entropy loss due to the reduction in configurational vol-
ume that occurs when the two particles are constrained to stay
close relative to each other. With ε we will denote the typical
bonding energy between two objects. We also define the bond-
ing volume Vb as the volume available for bonding between
two particles. For example, in the case of spherical particles
of diameter σ interacting with a SW potential of width δ, the
bonding volume is Vb = 4π

[
(σ + δ)3 − σ3

]
/3, and ε is the

depth of the potential well.
The bonding energy in unit of kBT controls the lifetime

of bonds (τ ) with an Arrhenius law τ ∼ exp(ε/kBT). The
bonding volume instead controls the entropy loss per parti-
cle after bonding Δs ∼ kB ln Vb/(V/N) = kB ln ρVb, where
V/N = ρ−1 is the volume per-particle. The establishment of
an extended network occurs when the competition between
energy and entropy is balanced

ρVb exp

(
ε

kBT

)
∼ 1. (1)

For short range attractions, the bonding volume Vb is much
smaller than the total volume per particle, which means that an
extended network will only form at low values of kBT/ε.

2.2. Patchy particles

The original definition of patchy particles is that of a colloidal
particle with attractive spots decorating its surface. Over the
years patchy particles models have extended beyond the col-
loidal realm, and have encompassed physical systems where
short-range directional interactions play a major role. Patchy
particles models are now being used to offer a coarse-grained
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Figure 2. Schematic representation of two patchy particles
decorated each with four patches of two different colors. When
water is represented as a patchy particle, patches of complementary
colors (red and green) bind with a strength ε, while same-color
patches do not interact. In the Kern–Frenkel model patches interact
if the center-to-center distance (dashed line) intersects the area of a
patch on each particle. The patch angular width is controlled by the
parameter θmax, while the range of the attractive interaction is
controlled by δ.

description of systems as different as proteins [16, 17], viral
capsids [85], hard faceted bodies [10, 86, 87], double-stranded
DNA [88], in addition to the early applications in the field of
associated liquids, for molecules like water where directional
interactions (usually hydrogen bonds) are particularly relevant
[5].

In figure 2 we plot a schematic representation of two patchy
particles interacting through a bond. Each particle is obtained
by decorating the surface of a sphere with attractive regions.
Different functional forms of the excluded volume interaction
and of the directional attraction have been used. For a review
on the different models and computational methods to effec-
tively simulate patchy particles see [89]. A popular choice is
the Kern–Frenkel potential [5, 90], where the repulsive inter-
action is modelled as a hard-sphere of diameter σ, while the
attractive interaction is described by

Vpp(ri j, r̂α,i, r̂β, j) = VSW(ri j) f (ri j, r̂α,i, r̂β, j), (2)

where ri j is the vector between particle i and j, r̂α,i is the unit
vector which points from the center of particle i to the center
of patch α, and VSW(ri j) is a SW interaction of range σ + δ
and depth ε. The orientation-dependent modulation term is
described by

f (ri j, r̂α,i, r̂β, j) =

⎧⎨
⎩

1 if
r̂i j · r̂α,i > cos θmax

r̂ ji · r̂β, j > cos θmax

0 otherwise.
(3)

Thus, this modulation term is different from zero only when
the center-to-center vector between two patchy particles inter-
sects the volume of a patch on both particles, as schematically
shown in figure 2.

We already introduced the concept of bonding volumeVb as
one of the key parameters that controls the aggregation of par-
ticles. In the one-patch Kern–Frenkel model the patch bonding

volume has a simple expression

Vb =
4π
3

((σ + δ)3 − σ3)

(
1 − cos θmax

2

)2

(4)

with parameters describing the width of the angular interac-
tion (cos θmax) and the range of the attraction (δ). In addition to
the translational contribution of the SW potential, equation (4)
includes the rotational contribution of each particle as the ratio
between the orientations compatible with bonding, 2π(1 −
cos θ), and the entire solid angle, 4π. We will show that (in
the single bond per patch condition) Vb is the only parameter
controlling the thermodynamics of amorphous phases at the
mean-field level. This means that two patchy particles having
different geometries of the patch interactions but the same Vb

will have the same free energy.

2.3. Mean-field theory of association

Associating fluids are those whose molecules can aggregate to
form long-lived structures thanks to intramolecular forces that
are stronger than typical dispersion interactions but weaker
than covalent bonds. We review here the basic steps to derive
a mean-field theory of associating fluids [91–93], for identi-
cal particles with M functional sites, putting emphasis on the
approximations that are involved in its derivation.

The first assumption is that the aggregating units associate
into clusters that do not interact with each other and are in
thermodynamic equilibrium. This approximation is called the
ideal gas of cluster approximation and allows us to write the
pressure of the system as that of an ideal gas in which the
number of atoms is substituted by the number of clusters

βPV = Nc, (5)

where Nc is the total number of clusters. Since clusters of
any size are in thermodynamic equilibrium with each other,
they can be thought of different species whose composing
monomers have the same chemical potential. The chemical
potential of a cluster of size n is thus nμ, where μ is the chem-
ical potential of the isolated (not-bonded) monomer, whose
value is (assuming for simplicity that the de Broglie thermal
wavelength is one)

βμ = log ρ1 (6)

with ρ1 being the number density of isolated monomers.
The second approximation is that every bond in the system

reduces the number of clusters by one. In other words a new
bond cannot form inside a cluster, but only between two dif-
ferent clusters. This condition is met with the following two
requirements: (i) two particles cannot be doubly bonded (the
one-bond-per-patch condition); (ii) bonds within a cluster do
not form loops. This is equivalent to an aggregation process on
the Bethe lattice [94], which is a loop-less infinite-dimensional
lattice.

Both the number of clusters Nc and the density of
monomers can be expressed in terms of the probability that
a bond is formed pb. Let us consider a system of N particles
all having the same number of patches M (valence). The maxi-
mum number of possible bonds is given by Nmax = MN/2, and
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thus pb = Nb/Nmax where Nb is the total number of bonds in
the system. Within the mean-field approximation, the number
of clusters is the total number of particles minus the number
of bonds

Nc = N − Nb = N
(

1 − M
pb

2

)
. (7)

The number density of monomers (clusters of size one) is
proportional to the probability that all M sites of the particle
are unbonded

ρ1 = ρ(1 − pb)M. (8)

Putting together the equations above we arrive at an expres-
sion for the free energy per particle f = F/N in terms of the
bonding probability pb

β f = βμ− βP
ρ

= βμ− Nc

N

= log ρ(1 − pb)M −
(

1 − M pb

2

)
. (9)

This free energy can be divided in ideal and bonding con-
tributions

β f id = log ρ− 1 (10)

β f bond = log (1 − pb)M +
M pb

2
. (11)

The bonding probability is obtained through a mass-balance
equation, i.e. the ratio between the probability of a formed
bond, pb, and an open bond, (1 − pb)2, is expressed as an
activation function

pb

(1 − pb)2
= exp (−β(ΔUb − TΔSb)) . (12)

Identifying [95] ΔUb = −ε and ΔSb = kB log (ρVbM)) we
arrive thus at the following equation for the bonding probabil-
ity

pb

(1 − pb)2
= MVbρ exp (βε) , (13)

where Vb is the expression in equation (4), and MVb is the
bonding volume corresponding to M patches.

Equations (10), (11) and (13) are the basic equations for a
mean-field theory of bonding. While this treatment is of lim-
ited accuracy due to the assumptions involved, it provides the
correct low-density limit to the free energy.

We now briefly describe some improvements that, while
retaining the same conditions we introduced for the mean-field
model, considerably improve on the accuracy of the results.

2.4. Wertheim perturbation theory

Wertheim [96] introduced a thermodynamic theory in terms of
a cluster expansion of monomers and bonded species, which
are related to each other by a mass-balance equation. The the-
ory, originally developed to describe the thermodynamics of
classical fluids composed of molecules that associate into clus-
ter in the presence of highly directional attractions (namely

hydrogen bonded associated liquids), in the last 10 years has
been often used to predict the thermodynamic behavior of
patchy colloidal particles [13]. The Wertheim perturbation
theory is also at the core of the so-called statistical associ-
ating fluid theory (SAFT) [97, 98] a mean-field free-energy
expression which has been shown to accurately reproduce
experimental phase equilibrium data for several molecular and
polymeric compounds.

Being a perturbation theory it requires the structure of the
reference fluid to be known. Here we present the equations for
the case of patchy particles where the repulsive interaction is
represented by a hard-core interaction, and each particle has
M patches. In this case the reference fluid is the hard-sphere
model, whose configurational free energy is accurately rep-
resented, in the stable fluid region, by the Carnahan–Starling
formula

β f HS =
4φ− 3φ2

(1 − φ)2
, (14)

where φ = ρσ3π/6 is the packing fraction. The bonding
free energy is the same as in the mean-field treatment
(equation (11)), but the bonding probability in equation (13)
is replaced by

pb

(1 − pb)2
= Mρ4π

∫
gref(r) 〈exp(−βV) − 1〉 r2 dr, (15)

where gref(r) is the radial distribution function of the refer-
ence fluid (in this case hard spheres), V is the patch–patch
interaction potential, and the integration domain is the bonding
volume and 〈.....〉 indicates a spherical average.

