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ABSTRACT

We present a phase-field model based on the Cahn-Hilliard equation to investigate the properties of phase separation in DNA nanostar
systems. Leveraging a realistic free-energy functional derived from Wertheim theory, our model captures the thermodynamic properties of
self-assembling DNA nanostars under various conditions. This approach allows for the study of both one-component and multi-component
systems, including mixtures of different nanostar species and cross-linkers. Through numerical simulations, we demonstrate the model’s
ability to replicate experimental observations, including liquid-liquid phase separation, surface tension variation, and the structural organiza-
tion of multi-component systems. Our results highlight the versatility and predictive power of the Cahn-Hilliard framework, particularly for
complex systems where detailed simulations are computationally prohibitive. This work provides a robust foundation for studying DNA-
based materials and their potential applications in nanotechnology and biophysics, including liquid-liquid phase separation in cellular

environments.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0257265

I. INTRODUCTION

DNA constitutes a macromolecule of extraordinary interest
from different points of view: its particular double helix confor-
mation, combined with the hybridization mechanism that allows
the coupling between sequences of compatible nitrogenous bases,’
makes it an instrument of choice for the synthesis of innovative and
versatile materials in the field of materials science, and a power-
ful means of investigation and experimentation at the biophysical
level.” In this sense, significant are the uses that have been made of
it (even in aggregate form) to create nanomachines,’ logical gates,"
nanostructures,” * to build vectors for drug-delivery’ strategies, but
also to investigate novel phenomena in soft matter systems.'’ "
In particular, the sequence-specific pairing mechanisms of DNA
make it particularly suitable to study phase separation processes,
as they allow for careful control of the bonding properties of the
system.”' "’

A class of DNA-based systems that has been used for this kind
of investigation consists of specific DNA constructs known as nanos-
tars, where the maximum number of bonds that each particle can
create can be controlled by design. A nanostar of valence Vis formed

by Vsingle DNA strands hybridized together and capable of binding
to each other through sticky ends.”'' Control of the system bonding
modes is achieved through the selection of the base sequences mak-
ing up the nanostar binding sites, so that only specific sticky ends
can bind to each other.

Given the complexity of the DNA molecule, formed by long
chains of nucleotides containing dozens of atoms, any atom-
istic descriptive model is unsuitable to characterize its thermody-
namic properties: the high number of degrees of freedom would
make the simulations unmanageable in terms of implementa-
tion and timing.'"" One possibility to simplify the problem con-
sists in using particle-based coarse-grained models,'” which indeed
make it possible to access the timescales required to study col-
lective phenomena.'®"” However, phenomena such as phase sep-
aration and coarsening are still out of reach at such a level of
description.

Here we tackle the problem by using a different approach based
on the Cahn-Hilliard equation,'® which is a phase-field, partial
differential equation describing the time evolution of the macro-
scopic order parameter density p, initially developed for the study
of metal alloys, but in general suitable for the description of fluid
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mixtures with one or more components.''” Differently from pre-
vious attempts,”’ based on schematic free-energy expressions, we
describe the thermodynamics of the DNA nanostar systems in a
realistic way, making use of a mean-field free energy that has been
developed to model self-assembling systems and has been shown to
qualitatively predict the properties of these DNA constructs.”

Our aim is to assess the validity and potential of this phase-field
model, as well as its predictive accuracy with respect to theoretical
expectations and especially experimental results: the latter match is
of particular interest because of the wide range of potential applica-
tions in biophysics involving nanostar-based systems, which include
the possibility to mimic the liquid-liquid phase separation processes
that are important for many cellular processes.’’ In this regard, an
interesting analysis was carried out by Jeon et al. in Ref. 22, where a
system of two different kinds of nanostars with interspecies linkers
was studied experimentally, highlighting physical trends (especially
in connection with interspecies surface tension variations with the
concentration of cross-linkers) which we reproduce here.

