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Classical nucleation theory (CNT) is built upon the capillarity approximation, i.e., the assumption that
the nucleation properties can be inferred from the bulk properties of the melt and the crystal. Although the
simplicity and usefulness of CNT cannot be overstated, experiments and simulations regularly uncover
significant deviations from its predictions, which are often reconciled through phenomenological
extensions of the CNT, fueling the debate over the general validity of the theory. In this Letter, we
present a falsifiability test for any nucleation theory grounded in the capillarity approximation. We focus on
cases where the theory predicts no differences in nucleation rates between different crystal polymorphs. We
then introduce a system in which all polymorphs have the same free energy (both bulk and interfacial)
across all state points. Through extensive molecular simulations, we show that the polymorphs exhibit
remarkably different nucleation properties, directly contradicting predictions of CNT. We argue that CNT’s
primary limitation lies in its neglect of structural fluctuations within the liquid phase.
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Citing Peters (who in turn paraphrases Popper [1]): “The
most convincing test of a theory comes from special cases
where the theory should fail if it is not true” [2]. Here, we
present a system that is ideally suited to test one of the basic
assumptions of classical nucleation theory (CNT), i.e., the
so-called capillarity approximation. The capillarity
approximation assumes that the critical nucleus has the
same thermodynamic properties (surface tension, density,
etc.) of the bulk phase, which allows for a simple
calculation of the free-energy barrier for the phase tran-
sition. CNT defines the nucleation rate as Ke−ΔGðncÞ=kBT ,
where kBT is the thermal energy, and K is the kinetic
prefactor that accounts for the attachment rate of particles
to the nucleus. ΔGðncÞ is the free-energy barrier for
nucleation and is obtained by maximizing ΔGðnÞ ¼
−njΔμj þ αn2=3γ, i.e., the Gibbs free energy cost to form
a nucleus of n particles at constant pressure and temper-
ature, where Δμ is the chemical potential difference
between the crystal and the melt, γ is the interfacial free
energy, and α is a proportionality constant accounting for
the shape of the nucleus [3]. Because of its relative
simplicity and predictive power, CNT has been perhaps
the most used theoretical model to describe nucleation
processes. Although it has been successful in many cases
[4–7], there are also numerous cases where its predictions
do not align with experimental and simulation results
[8–11]. In such instances, various phenomenological

extensions to the theory [12–26] have been proposed to
reconcile these discrepancies without abandoning the capil-
larity approximation, for example, by introducing temper-
ature-dependent interfacial free energies.
Usual tests of CNT consist in comparing the measured

nucleation rates with theoretical values. The problem with
this approach is that the results depend strongly on
quantities, notably γ, which are state dependent and very
difficult to measure accurately at conditions where homo-
geneous nucleation occurs. Citing Oxtoby, “Nucleation
theory is one of the few areas of science in which agreement
of predicted and measured rates to within several orders of
magnitude is considered a major success” [27].
Here we present a falsifiability test not only for CNT but

also for any nucleation theory grounded in the capillarity
approximation. Instead of accurately predicting nucleation
rates, we focus on the polymorphic composition of the
crystalline phase [28,29], i.e., the ability of a material to
exist in more than one crystalline structure [30–36]. We
introduce a binary mixture with three polymorphs that
possess identical free energies (both bulk and interfacial) at
all state points. The three polymorphs are isotypic forms of
the cubic diamond crystal, i.e., they share the same atomic
positions and symmetry of the crystal lattice, but differ in the
way the different species are arranged on the lattice sites.
Within the capillarity approximation all these structures
should have identical nucleation properties, given that there
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are no free-energy differences between the different poly-
morphs and that they all form from the same liquid phase.
Instead, via molecular simulations, we find that the nucle-
ation properties of the three polymorphs are radically differ-
ent. Interestingly, we find that the polymorph that nucleates
more easily is the one with the largest unit cell, and the one
that nucleates the least is the one with the smallest unit cell.
To account for the difference in nucleation properties
between the polymorphs, we show that the orientational
order of the melt is closest to the polymorph that nucleates
more frequently.
The model system is presented in Fig. 1. It is a binary

mixture of tetravalent patchy particles, i.e., particles that have
a hard-core repulsion and attractive spots tetrahedrally
located on their surface, as detailed in Supplemental
Material [37]. The interaction between the patches is specific
and defined by the interaction matrix in Fig. 1(c), whose