It is easily shown that Wertheim’s expression
(equation (15)) in the limits of low density (gref (r) � 1)
and low temperature (exp(βε) � 1) reduces to the previously
discussed mean-field expression of equation (13).

Wertheim’s perturbation theory was originally developed
to model hydrogen bonded liquids. Several modelling choices
are possible for water. The simplest one is to have particles
with four identical patches so that each particle can have up
to four bonds: this choice corresponds to putting M = 4 in
equations (11) and (15). Another possibility is to model the
water molecule as a particle having four bonds of two differ-
ent colors (see figure 2) that represent the hydrogens (accep-
tors) and oxygen’s lonely pairs (donors) [5, 7]. Only patches
of complementary color can interact, while same-color inter-
actions are forbidden. Due to the symmetry of the bond, the
bonding probability of the donor and the acceptor are the same
pdonor

b = pacceptor
b and the two color model has the same free

energy expression as a function of pb as the one color model
with four patches, equation (11) with M = 4. The difference
between the two models is in the mass-balance equation (15),
where the two color model uses M = 2. The one color model
has had a wider adoption and so it will be our model of
choice.

We note for completeness that recently there have been
attempt to extend the Wertheim theory to relax the assumption
of single bond per patch conditions and multiple inter-particle
bondings [99–103].
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Figure 3. Phase diagram from Wertheim theory for different values
of the number of patches M. The continuous lines are for
Vb = 0.005 σ3. The dashed and dot-dashed lines show the
liquid–gas binodal lines for M = 4 and Vb = 0.002 5σ3 and
Vb = 0.007 5σ3 respectively. σ is the particle diameter, T is
measured in units of ε/kB, and ρ in units of 1/σ3.

2.5. Empty liquids

Figure 3 shows the liquid–gas binodal lines predicted from
Wertheim theory (equations (11), (14) and (15)) for different
values of the number of patches M and for the bonding vol-
umes (continuous lines). Critical points are depicted as points.
To ease calculations, we have approximated the integral in
equation (15) by the value of the pair correlation at contact
(that for hard spheres is proportional to the pressure of the
reference system)

∫
gref(r) 〈exp(−βV) − 1〉 r2 dr ≈

Vb

(
1 − 0.5φ
(1 − φ)3

)(
e−βε − 1

)
. (16)

The first noticeable effect of reducing the valence is to
shift the coexistence curve to lower temperatures and to lower
densities. Moreover, differently from the isotropic potentials
shown in figure 1, the liquid branch falls steeply with density,
opening up a region in the phase diagram where liquids are
free from phase separation to arbitrary low temperatures. The
case M = 4 shows that tetrahedrally coordinated liquids like
water do not suffer from phase separation for densities larger
than approximately ρ∗ ∼ 0.6.

In figure 3 we also plot coexistence curves for M = 4 and
for 50% lower and higher bonding volumes (dash and dash-dot
line respectively). We see that the bonding volume has an effect
on the critical temperature, but it does not change significantly
the critical density.

The possibility of reaching liquids with vanishingly small
densities by decreasing the average valence of the system has
spurred a lot of research on so-called empty liquids [3, 104].
By mixing particles with different valence one can continu-
ously change the valence also to non-integer numbers. For
liquid–gas phase coexistence the limiting case is for M = 2
[3, 105, 106]. When the valence is two, particles can only
aggregate into chains, for which no phase transition to a

Figure 4. Schematic phase diagram of water in the liquid–liquid
critical point scenario. In black and red we draw the ordinary
gas–liquid and the liquid–liquid phase separations respectively:
critical point (full symbol), bimodals (full lines), spinodals (dotted
lines). ρ̃, β̃T , c̃P are liquid anomaly lines, where the density ρ,
isothermal compressibility βT and specific heat cP are extrema.
Liquid anomalies are depicted as full lines for maxima of the
corresponding response functions and dashed lines when they
represent minima.

spanning network exists. The critical density and temperature
go continuously to zero as M → 2, but surprisingly some ther-
modynamic loci usually associated with criticality, like the
compressibility maxima line, persist in that limit [29, 30].

3. Liquid–liquid phase transitions

In the previous section we have seen that bonding can give
rise to a gas–liquid phase transition [107]. Some of the first
successful applications of Wertheim theory were indeed in the
modelling of the liquid–gas coexistence curve of water. For a
comprehensive review of these efforts see for example [108].

In the following we will focus on the supercooled behaviour
of water, for which several possible scenarios have been pro-
posed [51, 109–111]. These scenarios all revolve around the
possible existence of a liquid–liquid critical point, below
which the liquid phase separates in two liquids, LDL and
HDL, the low and high density liquids respectively. We offer
a schematic representation of the proposed phase diagram of
water, consistent with recent numerical studies [51, 112–114],
in figure 4. The ordinary gas–liquid phase separation is pre-
sented in black, and we also plot the critical point (full point),
binodals (full lines) and spinodals (dotted lines). At low tem-
peratures, we see the appearance of a second transition (in red),
with a liquid–liquid critical point (LLCP, full point) that con-
nects the LDL and HDL binodals (full lines) and spinodals
(dashed lines).

The location of the LLCP depends sensibly on the parame-
ters of the model, and can be moved quite arbitrarily by tuning
these parameters. What distinguishes the different scenarios
for the supercooled water behaviour is the relative location
of the LLCP with respect to the liquid–gas phase transition
lines. For example, moving the LLCP inside the gas–liquid
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spinodal region (black shaded region) gives origin to the crit-
ical point free scenario [115, 116]. Moving the critical tem-
perature of the LLCP to zero instead gives the singularity
free scenario [117]. All these scenarios are thus part of the
same thermodynamic landscape, and several models that can
interpolate continuously between them have been proposed
[76, 118–120].

In the following we will look for conditions that promote
liquid–liquid phase separation. Due to their equivalence, we
will not focus on the different scenarios, and instead look for
models that in an appropriate range of temperatures give rise
to two separate regions of instability (grey and pink shaded
regions in figure 4).

3.1. Phase separation in the Van der Waals fluid

We briefly review here some basic thermodynamic ideas in
the context of the Van der Waals fluid, and later see how to
extend them to fluids with bonding. The Van der Waals fluid is
a mean-field model for the liquid–gas phase separation in sim-
ple fluids. The Helmholtz free energy per particle f = F/N is

β f VdW = log(ρ) − 1 − log(1 − bρ) − aρ
kBT

, (17)

where the first two terms on the right side are the ideal
contribution, and the last two are the repulsive and attrac-
tive contributions respectively. As done previously, here and
in the following we assume the thermal length to be unity. The
repulsive contribution is the same (up to the second virial
coefficient) as that of hard spheres of volume b, and the attrac-
tive contribution is a perturbative correction whose intensity
is controlled by a > 0. The Van der Waals model has a crit-
ical temperature of Tc =

8a
27b and a critical volume vc = 3b.

The emergence of liquid–gas phase separation at any T < Tc

is apparent when plotting the density dependence of the
isothermal compressibility βT = − 1

V
∂V
∂P |T , or of its inverse, the

isothermal bulk modulus κT = 1/βT

βκT/ρ
2 =

∂2ρβ f
∂ρ2

. (18)

Thermodynamic stability requires the Helmholtz free energy
to be a convex function of the volume, and thus κT > 0.

In figure 5 we plot the different contributions to the
(normalized) bulk modulus for a Van der Waals fluid with
a = 0.5εσ3 and b = 0.8σ3 and for a subcritical temperature of
T = 0.15ε/kB (continuous lines). The ideal gas compressibil-
ity diverges at low pressures as βT ∼ 1/P, such that βκT/ρ

2 ∼
1/ρ, while the excluded volume contribution to the bulk mod-
ulus diverges at the density of close packing ρc.p. = 1/b. Both
terms are purely entropic, and thus their βκT/ρ

2 contribution
is always positive and does not change with temperature. The
attractive term, on the other hand, is of purely energetic origin
and negative, and due to this contribution the overall bulk mod-
ulus curve (continuous black line) becomes negative in a den-
sity interval delimited by the spinodal points (black circles).
We notice that the strength of the attractive term becomes more
and more negative as temperature is decreased βκattr

T /ρ2 =

Figure 5. Isothermal bulk modulus, βκT/ρ
2, for the Van der Waals

fluid with a = 0.5εσ3 and b = 0.8σ3 for which kBTc/ε = 0.185.
Continuous lines represent the different contributions to the bulk
modulus at T/Tc = 0.81. Full points mark the location of the
spinodal points. Dotted and dashed lines present the attractive and
total contributions for T/Tc = 0.70 and T/Tc = 0.59 respectively.