Il. METHODS
A. Cahn-Hilliard equation

The Cahn-Hilliard (CH) equation is a partial differential
equation, derived from the assumption that the total free energy
of a homogeneous system described by the number densities p,
of the Ny components at volume V and temperature T can be
approximated as'®

V)= [ [f({pi}) AY @l

where f({p;}) is the Helmholtz free-energy density, and K is a
coefficient linked to the free energy penalty that comes with the cre-
ation of an interface between two phases. To simplify the model, we
neglect cross-species interfacial terms and we implicitly set K to be
the same for all species.

By connecting the spatial variation of the order parameters
with the spatial variation of a “generalized” chemical potential, it is
possible to obtain a continuity equation that expresses locally the
conservation of the total mass of the system:'*

Opj _ 2 OF({pi}) o2
or - MY ( o Y pj)' @

In Eq. (2), t is the time, M is a positive mobility coefficient setting the
time scale of the system that we assume to be density-independent,
v? is the spatial Laplacian operator, and the terms in brack-
ets correspond to the generalized chemical potential of species j,
u;=0f({p;})/9p —szpj. This is the CH equation for the j-th
number density, which, given initial conditions and appropriate
boundary conditions, can be numerically integrated in time to
obtain the evolution of the system.

We discretize Eq. (2) in time with timestep At and in space by
using bins of linear size Ax. We consider periodic boundary con-
ditions. To integrate Eq. (3) in time, we have implemented one
explicit and two semi-implicit methods. Indeed, in addition to the
explicit Euler method, which we have used throughout the paper,
we have also implemented the implicit-explicit Euler method,”

ARTICLE pubs.aip.org/aipl/jcp

which is solved in Fourier space, and the finite-volume scheme of
Bailo et al.,”* discussed in Appendix A. We perform simulations in
one- and two-dimensions using a parallel code that runs on GPUs
to improve performance.” In our implementation, we use dimen-
sionless free energies, multiplying their expressions by f = k’%T for
convenience. As a result, we use a rescaled mobility coefficient
M’ = kgTM, which we set to a constant value M’ = 1 (nm 5)71, since
its value affects the speed of the computations, but not the final con-
figuration features. Therefore, in our implementation, the equation
we integrate becomes

i _ 2 OBf ({pi}) 2
a—tf =M'v (ij - BKV p,). (3)

Additional details on the numerical methods, and in particular
on the integration algorithm, can be found in Appendix A.

B. Wertheim free energy

The physics of the system is contained in the expression for
the free energy density f({p,}), which has to be chosen carefully to
reproduce with satisfactory accuracy the properties of the target sys-
tem. For this purpose, we use Wertheim '[heoryl“\2 7 for self-assembly,
a mean-field theory suitably adapted to a system of DNA nanostars
in a NaCl solution at fixed temperature T and salt concentration
[Na*]. The two main assumptions of the theory are the absence of
loop structures in finite-size clusters, and of double bonds between
pairs of nanostars.

In the Wertheim theory, the free energy density is written as a
sum of two terms:”

FUpi}) = free({pi}) + fo({pi}), €Y

where feef({p;}) is the free energy density of a system where no
bonding is present, and therefore accounts for the purely repul-
sive forces (mainly excluded volume and electrostatic effects acting
between the negatively charged backbones of DNA strands), and
fo({p;}) is an attractive contribution, discussed later on, stemming
from the hybridization between the complementary sticky ends of
the nanostars.

Since we consider rather dilute systems, we approximate the
reference free energy density with a second-order virial expansion,
as proposed in Ref. 2, giving

N, .
Bf et = p log (vop) = p +B2p” + 3 pj log(%), ®)
j=1

where p = Zfli pj is the total number density, N is the number of
species, B, is the second-order virial coefficient of the nanostars
(with a non-bonding sticky sequence), which has the dimensions of
a volume, and vy is the inverse of the partition function of a sin-
gle nanostar at fixed center of mass;*® the latter can be assumed
to be independent of density, so that its value does not affect the
phase equilibrium. In the above expression, we assume that the value
of B, is the same for all pairs of species of interacting nanostars,
which is an accurate approximation since the nanostars we consider
have the same geometry, differing only in the sequence of the sticky
ends. In the following, we set B, = 2190 nm?, a value that has been
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FIG. 1. A sketch representing (a) the different species of DNA nanostars we con-
sider and (b) the way they can bond: only like-colored sticky ends can bind to each
other. Each nanostar is composed by ) = 4 hybridized single strands of DNA
(the black sections), each terminating with a single-stranded, self-complementary
sticky sequence for connection with other nanostars (the colored sections). Note
that “only A” and “only B” systems have the same qualitative behavior, while the
presence of AB nanostars creates links between the A and the B particles.

