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The representation of complex systems as networks has become a critical tool across
many fields of science. In the context of physical networks, such as biological neural
networks, vascular networks, or network liquids where the nodes and edges occupy
volume in three-dimensional space, the question of how they become densely packed
is of special importance. Here, we investigate a model network liquid, which is known
to densify via two successive liquid–liquid phase transitions (LLPTs). We elucidate the
importance of rings—cyclic paths formed by bonded particles in the networks—and
their spatial disposition in understanding the structural changes that underpin the
increase in density across the LLPTs. Our analyses demonstrate that the densification
of these networks is primarily driven by the formation of linked rings, and the LLPTs
correspond to a hierarchy of topological transitions where rings form the fundamental
building blocks. We envisage entanglement to emerge as a general mechanism for
densification, with wide implications for the embedding of physical networks, especially
in confined spaces.

networks | topology | DNA nanotechnology | liquid–liquid phase transition | self-assembly

Networks—collections of nodes connected by edges—have become central to modern
life, they control the flow of power, transportation, and even our social interactions (1).
All the information required to describe a network is contained in its adjacency matrix
(A): a square symmetric matrix with rows and columns whose indices represent a node
and a 1 or 0 in position Aij according to whether nodes i and j are connected by
an edge or not. For an undirected network, Aij = Aji. The abstraction of complex
systems into networks has proven to be a powerful tool for understanding a number of
phenomena spanning a wide array of disciplines. However, it is becoming increasingly
clear that this abstract representation is not sufficient to fully understand the properties
of systems where physicality is important (2–5). These “physical” networks correspond
to systems with excluded volume interactions between the nodes and edges (i.e., they
cannot overlap or occupy the same space), and therefore, the spatial distribution of their
nodes and edges assumes critical importance. Examples of physical networks include
the neural networks of the brain (6–8), vascular networks (9), the mycorrhizal networks
connecting fungi and plants (10, 11), and networks of interacting molecules (12–16).
For these systems, it is necessary to combine the abstract representation of a network
with real-space information.

As a physical network is densified, the excluded volume interactions between the
nodes and edges become much more pronounced. One pertinent question therefore is
how does physicality influence the structure of a network as it is densified? The answer
to this question is important also for phase change materials for advanced memory
applications (17), the elastic response of mechanical metamaterials (18–20), and the two-
liquid hypothesis for supercooled water (21–25). The latter refers to the idea, proposed in
the early 1990s, that supercooled water can exist in two liquid phases separated by first-
order liquid–liquid phase transition (LLPT) lines. This hypothesis has since been verified
for several atomic, molecular, and colloidal systems (16, 25–28). The LLPT phenomenon
is very often observed in systems of particles with limited valency and strong directional
interactions (25), and so, these systems can be unambiguously represented as a network
where nodes represent particles and edges connect bonded particles.

To investigate the interplay between accessible volume and the structure of physical
networks we numerically study a model for DNA dendrimers (branched polymeric
molecules), where each dendrimer is represented by a repulsive spherical core decorated
with four attractive patches in a tetrahedral arrangement (29, 30). Depending on the
temperature and pressure, the dendrimers can form three distinct network liquids of sig-
nificantly different densities (separated by LLPTs) (31). Therefore, they represent an ideal
model system for exploring how the density of a physical network affects its structure. We
probe the geometry and topology of the dendrimer networks by focusing on ring motifs (a
ring is a cyclic path in the network where the first and last nodes are the same). Our analy-
ses show that the three network liquids not only differ in density but also in their topology:
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At low pressures, an unentangled low-density liquid (LDL)
forms; then, at intermediate pressures, an entangled high-density
liquid (HDL) forms, and at high pressures, an entangled very
high-density liquid (vHDL) forms. The topological distinction
between the two entangled network liquids is revealed by
probing their network of linked rings. In this “link-network”
representation, nodes signify rings formed by the dendrimers,
and edges are drawn between two rings that are linked. We show
that the vHDL forms “rings of linked rings” of various size,
while the HDL mostly forms branched chains of linked rings.
Therefore, with increasing pressure, the dendrimers undergo a
hierarchy of topological transitions signaled by step-growths in
entanglement where, first rings form, then linked rings form, and
finally rings (or cycles) of linked rings emerge.