Figure 6. Isothermal bulk modulus, βκT/ρ
2, for the Wertheim

model with M = 4 patches, bonding volume Vb = 0.005σ3 and
kBTc/ε = 0.164. Continuous lines represent the different
contributions to the bulk modulus at T/Tc = 0.91. Full points mark
the location of the spinodal points. Dotted, dashed, and dot-dashed
lines present the bonding contributions for T/Tc = 0.30,
T/Tc = 0.61, and T/Tc = 1.22 respectively.

−2a/T. This causes the instability region to grow more and
more with decreasing temperature, with the behaviour we
noted for isotropic potentials in figure 1.

3.2. Wertheim fluid

The free energy of the Wertheim fluid is also divided into
ideal (equation (10)) and hard-sphere (equation (14)) terms
that are purely entropic, and a bonding term which has mixed
character and is given by equation (11). The contributions
of these terms to the isothermal bulk modulus are plotted in
figure 6 for a model with M = 4 patches and bonding volume
Vb = 0.005σ3.
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What differentiates the Wertheim fluid from the isotropic
potentials like the Van der Waals fluid is the property of the
bonding term. Instead of being constant with density, the bond-
ing term has a maximum towards low values of ρ. This causes
the bulk modulus to become negative first in this low density
region, and it is the reason why phase separation occurs at
lower density in patchy models compared to isotropic models.
The second important property of Wertheim’s bonding term is
its low-temperature dependence. Instead of becoming increas-
ingly negative with decreasing temperature, the bonding term
converges to a constant profile. This is shown in the blue lines
in figure 6 which presents the bulk modulus for T/Tc = 1.22
(dot-dashed), 0.91 (continuous), 0.61 (dashed), and 0.3 (dot-
ted). The saturation is a consequence of the fact that at low
temperatures most bonds are fully formed, and the total energy
does not further change.

These two properties, i.e. the shift to small ρ of the spinodal
points and their temperature-independence at low T , explain
the empty liquid behaviour of bonded liquids described before.

Since both isotropic attractive terms and bonding terms give
rise to a liquid–gas phase separation, the former at higher den-
sities than the latter, it would be tempting to describe the sec-
ond liquid–liquid critical point scenario by combining both
terms, i.e. by looking at the phase behaviour of patchy parti-
cles that also have an isotropic attraction in addition to a patchy
contribution, a modification often employed to describe pro-
teins via coarse-grained approaches [16, 121, 122]. But it is
clear from the discussion above that this is not generally pos-
sible: the effect of the isotropic term would be to add a constant
negative term to the bulk modulus in figure 6, making the coex-
istence window larger but it would be unable to split the density
range into two disconnected regions.

In the following we will introduce a mechanism that quite
generally allows for the formation of a second region of insta-
bility (i.e. a liquid–liquid transition) in bonded liquids that is
not encompassed by the previously discussed mean-field or
Wertheim approaches.

3.3. Optimal network forming density

The mean-field theory of bonding and the Wertheim’s pertur-
bation approach do not contain information on the geometrical
arrangement of patches on the surface of the particle. These
approaches give reasonable results when the density is low and
the fraction of possible bonds is far from one. But the forma-
tion of a tetrahedral network is severely hindered at high densi-
ties by geometrical constraints, where packing is not compati-
ble with the tetrahedral bonding geometry. Indeed, increasing
the density beyond an optimal value can be achieved only at
the expense of breaking some of the bonds. We thus expect
the bonding energy to be a non-monotonous function of den-
sity. We call the density where, at any given temperature, the
bonding energy has a minimum the optimal network forming
density [123]. At sufficiently low temperatures, the existence
of an optimal density promotes phase separation.

We now show that if the optimal density is beyond the
liquid–gas coexistence region (which in empty liquids does
not extend to high densities) it can give rise to a separate

instability region (a liquid–liquid phase separation). We start
by taking the expression for the isothermal bulk modulus,
equation (18), and split the free energy in its energy and
entropy contributions.

βκT/ρ
2 =

∂2ρβ f
∂ρ2

= β
∂2ρu
∂ρ2

− ∂2ρs
∂ρ2

, (19)

where u = U/N and s = S/N are the internal energy and
entropy per particle. At low temperatures the contribution of
the entropic term becomes negligible, and the behaviour of
the bulk modulus is dominated by the shape of the energy
function [124]. A localized minimum in the energy function
u = u(ρ), such as the one at the optimal network density, can
cause system instability (κT < 0) at some density ρ0 if

∂2ρu
∂ρ2

∣∣∣∣
ρ=ρ0

= 2
∂u
∂ρ

∣∣∣∣
ρ0

+ ρ0
∂2u
∂ρ2

∣∣∣∣
ρ0

< 0. (20)

For example, the steep decrease in energy near the mini-
mum u′(ρ0) < 0 or the change of curvature after the minimum
u′′(ρ0) < 0 can destabilize the liquid and promote a second
phase separation at sufficiently low temperatures.

Energy minima have been found in a variety of tetrahedral
patchy models, including the primitive model for water [123],
the Kern–Frenkel potential [125], and the tetrahedron origami
model [126]. The energy minima originates from geometric
constraints to bonding, and in most models it is indeed found
to be temperature independent [123, 125–127]. The same tem-
perature independence of the minimum is found in molecular
models of water [128, 129].

Patchy models allow us also to study the dependence of
the energy minimum on the width of the angular interaction.
In particular, in the Kern–Frenkel model of equations (2) and
(3) it is observed that the minimum becomes more and more
pronounced as the width of the angular interaction (θmax) is
reduced [125], while also shifting to lower densities.

It was shown [125, 130] that in a variety of tetrahedral mod-
els (patchy particles, BKS silica, ST2 and TIP4P/2005 water)
the appearance of the minimum in U(ρ) is concurrent with the
appearance of a pre-peak in the structure factor S(q). The pre-
peak, also called the first diffraction peak (FSDP), appears at
wavenumbers kd/2π < 1, i.e. at distances longer than the aver-
age nearest-neighbour distance d, and is widely-observed in
tetrahedral liquids such as Si, Ge, SiO2, GeO2, BeF2, etc. It
was recently suggested that the peak originates from the scat-
tering of tetrahedral units [131], and can be decomposed in two
populations providing direct evidence for the two-state inter-
pretation of water’s anomalies [132] which we will discuss
briefly later.

3.4. Optimal network model

To give a concrete example of the previous discussion, we
build here a zeroth-order optimal network model by modu-
lating the bonding volume of equation (16) with a rapidly
decaying function of density

Vb →Vb

(
1 − 1

1 + e−
ρ−ρon
σon

)
, (21)
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Figure 7. (Top panel) Profile of ρu as a function of ρ, displaying the
minimum at the optimal density for the optimal network model with
M = 4 patches, bonding volume Vb = 0.005σ3, ρon = 0.7σ−3,
σon = (1/30)σ−3. (Bottom panel) Isothermal bulk modulus,
βκT/ρ

2. The blue line represents the bonding contribution to the
bulk modulus at kBT/ε = 0.1, while the black line is the modulus of
the full model, including the ideal and hard sphere contributions.
Full points mark the location of the spinodal points.

where ρon is the optimal network density and σon expresses
how steep the bonding is suppressed with increasing ρ. The
choice of the logistic function in equation (21) is in itself
arbitrary, and chosen to qualitatively represent the effects of
the progressive bond disruption induced by an increase in the
packing fraction beyond the optimal packing.

In figure 7 we plot results from this model with the follow-
ing choices: Vb = 0.005σ3, ρon = 0.7σ−3, σon = (1/30)σ−3.
The top panel shows the non-monotonous dependence of
ρu(ρ). The bottom panel plots the isothermal bulk modulus
βκT/ρ

2 as a function of ρ (black line). The bonding term (blue
line) is responsible for the loss of stability of the fluid (κT < 0)
in two distinct regions of density, delimited by spinodal points
(full points in the figure). The (empty-)liquid–gas phase sep-
aration occurs at low values of ρ, while a second transition
(the liquid–liquid transition) appears at larger values of ρ in
the same region where the function ρu(ρ) (top panel) becomes
a concave function. The ρu(ρ) function displays a minimum
near the optimal network forming density ρon. The optimal
network model connects the presence of a liquid–liquid tran-
sition in network models with the presence of an optimal den-
sity of assembly, which is itself reflected in a minimum of the
energetic bonding terms that contribute to u(ρ).

In order of increasing density, the gas, the low-density liq-
uid, and the high-density liquid are all delimited by spinodal
points. The low-density liquid region is delimited by two spin-
odal points, and this property is connected with the existence
of thermodynamic anomalies. In fact, at the spinodal points
the isothermal compressibility βT = 1/κT diverges, so that
between the spinodal points there must be an isothermal com-
pressibility minimum (or a bulk modulus maxima as seen in
the bottom panel of figure 7). We have thus seen that a suffi-
cient condition for the compressibility anomaly is the presence
of two critical points. We will return in more detail to these
aspects in the section on liquid anomalies.