computed in Ref. 2 through two-body coarse-grained simula-
tions and was shown to be weakly dependent on T for the salt
concentration we will be using (0.5M).

As an example of a phase-field description of DNA particles
in solution, we focus on the experimental system investigated by
Jeon et al.,”” which introduced three different nanostars, A, B, and
AB, with valence V4 = Vg = Vap = V = 4. The two species of nanos-
tars A and B have respectively four « and f (« and f3 are mutually
orthogonal, i.e., non-complementary) palindromic sticky ends each,
and are combined with special cross-linker AB nanostars for inter-
species bonding. These cross-linkers are designed in such a way as
to contain two sticky ends of type « and two sticky ends of type f3,
thus promoting connections between the pure A and pure B species.
In the presence of the AB nanostars, the A particles can bind among
themselves and with the AB ones, and similarly the B particles can
bind among themselves and with the AB ones, thus generating con-
nections between the A and the B particles via the AB ones. For a
graphical description of the bonding scheme, see Fig. 1.

In the following, we consider systems made of only A nanos-
tars, as well as the Jeon et al.”’ ternary mixtures of A, B, and AB.
In the former case, the Wertheim bonding free-energy density is
given by’

ARTICLE pubs.aip.org/aipl/jcp

where Xo(T, pa, [Nat]) = ZY 3484 jothe fraction of unbonded

240 Vpa
sticky ends at temperature T, salt concentration [Na*], and density
P> and A, has the dimensions of a volume, quantifies the strength
of the interaction acting between the specific complementary
sequences of the sticky ends and is equal to

A(T,[Na*]) = v, e PG _ o, ¢ POAHTAS,) @)

where v}, = 1.66 nm® is the standard bonding volume associated with
each particle, while AG, is the Gibbs free energy variation associated
with the hybridization of two sticky ends «. The latter variation con-
sists of two contributions, an enthalpic term, AH,, and an entropic
term, AS, = AS™!t + ASY salt The values of these two terms can be
worked out from the specific sticky-end sequences of DNA bases
using the SantaLucia model.”" Table I contains the sequences
(taken from Ref. 22) and free-energy parameters of the sticky ends
used in this work. Note that the chosen sequences are palindromic
(i.e., self-complementary) to allow for aa and f bonding, and that
we fix the value of the salt concentration [Na*] = 0.5M throughout
the whole study.

To compare with numerical results, we use the one-component
Wertheim free energy to calculate the phase diagram. The densities
of the coexisting phases are found by using the Maxwell construction
at fixed temperature.’

With the free energy contributions given in Egs. (5) and (6),
the Cahn-Hilliard equation can be written explicitly for this pure
system, giving

P ,
g = M’V (Bitser + Bty + Pitint)» )

in which the chemical potential contributions from the ref-

erence, bonding, and interface terms come respectively in

the form Byure(pa) = 222 = log (pa) + 2Bapa, Bius(pa) = “422)

= Vlog (Xu(T,pa)), and B, (Vp,) = —BKV’p,,.
For Jeon et al.’s mixture, the attractive contribution f;, takes the
following form:’

1

Bfe =PAV(10g(Xa) - % + %) +pBV(10g(Xﬁ) _ % + E)

95:¥€:91 G20Z AInF €1

X, X :
By = pa v(log (X0 + . zX ) ©) +pAB¥(log (%) - L +log (%) - % . 1), ©)

TABLE . Nucleotide sequences for the two kinds of sticky ends considered in this study, and enthalpic and entropic variations
associated with their hybridization calculated according to Refs. 29 and 30.