Results and Discussion

Fig. 1A shows the equation of state for the dendrimer system
as determined from isobaric-isothermal (NPT) Monte Carlo

simulations for N = 1,000 dendrimers with arms of length
L at the temperature T ∗ = 0.085 (see Methods for more details
regarding the model). The equation of state shows three distinct
liquid branches of differing densities: i) a LDL for pressures
P∗ < 7, ii) a HDL for 7 ≤ P∗ ≤ 28, and iii) a vHDL for
P∗ ≥ 28. Fig. 1 B–D show snapshots of typical configurations
from each of these liquid phases, where we have drawn cylinders
between the centers of particles that are directly bonded to one
another to generate a network representation of the liquids.

To associate spatial information with the connectivity of the
network, we calculate the radial distribution function (RDF)
g(r)—a measure for the probability of finding two particles at a
spatial distance r—and decompose it into contributions derived
from particles separated by D bonds: g(r) =

∑
D gD(r) (32).

This decomposition allows us to assess whether particles close
in space are separated by multiple bonds in the network. Fig.
1 E–G show gD(r) for values of D ranging from 1 to 6 for
the LDL, HDL, and vHDL at pressures of P∗ = 2, 20, and 32,
respectively. The positions for the peaks in g1 and g2 are similar in

A B

C

D G

F

E

Fig. 1. Local interpenetration of networks across two liquid–liquid phase transitions for a coarse-grained model of tetrahedral DNA dendrimers. (A) Equation of
state for the dendrimer model, highlighting the presence of two liquid–liquid phase transitions between three distinct liquids with different densities at a given
temperature. (B–D) Snapshots of typical configurations from the three liquid phases in a network representation: (B) very high-density liquid, (C) high-density
liquid, and (D) low-density liquid at pressures of P∗ = 32,20,2, respectively. (E and F ) Radial distribution functions for the model system, decomposed into the
individual contributions derived from particles separated by D bonds, gD(r), for several D values, ranging from D = 1 to D = 6, at pressures of (E) P∗ = 32, (F )
P∗ = 20, and (G) P∗ = 2, respectively.
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all three liquids, despite their differing densities, and are located
at r/L ≈ 1 and r/L ≈ 2, respectively. In the LDL, the peaks
for each gD(r) are well defined and there are no particles in the
system lying at distances smaller than L, implying that there is
no local interpenetration present in the LDL network (by local
interpenetration we are referring to particles which are in close
spatial proximity but do not share a bond). However, in the HDL
and vHDL, the gD(r) distributions for D > 2 show a peak or
shoulder at distances smaller than L, signaling the presence of
local interpenetration. Interestingly, the local interpenetration is
most pronounced for particles which are separated by D = 4 or
D = 5 bonds. This observation reveals that a path along the net-
work often returns close to its origin in real space after four or five
bonds. As D increases further the peak at low r values gradually
decreases in intensity until it practically disappears for D ≥ 8.

To better understand how local interpenetration manifests
we investigate the geometric and topological properties of the
three liquids. We focus on three key structural motifs, which
are all ring structures: i) coiled rings, ii) linked rings, and iii)
knotted rings. These motifs are chosen since they all facilitate
local interpenetration by bringing particles not directly bonded
to one another into close spatial proximity, as evident in Fig. 2.
A coiled ring is a cyclic path in the network whose geometry is
greatly distorted from the expected planar-like geometry—much
like how circular DNA undergoes supercoiling (33). Linked
rings are two (or more) disjoint rings (i.e., rings that do not
share any particles) which are entangled with one another in
such a manner that they cannot be “unlinked” without at least
one bond being broken. A knotted ring is a cyclic path in the
network which adopts a self-entangled conformation that cannot
be unentangled without a bond-breaking event. Additionally,
in this third category, we include theta-curves which are two
entangled rings that share at least two particles (see the lowest
subpanel of Fig. 2).

To identify the presence of these structural motifs in the three
liquid phases, we first enumerate all NR shortest-path rings in
each network (Methods) (34). Then, to quantify the degree of
coiling and knotting we calculate the writhe

Wri =
1

4�

∮
C i

∮
C i

r′i − ri
|r′i − ri|3

· (dr′i × dri), [1]

where ri and r′i represent two points along the perimeter of a
cyclic path C i and dri and dr′i are two infinitesimal vectors along
the perimeter of C i with origins at ri and r′i, respectively (16).
In this work a cyclic path C is defined as the sequence of edges
connecting the nodes of a shortest-path ring, or for a theta-curve
it is the combined sequence of two fused rings excluding the
edges connecting shared nodes (i.e., the backbone of the two
fused rings; see Fig. 2). Eq. 1 measures the number of times a
cyclic path C i loops around itself (for instance, the writhe for the
coiled ring and trefoil knot in Fig. 2 are |Wr| ≈ 1 and |Wr| ≈ 3,
respectively). The total degree of knotting in the liquid networks
is quantified using the network writhe (16),

Wn =
Nk∑
i=1

|Wri|, [2]

where we sum up the absolute writhes for theNk knotted motifs
(knotted rings and theta-curves) in the networks.