3.5. Softness and flexibility

In this section we review what are the general properties of
a pair potential that control the location and strength of the
energy minimum and the presence of an optimal network den-
sity. Smallenburg et al [78] discussed two key ingredients in
the inter-particle interactions associated to the existence of a
liquid–liquid transition in tetrahedral patchy particles. First
they discussed the importance of the softness of the repul-
sive spherical interaction. To grasp the role of the softness of
the repulsive potential consider that at the optimal density, on
cooling, molecules form a random tetrahedral network, a rea-
sonable representation of the low-density liquid. In this fully
bonded structure, the amount of empty space in which addi-
tional molecules can fit is essentially controlled by the softness
of the repulsion. A distinct denser low-energy liquid can only
exist if bonded configurations denser than the fully bonded
network are physically possible. When the repulsion is soft,
close-by molecules can be the seed of two interpenetrating
tetrahedral networks, which are merged by disorder after a
few links. Consistent with this qualitative explanation, [78]
demonstrated that the Kern–Frenkel model, which assumes a
hard-core spherical repulsion does not have a liquid–liquid
transition despite the tetrahedral bonding. Interestingly, [78]
also showed that transforming the hard-core repulsion into a
softer potential opens up the possibility of a LLCP.

Second, they focused on the bond angular flexibility. In
the Kern–Frenkel model of equation (3) the higher θmax, the
higher is the flexibility in the network. Several simulations
studies have shown [78, 127] that the critical parameters of the
liquid–liquid transition have the following parameter depen-
dence: increasing flexibility results in a lowering of Tc and
Pc and an increase of the critical density ρc. As flexibility
is increased, the liquid–liquid phase separation can become
metastable with respect to gas–liquid phase separation: the
intersection of liquid–liquid binodals with the liquid–gas spin-
odal gives rise to points where one of the two liquids (LDL)
becomes metastable to gas cavitation. These special termina-
tion points have been named Speedy points [119].

Bond flexibility appears also at the level of density fluctua-
tions: it was shown that decreasing bond flexibility is accom-
panied with the emergence of the FSDP, with a concurrent
increase in the isothermal bulk modulus of the liquid [125].
As we discussed before, the FSDP is one of the structural
signs of the emergence of a minimum in the energy function
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u(ρ). These results show that there is a very general coupling
between density fluctuations, the bulk modulus of the sys-
tem, and the emergence of an energy minimum, that gives
rise to liquid anomalies and, possibly, to liquid–liquid phase
separation.

The same network properties have been considered in
water. A complete network inter-penetration is seen in ice
VI/XV, which structure is composed of two interpenetrating
open zeolite-like frameworks, in ice VII/VIII/X, which con-
sist of two interpenetrating cubic ice lattices [37, 133] and in
the trigonal, metastable ice IV [134].

The concept of network interpenetration could possibly be
also of relevance in the description of the dense amorphous
form of water, both liquid and glass. In this case, interpen-
etration should not be identified as completely independent
bonding networks (as in the crystal phases) but as two net-
works close-by in space which are distinct only within a finite
distance [135, 136]. The observation that HDL has a density
∼20%–25% higher than LDL suggests that some sort of inter-
penetration could take place. The present evidence points in
the direction that complete interpenetration is not found in
the high density amorphous ice (HDA) produced from the
isothermal compression of hexagonal ice or low density amor-
phous ice (LDA) [39, 40, 137] nor in simulated configura-
tions of the HDL. In both HDA and LDA an anomalous sup-
pression of long-range density fluctuations [41] comparable
to that of amorphous silicon [138, 139] has been observed,
suggesting a network topology resembling a continuous ran-
dom network [140, 141]. The lack of complete interpene-
tration in HDA has been attributed to the complex kinetics
and high energy required to generate an interpenetrating net-
work starting from a non interpenetrating one [39], and to
the loss in configurational entropy [40]. On the other hand,
clear connections between ice IV and HDA have been reported
[40, 142], hence suggesting that the observation of partial
interpenetrating network in HDL, while elusive, cannot be
discarded. As a matter of fact, the network topology of liq-
uid water has been inspected at both ambient conditions [143,
144] and upon approaching the LLCP [136, 145–148], but the
degree of interpenetration has not been investigated.

From the discussions above, we could conclude that the
best conditions for the observation of a liquid–liquid transi-
tion are obtained with potentials that have a low amount of
flexibility. But there is one aspect that we have not touched so
far, and it is the interference of the liquid–crystal transition.
We will show that flexibility is also the key factor controlling
the crystal-forming ability of reduced valence models, which
affects indirectly the possibility of observing a liquid–liquid
transition.

4. Liquid anomalies

By liquid anomalies we refer to thermodynamic anomalies, i.e.
the anomalous behaviour of the thermodynamic response func-
tions of a fluid that show a non-monotonouschange when vary-
ing some thermodynamic parameter. The location of maxima
or minima in a response function can be used to trace thermo-
dynamic lines on the phase diagram [112, 117, 146, 149, 150].

The schematic phase diagram in figure 4, encoding the second
critical point scenario, shows the anomalous lines that are most
commonly considered [112]

• ρ̃ defined as the line where the thermal expansion coef-
ficient α = − 1

V
∂V
∂T

∣∣
P
= 0. This line thus corresponds to a

line where density has an extremum (i.e. a density maxima
or minima along isobars as a function of T);

• β̃T defined as the extremum line of the isothermal com-
pressibility along isobars βT , where ∂βT

∂T

∣∣
P
= 0

• c̃P defined as the extremum line of the specific heat cP

along isotherms, where ∂cP
∂P

∣∣
T
= 0.

Anomalies are usually (but not necessarily) associated with
the presence of a critical point, from which lines of maxi-
mum compressibility and specific heat emanate [151]. More-
over, in the second liquid critical point scenario these lines
have to necessarily become lines of minimum for the same
response functions. Mean-field spinodals are lines where both
compressibility and specific heat diverge

βT →∞

cP →∞.

Since the LDL liquid is bounded at low and high ρ by two
spinodals, it has to develop a specific heat minimum (which
corresponds to the c̃P line in figure 7) at intermediate densities,
along an isotherm. Similarly the compressibility also diverges
along both spinodals.

The c̃P line is also linked to the ρ̃ line by the following
thermodynamic relation [112]

∂cP

∂P

∣∣∣∣
T

= −T
∂2v

∂T2

∣∣∣∣
P

. (22)

c̃P is thus also the line where the density changes concavity
with temperature, and the intersection between the c̃P and ρ̃
lines is where the density maxima becomes a density minima,
as shown schematically in figure 4.

In summary, liquid anomalies are strongly connected
[112, 117, 146, 149, 152–156] and the presence of a second
liquid critical point is a sufficient but not necessary condition
for their appearance. The anomalies can persist also in the limit
in which the liquid–liquid critical temperature goes to zero.
It is interesting to note that remnants of criticality in absence
of a critical point have recently been discovered also for the
liquid–gas critical point in patchy particles in the limit where
the valence goes to two (M → 2) [29] and patchy models with
different patch types [30].

4.1. Optimal networks and anomalies

We now look for a connection between the existence of an
optimal networks density (a non-monotonous energy func-
tion u(ρ)) and the presence of anomalies. Starting from the
thermodynamic definition of pressure

∂ f
∂v

∣∣∣∣
T

= −P (23)
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we write the free energy per particle as f = u − Ts, and
use the Maxwell relation ∂s

∂v

∣∣
T
= ∂P

∂T

∣∣
V

to rewrite the previous
equation as

∂u
∂v

∣∣∣∣
T

= T
∂P
∂T

∣∣∣∣
V

− P. (24)

Re-writing the left-hand side as a derivative with respect
to density, ρ = 1/v, and remembering that ∂P

∂T

∣∣
V
= −∂V

∂T

∣∣
P
∂P
∂V

∣∣
T

the first term on the right-hand side can be identified with the
thermal pressure ∂P/∂T = ακT

ρ2∂u
∂ρ

∣∣∣∣
T

= −TακT + P. (25)

At each temperature, density extrema are identified by the con-
dition that the thermal expansion coefficient is zero (α = 0), so
a density anomaly arises if a density value ρext exists for which

ρ2 ∂u
∂ρ

∣∣∣
T

becomes identical to P, i.e.