Sticky sequences and descriptive parameters

Sticky end Sequence AH[ [f]—aoll ] ASsar[ #"‘IIK] ASposalt [ ﬁ ]
o CGATCG -42200 1.84log([Na*]) -119.1
B GAGCTC —42 400 1.84log([Na*]) -120.6
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where X, and X correspond to the fraction of unbonded sticky ends
of type a and , respectively, and are given by

X, - 1+\/1+4cyA,,’ (10)
2¢yAy
where y € {a, 8} and ¢, is the number density of sticky ends of type
p» thatiis, co = V(pa + #2) and c3 = V(pp + ).
Finally, the system of coupled differential equations to be solved
to obtain the time evolution dynamics of the three density fields can
be written as

é) i i i i
i M,vz(/j.uref +Bup + [;.uint)a

i ¢ {A,B,AB},
ot fed }

where the chemical potential contributions for species i amount
to Burer(pip) = 2Bop +logpi, Py ({pj}) = Lyeriy logXy, and
Bt (Vpi) = —BKV?p;. Here, T(i) refers to the set of sticky ends
present on nanostars of type i, and K is related to the interfacial
cost, which we assume to be independent of i.

Ill. RESULTS
A. Pure systems

We use the one-component system made of A nanostars to
assess the effectiveness and reliability of the present Cahn-Hilliard-
based approach, as well as to select an optimal value for the K
constant.

It was shown experimentally that, under the right thermal
and density conditions, the only-A system phase separates into a
high-density phase containing a network of bonded nanostars (the
liquid) and a low-density phase composed of mostly unbonded
nanostars (the gas).'! Within the present approach, we also find
that any initial configuration defined by small random density fluc-
tuations superimposed on an average value evolves according to

3.03%107° nm™?

(a) °

i X x -5 -3
1000 4 3.02x107° nm

4 3.01x107% nm~3
2000

3.00%107° nm™3

y [nm]

3000

2.99%107% nm~3

4000
2.98%107° nm~3

5000 % 2.97 %1075 nm-3

1000 2000 3000 4000 5000
X [nm]
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the CH equations either toward a completely homogeneous sys-
tem or toward a phase-separated system, as shown in Fig. 2 for a
2D system.

The coefficient K appearing in the Cahn-Hilliard equation is
linked to the Helmholtz free energy cost linked to the creation of
an interface between two different phases. Indeed, the free energy
penalty for interface creation comes in the form §|Vp|2, which
means that for a given interface cost, increasing the value of K
decreases the density gradient magnitude |Vp|, thus making the
interface smoother and wider. Of course, decreasing K does the
opposite.

Here we set the value of SK by comparing the theoretical
gas-liquid phase diagram, obtained using the Maxwell construc-
tion with the free energy given by Eq. (4), with numerical results
of 1D Cahn-Hilliard simulations. We fix the timestep, At = 107% s,
and the grid spacing Ax = 10 nm, and run simulations at four dif-
ferent temperatures, T = 298.15, 303.15, 308.15, and 309.15 K, for
10" timesteps. Note that the highest T is just above the theoreti-
cal critical temperature T. = 308.44 K, and therefore does not phase
separate. For each state point, we use three values of the interface
constant, BK = 10, 10°, and 10’ nm’, and two different initial con-
ditions: separated and homogeneous. The former refers to a starting
configuration where the two halves of the system are initialized with
the theoretical densities of the gas and the liquid, p, and p;, con-
nected by sigmoidal curves. By contrast, in homogeneous simulations
we start with a system of average density (p, + p;)/2, with random
fluctuations around this value.

Figure 3(a) shows the comparison between theory and simula-
tion. First of all, we note that all simulations predict homogeneity
at the highest temperature considered, in agreement with theory.
Second, below the critical temperature T, the densities of the two
coexisting phases are well reproduced by the simulations, with two
exceptions. For T = 308.15 K, which is just below T¢, the K = 10’
nm® coexisting densities for the initially homogeneous systems are
closer than what they should be. We identify this disagreement as a
finite-size effect, as at this temperature and value of K the width of

(b) °
1000
2000
3000
4000
5000

0 1000 2000 3000 4000 5000
X [nm]

3.00 % 1074 nm~?