To identify links we calculate the linking number

Lkij =
1

4�

∮
Ri

∮
Rj

rj − ri
|rj − ri|3

· (drj × dri), [3]

Fig. 2. Geometry and topology of rings in the very high-density liquid. Rep-
resentative snapshot of the very high-density liquid at a pressure of P∗ = 32,
where three classes of structural motifs that drive local interpenetration in
the network are highlighted: coiled rings (a ring whose geometry is distorted
from a near-planar geometry), linked rings (two or more disjoint rings which
are interlinked such that they cannot be separated without breaking a bond),
and knotted rings (a self-entangled ring which cannot be unentangled without
breaking a bond). Under the class of knotted rings, we also include theta-
curves—two fused rings (i.e., rings that share at least two nodes) which
are entangled—an example of which is shown in the lowest subpanel. The
backbone of the theta-curve (which we show in purple on the right-hand side
of the subpanel) is a knotted ring.

where Eq. 3 measures the number of times two disjoint rings, Ri

and Rj, loop around one another (for instance, the link shown
in Fig. 2 has a linking number of |Lk| = 1). Now ri and rj runs
over the perimeter of two distinct rings Ri and Rj. Finally, we
compute the total degree of linking in the liquid networks using
the network linking number (3, 16)

Ln =
NR∑
i=0

NR∑
i>j

∗
|Lkij|, [4]

where the ∗ indicates that the sum only runs over pairs of disjoint
rings. Note that we have taken the absolute values of Wr and
Lk while computing the network writhe and linking number,
thereby ignoring the sign which indicates their chirality, since our
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objective is to have a quantitative measure of the entanglement.
Additionally, since the rings here are closed polygonal paths
we compute the double line integrals in Eqs. 1 and 3 using
expressions for polylines (Methods).

Geometric Changes in the Network Liquids. Fig. 3A shows the
ring statistics as a function of pressure, where we have plotted
the number of shortest-path rings (NRl ) of size l ∈ [4− 10] as a
function of P∗. The plots show that as P∗ increases the number of
“small” rings (l ≤ 7) decreases while the number of “large” rings
(l ≥ 8) increases. The number of rings shows clear discontinuous
jumps concomitant with the change in density associated with
each LLPT (Fig. 1A), confirming that an increase in density is
associated to a change in the network connectivity.

We next probe how the geometry of the rings changes with �∗
using the writhe. Fig. 3 B–D show the probability densities for
the absolute writhe of the shortest-path rings in the LDL, HDL,
and vHDL networks. The distributions show that as P∗ increases
(and therefore as �∗ increases) larger rings find it much easier
to adopt coiled geometries, while smaller rings remain planar-
like. This is made clear by the progressive broadening of the
distributions for l > 6, and by the Insets in Fig. 3 B–D where
we show each ring with the largest absolute writhe for the given

l and P∗. In particular, a substantial broadening appears with
increasing P∗ for the distributions of the 9- and 10-membered
rings.

From this analysis we learn the following about the liquid
networks: the average ring size, 〈l〉, and the average absolute
writhe, 〈|Wr|〉, increases with P∗. However, 〈|Wr|〉 is still
relatively small for all P∗ considered (〈|Wr|〉 < 0.2) as signaled
by the peaks of the distributions in Fig. 3 B–D. Therefore, while
coiled rings (which have |Wr| ≳ 1) are more abundant in the
HDL and vHDL networks as compared to the LDL, they are
still a minority of the ring population. Although the formation
of these coiled rings must contribute to the increased local
interpenetration (and density) of the HDL and vHDL networks,
we argue it is likely not the primary mechanism for densification.
Interestingly, this means that the increase in pressure produces
networks that are denser, and yet they contain larger rings which
for the most part stay close to planar geometries (|Wr| ≈ 0).
Naively, one could expect that increasing the size of the rings in
the network (without coiling) would decrease the density (due
to the area of the ring pore increasing); instead, the opposite is
true here. Hence, we reason that the formation of these larger
rings must be accompanied by the formation of theta-curves
or links.