ρ2∂u
∂ρ

∣∣∣∣
T

(ρext) = P(ρext). (26)

The existence of a line of density anomalies at positive pres-
sure then requires that ∂u/∂ρ > 0 at ρext, i.e. a non-monotonic
dependence of the energy vs density curve. Note that for all
models a region of ∂u/∂ρ > 0 is expected to exist, when den-
sity has increased so much that the repulsive part of the poten-
tial has become the dominant contribution to u. But the region
of density where ∂u/∂ρ > 0 is commonly embedded inside
the glass (or crystal) regions. In the case of empty liquids,
∂u/∂ρ > 0 may instead appear for a density ρext well before
dynamic arrest takes place. Because α > 0 in a normal liquid,
this condition corresponds to the density maximum anomaly. It
is an observable density maximum as long as the (ρ, T) loca-
tion of the maximum is outside the spinodal region, e.g. for
temperatures above the critical point. Equation (26) can also be
satisfied at negative pressures, with the solution usually corre-
sponding to a density minimum. The possibility of measuring
a density minimum is subject to the condition that it is not
pre-empted by gas cavitation or crystallization of the liquid.

To illustrate the connection between the energy minimum
and the density anomaly we run simulations of the TIP4P/2005
model of water [157, 158] and show the results in figure 8.
At T = 270 K the model displays an energy minimum (in the
inset) which gives rise to both a density minimum and a density
maximum within the region of (meta-)stability of the liquid,
that correspond to the intersection between the red and black
lines at negative and positive pressures respectively.

4.2. Alternative models

So far we have entirely focused on the thermodynamic prop-
erties of water from the perspective of network fluids, and in
particular of tetrahedral networks. Alternative models of the
liquid–liquid transition and of thermodynamic anomalies have
been built from different, and sometimes complementary, per-
spectives. Without any pretense to being exhaustive, we briefly
summarize some of the most popular approaches.

It has long been known that water-like anomalies also
appear in particles interacting with isotropic potentials that

Figure 8. Relation between the energy minimum and the density
anomaly. The inset shows the energy computed for a system of
N = 4000 TIP4P/2005 molecules in the NVT ensemble at T =
270 K. Each point is the average over 5 ns simulation runs, while the
line is the fit with a fourth order polynomial. The main panel
displays the two terms in equation (26) which intersect at the
location of the density maximum at P = 36 ± 5 MPa and the
density minimum at P = −177 ± 5 MPa, both plotted with points.

have two lengthscales, comprising a short-range hard-core
repulsion and an intermediate range soft-core repulsion
[62, 159–161]. In these models two typical inter-particle dis-
tances compete at different thermodynamic conditions. The
first models with these properties were the repulsive-shoulder
models of Hemmer and Stell [162], and anomalous proper-
ties where then extended to potentials with similar character-
istics, like ramp potentials [163], square-shoulder potentials
[164–168] and its continuous version [169], the Jagla poten-
tial [170, 171], etc. Another of such models [110], where the
short length-scale is attractive and the long one is repulsive,
still has anomalies and can form a low density open struc-
ture at low pressure and temperature. In water, the short and
long lengthscales are associated respectively with the isotropic
repulsion and the hydrogen bond length. The isotropic two-
lengthscale potentials are thus thought as orientationally aver-
aged models of the orientation-dependent interaction of water.
Indeed, by solving the Ornstein–Zernike integral equation, it
has been found [172] that the isotropic potential corresponding
to the experimental oxygen–oxygen (averaged over orienta-
tional degrees of freedom) pair correlation function displays
a core-softening similar to the continuous version of Hemmer
and Stell models. The anomalies shown by core-softened mod-
els depend on the details of the potential and in general their
presence is neither a sufficient nor a necessary condition for the
appearance of a liquid–liquid transition. These models have
water-like anomalies, in some case with the same hierarchi-
cal order of water, can show a LL critical point, and can be
tuned to have the same negative slope of the ice melting line
[173]. Beyond the description of some property of water, these
models have found application in the study of solutions of
globular proteins, colloids, and liquid metals. The definition of
isotropic potentials naturally lends itself to the use of thermo-
dynamic theories, such as the modified van der Waals theory,
and perturbation theories [174].

An intermediate approach between the isotropic poten-
tials and the network-based approach is given by the
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hydrogen-bond model, where a bonding free energy is added
to the van der Waals free energy [115, 119]. The bonding term
is built as a two-level system and, crucially, it has a strong den-
sity dependence, which allows it to develop a u(ρ) minimum.
The hydrogen bond model has been successful at unifying the
different thermodynamic scenarios for water, and in particu-
lar the transition between the stability-limit scenario and the
two-critical points scenario. A first-principle expression of the
bonding term has also been derived [175].

A pivotal role in the understanding of the different water
scenarios has been played by lattice models. We mention here
the Sastry’s model [117], extended by Franzese and Stanley
[176] and fully characterized in later works [177–180] to nat-
urally incorporate the hydrogen bond cooperativity as a tuning
parameter in the model.

A different and more microscopic approach to the descrip-
tion of water anomalies is taken by two-state models. The
focus of these models is on the structural change that
occurs locally to the network of hydrogen-bonded molecules
[146, 181–188]. The environment surrounding a water
molecule is divided in two populations: an ordered popula-
tion of energetically favoured environments, and a popula-
tion of entropically favored environments. Evidence for this
bimodality has been corroborated by analysis of numerical
[146, 187, 189, 190] and experimental data [44, 49, 111, 132,
188, 191–193]. The two states inter-convert into each other
in equilibrium, and their relative composition depends on the
thermodynamic state point: the ordered state being the (free
energy) favored state at low pressures and temperatures, and
the disordered state being the majority component at high tem-
peratures and/or pressures. The advantage of these models is
that the free energy (which is taken as the one for a regu-
lar mixture) can be expressed directly in terms of the com-
positions extracted from numerical simulations [187, 189] or
experimental data [132, 194], predicting rather than fitting the
anomalous behaviour. A general theory of polyamorphism,
not only related to water, has been introduced in the con-
text of two-state models [195]. For a detailed introduction to
two-state models and their applications we refer to the recent
review in [156]. Last but not least, for a model which combines
the physics of mixing and Wertheim’s perturbation theory see
[196].

5. Crystallization

Tetrahedral systems exhibit puzzling crystallization behaviour.
For example, water and silica both form tetrahedral networks,
but the first one is a crystal-former while the second one is
the prototypical glass former. Even before being applied to
the liquid–liquid transition in water, tetrahedral patchy models
were popular models to study the crystallization of limited-
valence colloidal particles. A lot of attention was put in under-
standing the conditions for successful nucleation of open crys-
talline structures, with particular emphasis on the diamond
cubic crystal. In this section we briefly review what are the
most important geometric factors that control the crystalliza-
tion of patchy particles, and we then highlight how these affect
our ability to observe liquid–liquid transitions.

5.1. Phase diagram

The crystalline structures that are most prominent in the phase
diagram of tetrahedral patchy particles are:

Diamond cubic (dc): it is isostructural to cubic ice, ice Ic.
In the dc structure the bond angles (angles formed by triplets of
nearest neighbours) are perfectly tetrahedral (∼109.5◦), which
allows this structure to be stable even at very low patch widths.

Hexagonal diamond (dh): it is isostructural to hexagonal
ice, ice Ih. It is a polytype of the dc structure, meaning that the
two crystals can stack along the basal plane of the dh structure
with very low free energy penalty. From a free-energy stand-
point, the dh structure is virtually indistinguishable from the dc
structure, and nucleation always results in a mixture of both
polytypes. For brevity in the following we will refer exclu-
sively to the dc phase. Avoiding stacking faults to obtain a pure
colloidal dc crystal is currently one of the major challenges of
nanotechnology [21].

Body-centered cubic (bcc): it is isostructural to ice
VII/VIII/X. The bcc structure can be seen as the sum of two
interpenetrating dc lattices. For this reason, its bonding angles
are tetrahedral, and the density is roughly twice as that of the
dc crystal.

Face-centered cubic (fcc): it is isostructural to ice XVIII
[197]. Bond angles in the fcc crystal are not perfectly tetrahe-
dral, but bonds are possible if patches are wide enough. Also an
orientationally disorder fcc is often present, where the patchy
particles occupy the position of the fcc lattice, but with random
orientations.

At small pressures P, the dominant phases are the dc and the
dh phases, because of their low density and high entropy. The
dc phase is stable only around a small range of densities, which
is usually close to the energy u(ρ) minima [125], confirming
the idea that the minimum is related with the establishment
of a tetrahedral network. The small compressibility of the dc
phase compared to the liquid phase is also responsible for re-
entrant melting at high densities in some models [198]. The
bcc phase is found at intermediate pressures, while the high
pressure phase diagram is where the dense fcc phase is stable
(with an orientationally disordered fcc at high T).

5.2. Crystal forming ability

We now consider the crystallization of open-crystalline struc-
tures, the dc and dh crystals, as they are the most relevant for
water crystallization at ordinary pressures. We will focus on
the Kern–Frenkel model (equations (2) and (3)), as it allows
to consider independently the effects of the radial extent of
the attraction (through the parameter δ) and the effects of the
width of the angular interaction (through the parameter θmax).
Open crystalline structures are stabilized by entropy [93, 198,
199], and in the Kern Frenkel model the bonding entropy can
be estimated with simple geometric considerations.