elements mij are equal to 1 only if patches i and j can bind.
The specificity of interactions in patchy particles model
systems can be experimentally realized exploiting the pre-
dictable and controllable interactions (Watson-Crick base
pairing) of DNA [44–46], with one of the most promising
approaches being the use of DNA origami [47,48]. This
technique has recently been successfully applied to the self-
assembly of a pyrochlore lattice, confirming the feasibility of
the approach [49]. The design in Fig. 1, called N2c8, since it
uses two species and eight different patch types, was
originally introduced in the context of SAT assembly
[50,51] as a system able to self-assemble exclusively into
the cubic diamond structure (DC) while avoiding the
hexagonal diamond one [52]. As explained in the dedicated
section in Supplemental Material [37], the SAT-assembly
algorithm can also be used to list all possible ways to fill the
lattice positions of the target cell by particles belonging to a
selected design (in our case N2c8). This allows us to
automatically identify all those possible polymorphs that,
regardless of their nucleation abilities, are compatible with a
cubic diamond lattice of a certain size (defying McCrone’s
law [53]). We find that there are three possible periodically
repeated patterns of N2c8 patchy particles within the lattice
positions of a 48-particle cubic diamond cell. All these
arrangements are illustrated in Fig. 2 where we display the
[001] plane. The three structures belong to the P1 space
group, meaning that there is no symmetry other than the
translational one. Yet, they differ in the unit cell size (black
box in Fig. 2), which we use for labeling: DC-X where
X∈ ½8; 16; 24� refers to the size of the unit cell of each
polymorph. We use here the word unit cell to indicate the
smallest repeating unit of the two species, regardless of patch
coloring, that, when stacked together, creates the crystal
lattice, as shown in Fig. 2. It is worth noting that if the patch
arrangement in the unit cell is also considered (not shown in
Fig. 2), the DC-8, DC-16, DC-24 have unit cells of 16, 16,
and 48 atoms, respectively. In the following, wewill indicate
the size of the unit cell only referring to the species
occupation, regardless of the patch arrangement. Although

FIG. 1. N2c8 design. Binary mixture of patchy particles SAT-
designed to exclusively self-assemble into a cubic diamond
crystal. The two species, depicted in cyan (a) and red (b), have
four tetrahedrally arranged patches that bind according to the
interaction matrix (c) where the ones indicate the interacting
patches. Matching colors appear for complementary patches (off-
diagonal ones), while unique colors represent self-complementary
interactions (diagonal ones).

FIG. 2. Overview of cubic diamond polymorphs. The SAT-assembly framework allows us to enumerate all the possible arrangements
of the N2c8 particles in the 48 particle cubic diamond lattice. Three periodic patterns are identified: DC-8 (a), DC-16 (b), and DC-24 (c).
They are labeled and displayed in increasing order of unit cell size (black box). In (d) their surface tensions are plotted. Each estimate
comes from an average of four independent Monte Carlo simulations in the grand canonical ensemble. All values are considered equal
within an error of 3%.
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other polymorphs with larger unit cell sizes exist, they do not
appear in our simulations becausenucleation involves critical
nuclei smaller than 30 particles under the conditions inves-
tigated. We speculate that crystals with unit cells larger than
the critical nucleus size nc, which is temperature dependent,
are prevented from nucleating.
The three polymorphs investigated here are isotypic,

their composition is always equimolar and they have only
translational symmetry. In each of the crystals the same
number and type of bonds are established, and lattice
vibrations are controlled by the geometry of the patches,
which is the same for both species of the mixture.
Therefore, all polymorphs have the same bulk free energy.
Moreover, we verify the equality of their (solid-liquid)
interfacial free energies. With successive umbrella sampling
simulations [54] we have computed the free energy cost of
forming an interface between each polymorph and the same
liquid phase at coexistence conditions (determined via direct
coexistence simulations). The resulting average values of
surface free energy are reported in Fig. 2(d) for the [100]
square plane. We leave the full description on how the
computation is performed in the dedicated section of the
Supplemental Material [37]. Here we just emphasize that
the surface tensions of the three polymorphs are the same
within the error (approximately 3%). The relevant macro-
scopic properties on which CNT is based are therefore the
same in the DC-8, the DC-16, and the DC-24 structures.
Having characterized the bulk properties of the three

polymorphs, we now consider their nucleation properties.
The N2c8 binary mixture has an azeotropic point at
equimolar concentration [55], meaning that an equimolar
mixture will retain its composition during liquid-gas phase
separation. This was shown to aid the nucleation process
[56], since crystal nucleation can occur in liquid droplets
that have the same composition as the final crystalline
structure. We choose two state points where crystallization
was found to be favorable and we run extensive