2.50x 1074 nm~3

2.00x107% nm~3

y [nm]

1.50x 1074 nm~3

1.00x 1074 nm™3

5.00 % 10~% nm~?
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FIG. 2. Initial and final configurations of a simulation of a one-component A system at T = 303.15 K. (a) Initially, the system is initialized in a quasi-homogeneous configu-
ration, where each bin has a nanostar number density close to p, = 3 x 105 nm=3. (b) After ~108 steps run with At = 10~ s, the system is well separated, with liquid
droplets coexisting with a gas background.
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FIG. 3. (a) A comparison between the theoretical (brown dashed lines) and numerical (filled symbols) phase diagrams, for three values of SK and two different initial
conditions. The brown open square signals the position of the critical point (p,, = 6.67 x 107° nm~2, T, = 308.44 K). Inset: the same data is shown with a logarithmic scale
for p to highlight the agreement at low density. (b) Final density profiles for simulations run at (top) T = 308.15 K and (bottom) T = 298.15 K, for two different values of the

interfacial cost SK.

the interface becomes comparable with the box size. By contrast, if
BK = 10° nm®, low-temperature simulations started from homoge-
neous configurations tend to underestimate the liquid density. This
happens because the dynamics slow down massively, as seen by the
much smaller values of the time derivative of the density field for the
BK =10° nm”’ system (not shown), which therefore remains stuck
in a metastable configuration. The final density profiles of systems
displaying these two effects are shown in Fig. 3(b) and compared
to density profiles of systems with SK = 10° nm’, which achieve the
correct liquid density at the end of the simulation.

These results show that setting K = 10° nm® provides, for the
system size studied in this work, correct estimates of the equilibrium
densities and that equilibration takes place in reasonable compu-
tational times for the explored range of temperatures. Thus, we
decided to fix K to this value for the rest of this work.

We also estimate the surface tension y associated with the
gas-liquid interface, which is defined as the free-energy cost per unit
area of forming the interface. Since we have access to the total free
energy of a system through Eq. (1), we can directly estimate y by
using its definition. To do so, we evaluate the free energy of two sys-
tems initialized with the coexisting densities of either the gas or the
liquid phase at temperature T, yielding Fgas and Fjiquia. We then put
these two systems in contact and simulate the formation of two inter-
faces (through periodic boundary conditions) of interface area A. At
long times, the free energy of the system converges to a value Fcoex.
The surface tension for each value of T can then be estimated as

_ Fcoex - (Fgas + Fliquid) ) (11)
2A

In 1D, we use systems made of N = 128 bins,and A = Ax?, since
the system can be thought of as a parallelepiped of physical dimen-
sions NAx x Ax x Ax. By contrast, in 2D, A = N, Ax?, since the size of
the simulation box is NAx x NAx x Ax.

As shown in Fig. 4(a), the surface tension increases upon
decreasing temperature, with the dependence on T weakening as
the system cools down. Such a dependence on T is due to the para-
meters that control the density of the coexisting phases, which in

the theory we use are the excluded volume B, (for the range of tem-
peratures studied, we consider the latter to be T-independent, see
Ref. 2) and the attraction volume A(T). At lower values of T, A
increases steeply, resulting in an effective increase of the attractive
force between the nanostars, which leads to a larger gap between the
coexisting densities |py;q ;g — pgas\ and to steeper interfaces, both of
which result in a higher liquid-gas surface tension (for an explana-
tion of this fact, see Appendix B). Interestingly, sufficiently far apart
(1-2 K) from the critical point, y ~ 10_3k3T/nm2, which is com-
patible with experimental estimates of the surface tension of DNA
nanostars.”>’' This agreement validates the value of SK that was
chosen for numerical convenience. We also computed the surface
tension for two 2D systems using the GPU code, and the results are
fully compatible with the 1D CPU data, suggesting a lack of depen-
dence of y on the system dimensionality, which we expect to hold
also for 3D systems. As shown in Fig. 4(b), we find that, close to
the critical point (i.e., for € < 10_2), the surface tension is compati-
ble with a power-law dependence with exponent 1.5, in agreement
with the mean-field nature of Wertheim theory.”” Away from the
critical point, an analysis of experimental data based on the Van
der Waals’ theory of liquids suggests that the T-dependence of y is
compatible with an exponential behavior.'* Unfortunately the tem-
perature range in which we can simulate is too limited to test this
scenario.