We start with the partition function Q of a particle in the
solid as described by cell theory [200]

Q = vf eβzε/2, (27)

where z = 4 is the number of bonded neighbours in the dc crys-
tal, ε is the interaction strength, and vf is the free volume that
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a patchy particle can explore while being bonded in the crys-
talline configuration. Assuming the decoupling of translational
and rotational degrees of freedom of the Kern–Frenkel model
(an approximation that becomes exact for very short-range
potentials) vf can be written as the product of translational vt

f
and rotational vr

f contributions. The rotational term vr
f has the

same scaling as found in the bonding volume (equation (4))

vr
f ∝ (1 − cos(θ))2. (28)

In a close packed structure, like the fcc crystal, the trans-
lational volume would scale as the cube of the interaction
range δ, but in the Kern–Frenkel model for open crystalline
structures it is instead found that it scales as [198]

vt
f ∝ δ2. (29)

Substituting these expressions in equation (27) the expres-
sion for the chemical potential of the dc (or equivalently dh)
crystal can be expressed as

βμ = −2βε− 2 log ((1 − cos(θmax))δ) +
βP
ρ
. (30)

While only approximate, these expressions allow for an
understanding of the parameter dependence of the liquid–solid
transition in tetrahedral patchy models. In figure 9 we plot the
chemical potential βμ for both the liquid and crystal phases as
a function of temperature for different choices of the param-
eters δ (top panel) and cos(θmax) (bottom panel). We see that
the melting temperature (located at the crossing between the
liquid and crystal curves) is pushed at lower T by decreasing
δ and/or increasing the bond angle θmax. This trend is general
in patchy models and is also true for the high pressure phases:
the liquid phase is stabilized with a shorter interaction range
and/or a wider bond angle. What distinguishes the two param-
eters δ and θmax is their role in controlling the crystal-forming
ability of the system, i.e. on the temperature dependence of
the nucleation rate [198, 201]. To illustrate this point we focus
here on the thermodynamic driving force, defined as the chem-
ical potential difference βΔμ between the crystal and liquid
phase, which is one of the parameters that enters the crystal-
forming ability of the system [202]. In figure 9 we represent
βΔμ with the shaded region between the liquid and crystalline
curve below the melting temperature. In the top panel we can
see that changing δ at constant cos(θmax) does not significantly
alter the driving force for nucleation, while in the bottom panel
we note instead that the driving force increases more substan-
tially with decreasing T for models with low bond angle (high
cos(θmax)). This observation holds generally: the smaller the
bond angle θmax the largest is the driving force for nucleation
and the crystal-forming ability. Despite having a lower melting
temperature, models with high values of cos(θmax) are thus the
best crystal-formers. It was indeed by reducing the bond angle
that the first atomistic simulations of spontaneous dc crystal
nucleation were observed [35, 203].

In figure 10 we plot the chemical potential βμ for mod-
els having the same value of the bonding volume Vb but
different value of the parameters (δ, cos(θmax)). Since in

Figure 9. Chemical potentials βμ for liquids (from Wertheim
theory, solid lines) and crystals (from equation (30), dashed lines) at
different values of the parameters δ and cos(θmax). The pressure is
set to βPσ3 = 0.01 (to avoid possible interference from liquid–gas
phase separation). Driving forces (chemical potential differences
between liquid and crystal below the melting point) are represented
by shaded regions. (Top panel) Comparison between δ = 0.12σ
(black curves) and δ = 0.24σ (red curves) at fixed cos(θmax) = 0.96.
(Bottom panel) Comparison between cos(θmax) = 0.92 (black
curves) and cos(θmax) = 0.98 (red curves) at fixed δ = 0.24σ.

Wertheim theory the free energy depends only on the bond-
ing volume, the chemical potential curve of the liquid phase is
the same for all these models, and is plotted as a continuous
black line in figure 10. For the crystals the chemical potential
(equation (30)) depends on both δ and cos(θmax), and curves
for different values of these parameters are represented by red
dashed lines. The slope of these line at different T is given by

∂βμ

∂T

∣∣∣∣
P

= −βh
T

, (31)

where h = u + P/ρ is the enthalpy per particle. At low tem-
peratures the liquid forms a fully bonded network with an
enthalpy very similar to that of the solid: i.e. the liquid and
solid lines have similar slopes. With increasing T the liq-
uid curve becomes progressively less steep as the number of
broken bonds increases, eventually becoming flat at high T.
Crystal-forming ability is thus obtained only if the melting
temperature (crossing between liquid and solid line) occurs in
the region where the liquid has a significant fraction of defects,
i.e. for small values of θmax. As we increase the bond angle
θmax the crossing of the two curves moves in the region where
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Figure 10. Chemical potentials βμ for liquids and solids for a fixed
bonding volume Vb = 0.000 38σ3 and for different values of the
parameters δ and cos(θmax). The liquid is plotted as a black
continuous line, which does not depend on the choice of cos(θmax).
Crystal phases are plotted with dashed red lines and range from
cos(θmax) = 0.82 to cos(θmax) = 0.98 with Δ cos(θmax) = 0.04
intervals.

the liquid has few defects, and in which the slope of the liquid
and crystal lines is almost identical, meaning that there will be
no thermodynamic driving force with decreasing temperature
below freezing.

These conclusions have been confirmed with a full analysis
of the nucleation barriers in tetrahedral Kern–Frenkel models
[204]. With decreasing the bond angle (increasing cos(θmax))
it is observed that both the thermodynamic driving force βΔμ
and the free energy barrier for nucleation increase more rapidly
with supercooling. At large bond angles, the barriers have a
very weak T dependence and are always very large (beyond
50kBT). The single-particle dynamics increases with cos(θmax)
since there are more defects in the network structure. Interest-
ingly, the surface tension γ also increases with cos(θmax), but it
is not enough to compensate the effect of the increase in driv-
ing force. The competition between the surface tension penalty
for nucleation and the driving force produces a non-monotonic
shape of the nucleation rate dependence on cos(θmax), with a
maximum that is close to cos(θmax) = 0.96.

The strong dependence of the crystal-forming ability of
patchy particles on the bond angle parameter helps explaining
the crystal-forming behaviour of molecular models of water.
It has long been known that nucleation in molecular models
like TIP4P/2005 and ST2 is strongly suppressed compared to
the popular mW model (a coarse-grained model with three-
body interactions). This difference in crystal-forming ability is
usually explained by the lack of orientational degrees of free-
dom of the mW model. But a comparative study of the struc-
tural properties of these water models [125] has also revealed
that molecular models like TIP4P/2005 and ST2 are much
more flexible and with a lower number of defects compared to
monoatomic models (mW and Stillinger–Weber model [70]).
The increased structural rigidity and the higher number of
defects of the mW model helps explaining why it crystallizes
with ease. A linear relationship between the variance of bond
angle distributions and the intensity of the FSDP can also be
used to quantify bond flexibility from scattering data.

Another interesting observation is that at very narrow patch
width tetrahedral patchy particles often nucleate clathrate
structures [205]. While not being thermodynamically stable
with respect to the dc phase, the nucleation of clathrate phases
is favored kinetically by the large fraction of five-membered
rings present in these liquids.

5.3. Ultra-stable liquids

The origin of the stabilization of the liquid phase with respect
to the crystal with increasing θmax that we observed in figure 9
is due to the larger configuration entropy of the liquid state: a
fully connected liquid has the same energy of the crystal, but a
much larger degeneracy of configurations, i.e. a larger config-
urational entropy. In figure 10 we notice that the driving force
becomes smaller and smaller with increasing θmax, and even-
tually it becomes negative, meaning that the liquid is always
more stable than the crystal. This simple model thus predicts a
scenario where the liquid is always more stable than the crys-
tal. It is important to note that the Wertheim theory with which
the liquid curve has been computed in figure 10 requires that a
single patch cannot form multiple bonds, a condition which is
likely to be violated as θmax is increased. To bypass this limita-
tion, modified Kern–Frenkel potentials have been devised that
strictly enforce the one-bond-per-patch condition regardless of
the width of the angular interactions [27]. In these models it is
possible to reproduce the behaviour of figure 10, i.e. changing
the melting line at constant bonding volume, without having
to change both δ and θmax. The phase diagram of these mod-
els has confirmed that a region where the liquid is stable down
to T → 0 opens up in the phase diagram when the width of the
interaction is between cos(θmax) = 0.8 and cos(θmax) = 0.9, as
we also see in figure 10.

While not directly relevant for water, these ultra-stable liq-
uids have been experimentally realized in aqueous solutions of
DNA-tetramers [28, 206, 207].