Monte Carlo simulations in the canonical ensemble to
collect nucleation events. In the following, temperature T is
in unit of ϵ=kB, density ρ is in unit of 1=σ3, and pressure P
in unit of ϵ=σ3, where σ is the patchy particle diameter, ϵ is
the square-well potential depth (see Supplemental Material
[37]) and kB ¼ 1. In particular, we simulate N ¼ 500
patchy particles [57] at equimolar concentration in the
canonical ensemble at T ¼ 0.1, ρ ¼ 0.35 [600 trajectories,
both with and without aggregation-volume bias (AVB)
moves [57,58]] and at T ¼ 0.104, ρ ¼ 0.4 (300 trajectories
with AVB dynamics). We label successfully nucleated
those trajectories having a fraction of particles in the cubic
diamond phase greater than 0.5 and classify the obtained
crystals. We use the total coherence, an order parameter
based on spherical harmonics, to distinguish between liquid
and crystalline particles [59–62], and we implement a new
order parameter (bond geometry and particle orientations
must be taken into account) to classify the different poly-
morphs. A full description of the order parameters can be
found in the section “Total coherence order parameter” in the
Supplemental Material [37]. As shown in Fig. 3(a), the three
polymorphs have different nucleation rates: the majority of
nucleating trajectories form the DC-24 polymorph, the one
with the largest unit cell size, while only a single nucleation
event is observed for the one with the smallest unit cell size,
the DC-8 polymorph. Specifically, for the T ¼ 0.1, ρ ¼ 0.35
state point, out of 600 trajectories, 43 form theDC-24, 15 the
DC-16, and none the DC-8 with AVB dynamics and 30 form
the DC-24, 11 the DC-16, and 1 the DC-8 with no AVB
moves. Similar results are observed for the T ¼ 0.104,
ρ ¼ 0.4 state point (35, 6, and 0, respectively, out of 300
trajectories). In Fig. 3(b) we report the progress in time of the
nucleus size for two typical trajectories: the blue one
spontaneously self-assembling a DC-24 polymorph, and
the green one crystallizing into a DC-16 structure.
Snapshots of the critical nucleus are also displayed, showing
that the different polymorphs are already distinguishable at

FIG. 3. Direct nucleation simulations and nucleation barriers (a) Fraction of trajectories ending up into each polymorph out of 600
with snapshots of final configurations. Simulations are run in the canonical ensemble at T ¼ 0.1, ρ ¼ 0.35, N ¼ 500. Interestingly, the
polymorph with the largest unit cell size is the one that nucleates most frequently. (b) Time evolution of the number of crystalline
particles with a snapshot of the critical nucleus for the DC-24 (blue) and the DC-16 (green) structures. (c) Gibbs free energy for the
formation of crystal nucleus of size n for the three polymorphs computed by means of umbrella sampling technique at T ¼ 0.104 and
P ¼ 0.018. The different trend in nucleation simulations is confirmed: the smallest unit cell size polymorph has the highest barrier.
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critical sizes. Additionally, we analyze the polymorph
growth (see Supplemental Material [37]) to explicitly
exclude the presence of cross nucleation of one polymorph
on top of another.
The different nucleation rates of the three polymorphs are

reflected by the height of their free energy barriers, which
we compute with the umbrella sampling technique (a brief
description is provided in the Supplemental Material [37]).
For this, we run NPT Monte Carlo simulations at T ¼
0.104 and P ¼ 0.018 with a harmonic bias potential. Each
simulation is prepared by inserting in the liquid phase a
crystalline seed of size n0, where n0 increases by 5 particles
in successive simulations. The initial seeds have a roughly
spherical shape and the same density for each polymorph.
We carefully verify that the chosen bias potential and
thermodynamic conditions ensure a good sampling, i.e.,
that there is an appreciable overlap between simulations
with successive n0, that no spontaneous nucleation occurs,
and that there is no change in polymorph identity during the
simulation. The resulting barriers are reported in Fig. 3(c).
In order of increasing barrier height, we find DC-24, then
DC-16, and finally DC-8, confirming that the polymorph
with the lowest barrier is the one with the largest unit cell.
The height difference between the DC-24 and DC-16
barrier is approximately 1kBT, a value that aligns well
with the fractions of trajectories nucleating into the two
polymorphs. The same comparison cannot be made for the
DC-8 case as only a single nucleation event is observed for
this polymorph. The critical size nc for all nuclei is nc ≲ 30,
i.e., smaller than the largest unit cell (48 particles) used in
our exhaustive search of competing polymorphs.
We have observed that the three polymorphs exhibit