A B C D

Fig. 3. Evolution of ring statistics and ring geometry across liquid–liquid phase transitions. (A) Dependence of the number of shortest-path rings (NR ) for rings
of different sizes (rings containing between 4 and 10 particles) normalized by the total number of particles (N ) as a function of pressure (P∗). (B–D) Probability
density of the absolute writhe (|Wr|) for rings of different sizes for systems at pressures of (B) P∗ = 2, (C) P∗ = 20, and (D) P∗ = 32. For each plot, the Inset shows
the ring of the given size at the given pressure with the largest absolute writhe.
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Topological Changes in theNetwork Liquids. Next, we probe the
formation of links, knots, and theta-curves (the latter being fused
rings that are entangled with one another; see Fig. 2). Fig. 4 A
and B show the dependence of the average network writhe, Wn,
and network linking number,Ln, (see Eqs. 2 and 4, respectively),
on P∗. The plots show that, as for the number of rings, there are
two discontinuous jumps in both Wn and Ln concomitant with
the jumps in density (Fig. 1A) across the successive LLPTs. Both
Wn and Ln are zero in the LDL phase, showing that the LDL
is unentangled. Given that Wn > 0 and Ln > 0 for both the
HDL and vHDL phases, the LDL to HDL transition is from an
unentangled to an entangled network, while the HDL to vHDL
transition is between two entangled networks, with a significant
growth in the degree of entanglement as the density increases.

Despite clearly signaling the LLPTs, only a small number of
rings participate in a knotted motif. The total number of knotted
motifs Nk is a small fraction of the total number of rings NR
(reaching a maximum value of only about 3% in the vHDL),
whereas there are more links in the network than rings, meaning
that there are many multiply linked rings. This is demonstrated
in SI Appendix, Fig. S1, where we plot the knotting probability
(equal to the total number of knotted motifs divided by the
total number of rings: Pk = Nk/NR) as a function of pressure.
Additionally, we find that 3.3Pk ≈ Wn/NR , highlighting
that nearly all knotted motifs formed in the liquid networks
correspond to trefoil knots adopting idealized conformations
(16, 35).

To understand why Nk is so small as compared to NR , we
show the probability density of the writhe limited to rings that
are a part of at least one theta-curve, P(|Wr|)� , in Fig. 4C.
We find that two peaks appear at |Wr| ≈ 0 and |Wr| ≈ 1,
suggesting that when theta-curves form it is frequently due to a
planar and coiled ring becoming entangled (this is true for the
theta-curve shown in Fig. 2). For comparison, Fig. 4D shows a
similar probability density but now limited to rings that are a
part of at least one link, P(|Wr|)Lk. There is only a single peak
in P(|Wr|)Lk at |Wr| ≈ 0, highlighting that linked rings in the
networks usually adopt a near-planar geometry. This suggests
that local interpenetration is primarily driven by linking, with
coiling and knotting playing a secondary role.

To further clarify the relationship between the formation of
linked rings and the local interpenetration identified in Fig. 1 E
and F (and the peaks in these figures), we compute the shortest
bonded path (DLk) between each particle on any two linked rings
i and j of size li and lj (i.e., we compute the shortest bonded path
between each of the li × lj pairs of particles). Fig. 4D shows the
probability density for DLk averaged over all pairs of linked rings
in the vHDL. P(DLk) has a peak betweenDLk = 4 andDLk = 5,
which is consistent with the RDFs shown in Fig. 1 E and F where
local interpenetration is found to be maximized between particles
separated by D = 4 or D = 5 bonds. Fig. 4E shows a pair
of linked rings along with the example paths connecting their
particles.