5.4. Crystal-clear liquid–liquid transitions

In figure 10 we have seen that the melting line at constant
bonding volume Vb shifts to lower T when widening the patch
angular interaction. As the patches become wider and the dis-
ordered liquid phase becomes relatively more stable, it could
be in principle possible to observe the liquid–liquid transition
without interference from crystallization. This observation has
played a fundamental role in the understanding of water’s
behaviour where a liquid–liquid transition was observed in
the ST2 [145] and in the TIP4P/2005 and TIP4P-Ice [114]
models of water. The major criticism moved against the liq-
uid–liquid critical point scenario was in fact the possibility that
previous observations of the transition were not due to gen-
uine amorphous density fluctuations, but instead due to unde-
tected crystalline clusters, hence implying that fluctuations in
density relax rapidly compared to those associated with struc-
tural order [208]. On the other hand, numerical simulations
of four models of water, namely ST2, TIP5P, TIP4P/2005 and
mW, reported the opposite trend showing that the density is
indeed the slowly relaxing variable [209]. To resolve this issue
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(which was later found [210] to be due to an imprecise sam-
pling of the rotational degrees of freedom in the liquid phase in
[208]), the temperature dependence of both the liquid–liquid
transition and the solid–liquid transition with varying the bond
angle parameter θmax at constant bonding volume was consid-
ered in a patchy tetramer model [78]. The model consists of
a central particle with four flexible arms carrying the patch
interaction. The length of the arms can be tuned to introduce
the necessary softness (i.e. network inter-penetrability) to sta-
bilize the liquid–liquid transition at high T (as we discussed
previously). With this model it was found that increasing the
arm flexibility (again expressed by the parameter cos θmax)
suppresses both the melting and the liquid–liquid transition
temperatures, but, crucially, the first one decreases much more
rapidly than the second. So while the liquid–liquid transition is
metastable with respect to crystallization at large cos θmax, as
observed in most models of water, the opposite is true at lower
values of cos θmax. In this regime it is possible to observe a
genuine liquid–liquid transition without any interference from
crystallization. The same considerations were demonstrated
on the molecular model of water (ST2) for which the liq-
uid–liquid transition was first discovered [211]: by increas-
ing the hydrogen-bond angular flexibility it was shown that
the previously hypothesized liquid–liquid transition is contin-
uously connected to a stable liquid–liquid transition at tem-
peratures above the melting temperature. Stable liquid–liquid
transitions have been confirmed in different models, like DNA
decorated nanoparticles [127] and patchy origami tetrahedra
[126].

6. Supercooled dynamics

On top of its usual thermodynamic anomalies, water displays
also dynamic anomalies [212], such as an increase in diffu-
sivity with increasing pressure. These anomalies are linked to
the structural properties of the underlying network, but differ-
ently from hard-sphere type liquids, the relaxation processes
are not dominated by excluded volume effects (i.e. caging)
but by bonding [27, 213–215]. Patchy particles are an ideal
model to study network glasses because, with appropriately
chosen parameters, the liquid phase can be cooled down to
very low temperature without interference from phase sepa-
ration (empty liquids) or crystallization (ultra-stable liquids).
Specialized computational-algorithms have also been devised
that allow to considerably speed-up equilibration in the low-T
regime (for a recent review see [89]).

The dynamical behaviour of tetrahedral networks changes
with temperature, as the system goes from an ideal gas of clus-
ters at high temperatures to a fully bonded tetrahedral network
at low temperatures. These two regimes are separated by per-
colation, which is the establishment of a spanning network in
the system. Several studies [123, 216, 217] have shown that
in both these regimes the decay of the diffusion coefficient D
with decreasing temperature follows an Arrhenius behaviour

D ∼ exp

(
− Ea

kBT

)
, (32)

where Ea is the activation energy that is related to the micro-
scopic process that controls diffusion. Supercooled liquids that
follow the Arrhenius behaviour are also called strong glass for-
mers. The activation energy of the high-T regime is smaller
than the one for the fully bonded network at T, and so the
system undergoes a transition between two strong regimes (a
strong-to-strong transition). The same behaviour is found in
molecular [187, 218] and coarse grained models [76] of water,
and is also a feature in two-state models of water [156].

The low-T scaling of the activation energy can be predicted
within the mean-field theory of bonding. In this regime, the
dynamics is controlled by defects, i.e. by the probability of
having a broken bond, 1 − pb. Starting from equation (13) we
see that this quantity scales as

1 − pb ∼ exp

(
−βε

2

)
. (33)

It is found that this prediction is followed only for sys-
tems with wide bond angles [27], where ultra-stable liquid
behaviour is observed. For smaller patch widths, the geomet-
rical constraints on bonding which are absent in the mean-
field description, considerably increase the activation energy,
even though the exact value depends on the details of the
patch–patch interaction: for example, [217] finds Ea ∼ 1.35ε,
and [123] finds Ea ∼ ε. In brief, the activation energy can
change from 0.5ε for independent bond-breaking process, to
2ε for the highly correlated simultaneous breaking of all four
bonds.

The relation between the diffusion coefficient and the popu-
lation of broken bonds in tetrahedral networks has been found
very generally to scale as [123, 217]

D ∼ (1 − pb)4. (34)

In the mean-field theory of bonding (1 − pb)4 is propor-
tional to the population of particles with four broken bonds, i.e.
monomers. It would then be natural to interpret equation (34)
as a relaxation process dominated by monomers, whose mobil-
ity is the highest because of the lack of energetic constraints.
But it is found [217] that the number of monomers does not
scale as (1 − pb)4 because the mean-field approximation of
bond-independence breaks down at low-T. This means that
the probability of breaking a bond is not independent from
the local energy. Instead it is observed that a particle with
one broken bond is more likely to break another bond, and so
on. Defects are thus not randomly distributed on the network,
and entropy favors medium range spatial correlations between
the defects. The spatial distribution of defects is linked to the
distinction between network topologies upon which two-state
models are derived [189], and gives rise to so-called dynamic
heterogeneities, characterized by a finite dynamic correlation
length and a non-Gaussian statistics of displacements [187].
Dynamic heterogeneities are also observed in molecular mod-
els of water [219], and are a common occurrence in glasses
where they originate from packing effects instead of bonding.

Despite bond-independence not holding at low-T, it is
found that equation (34) remains valid in several models.
Equation (34) tells that all bonded-networks are strong glass
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formers, a fact well known in silica and water. It also explains
dynamic anomalies. A non-monotonous dependence of pb in
fact will cause a non-monotonous change in D. As we saw,
optimal networks are characterized by an optimal density
where the energy u(ρ) has a minimum. This is where most
bonds in the network are formed and will correspond to a dif-
fusion minima; decreasing or increasing the density from its
optimal value will then cause an acceleration of the dynamics.

It is interesting to note that bond breaking is not the only
possible relaxation mechanism. In ultra-stable liquid systems,
where the bond angle is very wide and where the condition
of one-bond-per-patch is enforced, a more effective relaxation
mechanism is given by bond switching, which causes the dif-
fusion coefficient to scale as D ∼ (1 − pb). Simulations of the
Stillinger–Weber potential have reported a similar scaling, but
with an intermediate exponent, D ∼ (1 − pb)3 [73]. In future
studies, exploring the relation between the scaling exponent
and the different potential models might shed light on the
underlying relaxation mechanisms.

7. Conclusions

Patchy particles are the ideal model to capture the general
behaviour of tetrahedral networks, thanks to simple and physi-
cally motivated parameters that encode the geometric and ener-
getic aspects of bonding. Here we have attempted to elucidate
some of the strange properties of water from the point of view
of tetrahedral patchy-particle networks.

In particular, with simple theories of bonding we have high-
lighted some key design principles of patchy particle models
that help us to understand the behaviour of water. We started
with the observation that water is indeed an empty liquid,
i.e. a system with a liquid–gas coexistence confined to (rel-
atively) low densities. This opens up the space in phase dia-
gram where the anomalous properties of water can emerge.
We have shown that a general mechanism for the existence
of a second region of instability at high density is the opti-
mal network condition, i.e. when geometrical constraints in the
bonds do not allow a disordered network system to be arbitrar-
ily compressed without sacrificing some of its bonding energy.
Tuning this condition allows the instability to move relatively
to the liquid–gas phase transition, giving rise to the popular
water scenarios, including the two liquid critical points sce-
nario, the stability-limit scenario, and the singularity-free and
critical-point free scenarios. We then considered water’s ther-
modynamic anomalies and saw how they also emerge naturally
from the properties of the underlying tetrahedral network. The
observation of water’s anomalous behaviour is limited at high
density by the nucleation of open crystalline structures. We
have thus reviewed how the solid–liquid phase transition is
affected by the parameters of patchy particle potentials, and
shown that the bond angular width (θmax) is the key factor con-
trolling the crystal-forming ability of these systems. We have
also highlighted the conditions that disfavor the crystalline
state, and illustrated two important properties that emerge from
this suppression, i.e. ultra-stable liquids and crystal-clear liq-
uid–liquid phase transitions. We concluded with a discussion
of the dynamical behaviour of patchy particle models, focusing

on their glass-forming properties such as the transition from
two strong regimes and the appearance of dynamic hetero-
geneities. All dynamical properties can be explained in terms
of the underlying network, whose dynamics is controlled by
bond-breaking events.