different nucleation properties, specifically in terms of
nucleation rates and barrier heights, and that these differences
cannot be attributed to variations in the bulk properties of the
crystals. In the following, we investigate whether the differ-
ent nucleation properties of the polymorphs can instead be
traced back to the structural fluctuations within the melt. We
follow the idea that if the liquid phase fromwhich the nucleus
arises already exhibits some degree of order in particle
orientation, this will favor the nucleation of the polymorph
that is structurally closer to the melt [63]. The three
polymorphs, DC-8, DC-16, and DC-24, differ in fact by
the orientation between neighbors of the same species. In
particular, for each patchy particle, we can consider the angle
α formed between the patch orientations of its two second-
nearest neighbor of the same species [see inset of Fig. 4(b)]:
for the bulk polymorphs we have αDC-24 ∼ 109°, αDC-16 ∼ 9°,
and αDC-8 ∼ 9°. In Fig. 4(b) we plot the radial profile of α
from the center of mass of nuclei of DC-24 (blue diamonds),
DC-16 (green circles), andDC-8 (red triangles) polymorphs.
We use configurations and trajectories from the umbrella
sampling window of size n ∼ 50 and, in order to compute α,
we consider only particles having two second nearest
neighbors of the same species. To show the crystalline

profile, in Fig. 4(a), we show the radial distribution of the
total coherence which has high values (around 14) for the
bulk diamond crystal, and small values (around 9.5) for
themelt, irrespective of the polymorph. The figure shows the
transition from the core of the nuclei at short distances to
the melt at large distances. In the core region, α assumes the
value of the corresponding bulk polymorph (αDC-24 ∼ 109°,
αDC-16 ∼ 9°, and αDC-8 ∼ 9°). In the interfacial region,
instead, the value of α is always that of DC-24 polymorph,
irrespectively, of the nucleus type. This shows that the
orientational order in the melt resembles more closely that
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FIG. 4. Bond orientational order in the liquid phase. Total
coherence (a) and α angle (b) as a function of the distance of each
particle from the center of mass dc:m: of the largest crystalline
cluster. Points are computed by averaging on different configu-
rations and trajectories characterized by a crystalline nucleus of
50 particles: a DC-24 (blue diamonds), a DC-16 (green circles),
and a DC-8 (red triangles) nucleus. α defines the relative
orientation between second neighbors of the same species as
illustrated for patchy particles of the first species of the DC-24
polymorph in the inset of (b). The colored bands in (a) help
locating the different regions: the nucleus, the interface, and the
melt. The colored bands in (b) define the range of α values typical
of the bulk DC-24 crystal (blue band) and of the bulk of both
DC-16 and DC-8 (green band) polymorphs; particles in the
interfacial region as well as the ones in the melt have α angles
characteristic of the DC-24 structure.
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of the DC-24 polymorph, i.e., the polymorph which nucle-
ates more frequently and has the lowest nucleation barrier. A
similar argument can be made to rationalize why the DC-8 is
the less frequently nucleating polymorph, as discussed in the
Supplemental Material [37]. Furthermore, a thorough analy-
sis confirms that the observed difference in the nucleation
frequency between the polymorphs cannot be attributed to
the presence of favorable or unfavorable bonding sites on
their surfaces (see Supplemental Material [37]).
In conclusion, unlike previous tests of classical nucle-

ation theory, which focus on accurately measuring nucle-
ation rates and comparing them to theoretical predictions,
leading to a pass or fail outcome depending on the system
and/or state point, in this Letter we propose an alternative
approach. We examine cases where CNT predicts no
difference in nucleation rates between different poly-
morphs. This shift in focus sidesteps the common reliance
on precise free-energy measurements and their dependence
on specific state points. Instead, it only requires ranking the
polymorphs according to their nucleation frequency.
Crucially, while discrepancies between CNT and measured
nucleation rates can often be accounted for through ad hoc
extensions to the theory, our test cannot be satisfied by any
modification of CNT built upon the capillarity approxima-
tion. To run the falsifiability test we introduce a binary
mixture of patchy particles where three different poly-
morphs, despite having identical bulk and interfacial free
energies, exhibit significantly different nucleation rates.
One of the shortcomings of CNT is its failure in

accounting for the short-range order possessed by the
supercooled liquid state [63]. In our system, we have shown
that themelt exhibits a local orientational order typical of the
polymorph with the highest nucleation rate. This suggests
that it is the structural fluctuations in the melt, both in terms
of their size and orientational order, rather than the bulk
properties of the infinitely large crystals, that determine
which polymorph will nucleate. These arguments offer
support to approaches beyond CNT that take into account
the structural properties of the liquid phase [30,63–73].
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