The distinction between the LDL and the HDL is clear:
the LDL is unentangled and the HDL is entangled. A sim-
ilar clear-cut distinction cannot be made for the HDL and
vHDL since both are entangled (even if there is a quanti-
tative difference in the degree of entanglement). A pertinent
question is whether there is any qualitative difference in the
nature of the entanglements formed in the two high-density
liquid phases. To address this question, we construct a higher-
order network representation of linked rings, transforming
each shortest-path ring into a node and connecting two
such nodes if the original rings are linked together. Fig. 5A

A C

B D

E F

Fig. 4. Local interpenetration of network liquids driven by changes in ring
topology. Dependence of the (A) network writhe (Wn) and (B) network linking
number (Ln) normalized by the total number of shortest-path rings (NR ) as
a function of pressure (P∗) for the dendrimer system. The probability density
for the absolute writhe (|Wr|) for rings that are a part of (C) at least one
theta-curve or (D) one link at a pressure of P∗ = 32. The Inset of panel (C)
shows an example theta-curve highlighting that one of the rings is coiled
and contributes to the peak in P(|Wr|)� centered at |Wr| = 1. (E) Probability
density for the number of bonds (DLk ) separating two particles that belong
to two linked rings (note that the corresponding histogram is also shown). (F )
Visualization of a pair of linked rings (shown with red and green bonds) and
example paths consisting of 4, 5, and 6 bonds connecting pairs of particles
on the two rings.

shows a schematic illustration for the construction of such a
“link-network.” Each link-network is composed of NR nodes
and Ln edges. To avoid confusion we will refer to cyclic paths
in these link-networks as cycles (as opposed to rings). Fig. 5 B
and C show representative visualizations of link-networks for the
HDL and vHDL phases, respectively, highlighting how highly
connected both link-networks are in comparison to their parent
networks. Note that the corresponding visualization of the link-
network for the LDL would simply be a collection of nodes with
no edges.

Often it is possible to characterize networks according to their
degree distributions p(k), where the degree k of a node is the
number of edges connected to it. Each node in the link-network
represents a ring of size l , therefore we computed the degree
distributions for nodes with different l values separately. Fig. 5
D and E show the degree distributions p(kl ) for the HDL and
vHDL link-networks, respectively. The degree distributions for
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A

B

D E

C

F

Fig. 5. Topological changes in the network of rings across the transition between high-density liquid and very high-density liquid. (A) Schematic showing a
network representation for a system of rings—the “link-network”—where each node, shown as a gray solid sphere, stands for a ring and an edge, depicted
as a pink cylinder, appears between two nodes if the corresponding rings are linked. Cyclic paths can form within this network of rings, as highlighted, and
are referred to as cycles of rings. (B and C) Visualization of the link-network for the (B) high-density (HDL) and (C) very high-density liquid (vHDL) phases at
pressures P∗ = 20 and P∗ = 32, respectively. (D and E) Degree distributions p(kl) for the (D) HDL and (E) vHDL link-networks at pressures P∗ = 20 and P∗ = 32,
respectively. The distributions are generated by fitting to an inverse Gaussian function. (F ) Evolution of the number of shortest-path cycles of size r (NCr ) in
the link-network, normalized by the total number of rings (NR ), as a function of P∗ for r = [3 to 6]. The Insets show representative illustrations for cycles size r
found in the vHDL. Note that here r stands for the number of nodes in the shortest-path cycles of rings in the link-network, where the rings themselves may
differ in their size l.

the link-networks of both the HDL and vHDL are well described
by an inverse Gaussian distribution, indicating that they are both
examples of random networks. However, the degree distributions
do highlight a clear difference between the HDL and vHDL. The
peaks in p(kl ) of the HDL are practically insensitive to l, while for
the vHDL we see that the peaks clearly shift to larger values with
increasing l. This means that the ability for larger rings to form
more links (due to the larger area of their pore allowing for more
linking) manifests in the vHDL but not the HDL. Additionally,
we notice that at high pressures there are some highly connected
nodes (k ≈ 70) in the link-network of the vHDL.

We next investigate the presence of shortest-path cycles within
the link-networks, excluding the cycles that contain fused rings.
Fig. 5F shows the evolution of the average number of cycles (NCr )
of size r ∈ [3 to 6] in the link-networks as a function of pressure.
Fig. 5F reveals an important topological distinction between the
HDL and vHDL networks: The HDL link-networks contain
very few cycles (they are tree-like networks) while the vHDL

link-networks contain a large number of cycles. The Insets of
Fig. 5F show illustrative examples of cycles found in the vHDL
networks. These results indicate that the HDL–vHDL transition
is between two entangled networks that differ in the connectivity
of their entanglements.