In conclusion, empty liquids represent a broad category of
fluids that derive their general properties from the existence
of an underlying network of bonds, and that has found in
water one of its prototypical and most inspiring members. Our
knowledge of the number of systems that behave like empty
liquids is constantly increasing and the study of their general
properties is the subject of intense research.
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[195] Anisimov M A, Duška M, Caupin F, Amrhein L E, Rosenbaum

A and Sadus R J 2018 Phys. Rev. X 8 011004
[196] Smallenburg F, Filion L and Sciortino F 2015 J. Phys. Chem.

B 119 9076
[197] Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S,

Swift D C and Eggert J H 2019 Nature 569 251
[198] Romano F, Sanz E and Sciortino F 2010 J. Chem. Phys. 132

184501
[199] Mao X, Chen Q and Granick S 2013 Nat. Mater. 12 217
[200] Sear R P 1999 Mol. Phys. 96 1013
[201] Romano F, Sanz E and Sciortino F 2009 J. Phys. Chem. B 113

15133

[202] Russo J, Romano F and Tanaka H 2018 Phys. Rev. X 8
021040

[203] Romano F, Sanz E and Sciortino F 2011 J. Chem. Phys. 134
174502

[204] Saika-Voivod I, Romano F and Sciortino F 2011 J. Chem. Phys.
135 124506

[205] Noya E G, Zubieta I, Pine D J and Sciortino F 2019 J. Chem.
Phys. 151 094502

[206] Biffi S, Cerbino R, Bomboi F, Paraboschi E M, Asselta R,
Sciortino F and Bellini T 2013 Proc. Natl Acad. Sci. 110
15633

[207] Bomboi F, Romano F, Leo M, Fernandez-Castanon J, Cerbino
R, Bellini T, Bordi F, Filetici P and Sciortino F 2016 Nat.
Commun. 7 1

[208] Limmer D T and Chandler D 2011 J. Chem. Phys. 135
134503

[209] Palmer J C, Singh R S, Chen R, Martelli F and Debenedetti P
G 2016 Mol. Phys. 114 2580

[210] Palmer J C, Haji-Akbari A, Singh R S, Martelli F, Car R,
Panagiotopoulos A Z and Debenedetti P G 2018 J. Chem.
Phys. 148 137101

[211] Smallenburg F and Sciortino F 2015 Phys. Rev. Lett. 115
015701

[212] De Marzio M, Camisasca G, Rovere M and Gallo P 2018 Front.
Phys. 13 136103

[213] Ranieri U, Giura P, Gorelli F A, Santoro M, Klotz S, Gillet P,
Paolasini L, Koza M M and Bove L E 2016 J. Phys. Chem.
B 120 9051

[214] Russo J and Sciortino F 2010 Phys. Rev. Lett. 104 195701
[215] Kikutsuji T, Kim K and Matubayasi N 2018 J. Chem. Phys.

148 244501
[216] Rovigatti L and Sciortino F 2011 Mol. Phys. 109 2889
[217] Roldán-Vargas S, Rovigatti L and Sciortino F 2017 Soft Matter

13 514
[218] Shi R, Russo J and Tanaka H 2018 Proc. Natl Acad. Sci. USA

115 9444
[219] La Nave E and Sciortino F 2004 J. Phys. Chem. B 108

19663

19

https://doi.org/10.1073/pnas.0912756107
https://doi.org/10.1073/pnas.0912756107
https://arxiv.org/abs/2004.03646
https://doi.org/10.1038/srep04440
https://doi.org/10.1038/srep04440
https://doi.org/10.1016/j.molliq.2019.04.090
https://doi.org/10.1016/j.molliq.2019.04.090
https://doi.org/10.1557/proc-455-411
https://doi.org/10.1557/proc-455-411
https://doi.org/10.1557/proc-455-411
https://doi.org/10.1557/proc-455-411
https://doi.org/10.1063/1.480609
https://doi.org/10.1063/1.480609
https://doi.org/10.1103/physrevlett.106.115706
https://doi.org/10.1103/physrevlett.106.115706
https://doi.org/10.1016/j.chemphys.2011.07.021
https://doi.org/10.1016/j.chemphys.2011.07.021
https://doi.org/10.1016/j.chemphys.2011.07.021
https://doi.org/10.1016/j.chemphys.2011.07.021
https://doi.org/10.1140/epje/i2012-12113-y
https://doi.org/10.1140/epje/i2012-12113-y
https://doi.org/10.1038/srep00713
https://doi.org/10.1038/srep00713
https://doi.org/10.1063/1.5055908
https://doi.org/10.1063/1.5055908
https://doi.org/10.1063/1.5100875
https://doi.org/10.1063/1.5100875
https://doi.org/10.1038/ncomms4556
https://doi.org/10.1038/ncomms4556
https://doi.org/10.1063/5.0010895
https://doi.org/10.1063/5.0010895
https://doi.org/10.1016/j.molliq.2012.06.021
https://doi.org/10.1016/j.molliq.2012.06.021
https://doi.org/10.1038/ncomms3401
https://doi.org/10.1038/ncomms3401
https://doi.org/10.1126/science.aao7049
https://doi.org/10.1126/science.aao7049
https://doi.org/10.1073/pnas.2008426117
https://doi.org/10.1073/pnas.2008426117
https://doi.org/10.1103/physrevx.8.011004
https://doi.org/10.1103/physrevx.8.011004
https://doi.org/10.1021/jp508788m
https://doi.org/10.1021/jp508788m
https://doi.org/10.1038/s41586-019-1114-6
https://doi.org/10.1038/s41586-019-1114-6
https://doi.org/10.1063/1.3393777
https://doi.org/10.1063/1.3393777
https://doi.org/10.1038/nmat3496
https://doi.org/10.1038/nmat3496
https://doi.org/10.1080/00268979909483043
https://doi.org/10.1080/00268979909483043
https://doi.org/10.1021/jp9081905
https://doi.org/10.1021/jp9081905
https://doi.org/10.1103/physrevx.8.021040
https://doi.org/10.1103/physrevx.8.021040
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3638046
https://doi.org/10.1063/1.3638046
https://doi.org/10.1063/1.5109382
https://doi.org/10.1063/1.5109382
https://doi.org/10.1073/pnas.1304632110
https://doi.org/10.1073/pnas.1304632110
https://doi.org/10.1038/ncomms13191
https://doi.org/10.1038/ncomms13191
https://doi.org/10.1063/1.3643333
https://doi.org/10.1063/1.3643333
https://doi.org/10.1080/00268976.2016.1179351
https://doi.org/10.1080/00268976.2016.1179351
https://doi.org/10.1063/1.5029463
https://doi.org/10.1063/1.5029463
https://doi.org/10.1103/physrevlett.115.015701
https://doi.org/10.1103/physrevlett.115.015701
https://doi.org/10.1007/s11467-017-0714-6
https://doi.org/10.1007/s11467-017-0714-6
https://doi.org/10.1021/acs.jpcb.6b04142
https://doi.org/10.1021/acs.jpcb.6b04142
https://doi.org/10.1103/physrevlett.104.195701
https://doi.org/10.1103/physrevlett.104.195701
https://doi.org/10.1063/1.5033419
https://doi.org/10.1063/1.5033419
https://doi.org/10.1080/00268976.2011.609148
https://doi.org/10.1080/00268976.2011.609148
https://doi.org/10.1039/c6sm02282k
https://doi.org/10.1039/c6sm02282k
https://doi.org/10.1073/pnas.1807821115
https://doi.org/10.1073/pnas.1807821115
https://doi.org/10.1021/jp047374p
https://doi.org/10.1021/jp047374p

	The physics of empty liquids: from patchy particles to water
	1.  Prologue
	2.  Physics of bonding
	2.1.  The golden rule
	2.2.  Patchy particles
	2.3.  Mean-field theory of association
	2.4.  Wertheim perturbation theory
	2.5.  Empty liquids

	3.  Liquid–liquid phase transitions
	3.1.  Phase separation in the Van der Waals fluid
	3.2.  Wertheim fluid
	3.3.  Optimal network forming density
	3.4.  Optimal network model
	3.5.  Softness and flexibility

	4.  Liquid anomalies
	4.1.  Optimal networks and anomalies
	4.2.  Alternative models

	5.  Crystallization
	5.1.  Phase diagram
	5.2.  Crystal forming ability
	5.3.  Ultra-stable liquids
	5.4.  Crystal-clear liquid–liquid transitions

	6.  Supercooled dynamics
	7.  Conclusions
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