Summary and Outlook

In summary, an increase in the density of a physical network
composed of nodes with fixed valency requires an increase in
their topological complexity. We demonstrate this by studying a
coarse-grained model for nanoparticles functionalized with four
single strands of DNA (dendrimers) which is known to form
three distinct network liquids—the LDL, HDL, and vHDL—
depending upon the pressure. We find that as the density increases
across the LLPTs, the average ring size 〈l〉 gradually increases in
the three networks, with 〈lLDL〉 ≈ 6, 〈lHDL〉 ≈ 7 to 8 and
〈lvHDL〉 ≈ 9, indicating that larger rings facilitate the formation
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of higher-density configurations. Densification is made possible
by the associated increase in the linking capacity, with the
networks becoming progressively more entangled. As a result,
the LDL is an unentangled network liquid, and the HDL and
vHDL are both entangled liquids. Remarkably, while the HDL
and vHDL are both examples of entangled network liquids, they
have distinct topological properties. We reveal this difference
by investigating the connectivity of the entanglements in the
two liquids. In our representation, each ring formed by the
dendrimers corresponds to a “meta-particle” that can become
“bonded” to other meta-particles through linking [in analogy to
the mechanical bonds in mechanically interlocked molecules,
such as rotaxanes and catenanes, formed via supramolecular
chemistry(36, 37)]. This allows us to show that the cascade
of network phases of increasing density follows a hierarchy of
topological transitions via a staged self-assembly process involving
i) the formation of rings; ii) the formation of linked rings; iii) the
formation of rings of linked rings.

More concisely, a physical network embedded in three-
dimensional space (where interactions between the nodes de-
termine its layout) must increase its topological complexity to
become denser without changing its local connectivity.

It is worth noting that the network linking number has some
limitations as an order parameter for capturing the presence of
topological linking in physical networks. Most notably, for some
higher-order links Lk = 0. For example, this is the case for
the Whitehead link (38). In the future, it may be of interest to
apply more powerful invariants, such as the twisted Alexander
polynomial (39) or the Jones polynomial (40), to the topological
analysis of physical networks.

Here we have focused on understanding how changes in
density affect the topology of a network liquid. However, it
is also of interest to probe how these topological changes alter
dynamical and mechanical properties. In SI Appendix, Fig. S2
A and B, we show the mean squared displacement (MSD) and
bond autocorrelation function for the LDL, HDL, and vHDL
networks at pressures of P∗ = 2, 20, and 32, respectively.
Interestingly, we find that the dynamics speed up considerably
as the topological complexity of the networks increases [a similar
effect occurs in water (16, 41)]. This dynamical speed-up can also
be observed by monitoring the lifetime of rings in the networks
(as shown in Movie S1) or the lifetime of linked rings (as shown
in Movie S2). This is in contrast to polymer melts (42, 43)
or active melts of ring polymers (44) where the formation of
topological entanglements results in a slowing of the dynamics or
even vitrification. In the future, it will therefore be of interest to
understand the mechanism by which topological entanglement
in network liquids facilitates faster dynamics.

Methods

Tetrahedral Dendrimer Model. The coarse-grained model used in this work
represents macromolecules composed of a repulsive core decorated by four
short single-stranded DNA (ssDNA) where two particles i and j interact via the
pairwise potential (45)

Vij(rij,i,j, T
∗) = Vcore(rij) +

4∑
�,�=1

p��(T
∗)Vpatch(rij, L, �� , ��), [5]

where rij = |rij| is the distance between the centers of the two particles, i
and j describe the orientations of the two particles, and T∗ is the reduced
temperature. The pair potential has two components: i) a very short-ranged
repulsive component Vcore which is isotropic and depends only on rij; ii) an

attractive component Vpatch that captures the lock-and-key nature of base-
pairing between the ssDNA arms of length L, and so depends not only on the
distance between the particles but also their orientation and the temperature
(which enters via the bonding probability function p�� ), where �� is the angle
between the unit vector describing the direction of patch� on particle iand r̂ij and
likewise�� is the angle between patch� on particle jand r̂ij. Importantly,p�� not
only captures the temperature dependence of the binding between two ssDNA
arms but also the limited valency (i.e., p�� = 0 if patch� or patch � are already
bonded to another patch). The functional forms of Vcore, Vpatch, and p�� were
originally determined numerically by simulating a system where the ssDNA arms
are explicitly considered (45). The distribution of arm orientations over which a
bond may form is parameterized by a Gaussian function, and the variance �2

of that Gaussian has subsequently been treated as an adjustable parameter to
alter the bond orientational flexibility, which in turn alters the relative stability of
amorphous and crystalline phases (46). Here we use�2 = 1/16. The dendrimer
arms represent 8-base ssDNA strands. Using this strand length, the potential
vanishes for separations larger than 12.5 (in units of the diameter of a single
base). Energy is measured in units of the attractive strength between two base
pairs in the original explicit model denoted by the symbol " (29).

MonteCarlo Simulations. WeperformedaseriesofMonteCarlosimulations in
theNPT ensemble forN = 1,000 dendrimer particles at a reduced temperature
of T∗ = kBT/" = 0.085 (where kB is the Boltzmann constant which is taken
to be equal to one in this work). Simulations were run at reduced pressures
in the range P∗ = 105Pd3/" ∈ [2 to 32] (where d is the most probable
separation between the centers of two bonded dendrimers which corresponds
to the value of rij, where Vij is minimized) in order to determine the equation

of state where the reduced density is given by �∗ = Nd3/V (where V is the
volume). Each simulation was run for a minimum of 2×108 Monte Carlo cycles,
where each cycle consists of either a molecular displacement and reorientation
(with probability (N − 1)/N) or a volume change (with probability 1/N). At
least 100 configurations, equally spaced in time, along the trajectory were saved
for computing the geometric and topological properties of the networks. In the
simulations, each particle is treated as a rigid body whose orientational degrees
of freedom were represented by quaternions.

Ring Enumeration and Topological Analysis. To compute the geometric and
topological properties of the network liquids, we first extracted the adjacency
matrix Aij of each configuration, where two particles i and j were considered
connected by an edge if they shared a patch–patch interaction (which was
determined using Eq. 5). Once the adjacency matrix of a network was computed
we identified shortest-path rings. Starting from each node i of the network we
found the shortest path connecting any two of its bonded neighbors l and m
(which does not include i), then adding node i to this path produces a shortest-
path ring. This was then repeated for all pairs of bonded neighbors l and m. If
there were multiple “shortest” paths of the same length connecting l and m,
then all resulting rings were added to the set of shortest-path rings.

Theringsformedbythedendrimerparticlesarecomposedofnodesconnected
by straight line segments, therefore they represent closed polygonal paths. This
allows us to compute the writhe of a ring as (33)

Wri(Ri) =
1

2�

∑
k 6=l

!kl , [6]

where!kl is the contribution to the writhe from the segments k and l on ring i
defined as (33)

!kl = sgn
{
[(rl+1 − rl)× (rk+1 − rk)] · a

}
·(

sin−1(n1 · n2) + sin−1(n2 · n3)

+ sin−1(n3 · n4) + sin−1(n4 · n1)
)
,

[7]

where sgn(·) is the sign function and
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n1 =
a× d
|a× d|

, n2 =
d× c
|d× c|

,

n3 =
c× b
|c× b|

, n4 =
b× a
|b× a|

,
[8]

where a = rl − rk , b = rl − rk+1, c = rl+1 − rk+1, and d = rl+1 − rk .
To identify whether a ring (or the backbone for a pair of fused rings) is knotted,
we used the python package pyknotid (47).

The linking number can similarly be computed using

Lkij(Ri, Rj) =
1

4�

∑
kl

�kl , [9]

where �kl is the contribution to the Lkij from a pair of line segments k and l
belonging to rings i and j, respectively, and

�kl = atan

(
a · (b× c)

|a||b||c|+ (a · b)|c|+ (c · a)|b|+ (b · c)|a|

)

+ atan

(
c · (d× a)

|c||d||a|+ (c · d)|a|+ (a · c)|d|+ (d · a)|c|

)
,

[10]

where a, b, c, and d are defined as before (48).

Dynamical Properties. To probe the dynamical properties of the network
liquids we compute the MSD and bond autocorrelation function (Cb). The bond

autocorrelation function represents the fraction of bonds which are still present
in the system following t Monte Carlo cycles (i.e., we are taking a single Monte
Carlo cycle to be the unit of time), independent of whether any bond breaking
events occurred during the interim. We define it as

Cb(t) =

〈∑
i
∑

jAij(t′)Aij(t′ + t)∑
i
∑

jAij(t′)

〉
, [11]

where A(t′) is the adjacency matrix at “time” t′ and Aij = 1 or Aij = 0
if particles i and j are bonded or not bonded to one another, respectively.
Additionally, we take the average over all possible time origins t′.

Data, Materials, and Software Availability. All data code can be found
at (49).
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