Our estimates of y(T) have been further contrasted with a
theoretically-derived computation of the same quantity, obtained
through free energy minimization techniques from an initially
phase-separated liquid-gas system modeled by a tanh(ax) density
profile function. The detailed procedure followed for this calcula-
tion, as well as the results of the comparison with CH-derived data,
are described in Appendix B.

Finally, in the inset of Fig. 4(a), we show that y o< \/E, as
expected in CH simulations.*’

B. Three-component systems

We now move on to the computational study of the three-
component system of Jeon et al., who investigated experimentally
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FIG. 4. (a) The surface tension of the one-component A system, y, as a function of temperature, calculated by putting in contact the two phases at coexistence and waiting
for the correct interface to develop. The black and green symbols refer to 1D and 2D systems, respectively. Inset: y as a function of BK for T = 300 K. The observed
dependence is compatible with a square root. (b) The surface tension as a function of ¢ = (T — T)/T¢, the scaled distance from the critical temperature. Close to the
critical point (i.e., for e < 1072), the observed dependence on ¢ is compatible with a power law with exponent 1.5, as expected for a mean-field theory.

the properties of phase-separated systems of A and B nanostars for
different values of the fraction of the AB cross-linkers cx = % in
Ref. 22; their study was carried out by quenching homogeneous
mixtures of nanostars in the binodal region at fixed cx, and letting
the system phase separate, monitoring the concentration of the A
and B species by fluorescence microscopy. In the simulations for
this part, we fix the temperature to T = 300 K (which is below the
critical temperature T, otherwise the system would remain homo-
geneous according to Wertheim theory) and simulate grids made of
1024 x 1024 bins of width Ax = 10 nm. Movies showing the evolu-
tion of the system from an initially homogeneous configuration to a
phase-separated state can be found in the supplementary material.
The selected temperature is slightly higher than the experimental
one, T =293.15 K. While this difference is not expected to change
the physics of the phase separation process, it allows us to follow
the phase separation kinetics for longer times, helping the compari-
son with the experimental results. We also note that since Wertheim
theory is known to reproduce the thermodynamics of DNA nanos-

tars only in a semi-quantitative manner,”' " it is not obvious that
using the experimental temperature would result in a more precise
comparison.

We focus on the effect of the cross-linkers by simulating sys-
tems with a fixed and equal average density of A and B nanostars,
that is, p, = p,, to which we add a fraction cxp, of cross-linkers.
When cx is zero or small, then both the A and the B nanostars
undergo a gas-liquid phase separation similar to the one-component
case, where the A and B species form completely demixed liquid
droplets. As cx increases, the tendency of the cross-linkers to bond
to both species lowers the A-B liquid-liquid surface tension, leading
to systems made of fused droplets, which are still partially demixed.
For cx > 1, the abundance of cross-linkers requires that A and B
co-localize, resulting in liquid droplets where the A and B species
are fully mixed. As shown in Fig. 5(a), the solutions of the CH
equation for the chosen values of cx display exactly this behavior,
in qualitative agreement with the experimental results reproduced
in Fig. 5(c),”” as well as with recent experiments on RNA-based
condensates;”* however, it is worth noting that minor differences
occur. For example, at high linker fraction ¢ = 1.5, the shape of

the simulated liquid droplets looks elongated with respect to the
(expected) rounded configurations seen in experiments; we ascribe
this difference to the increased time it takes for cx = 1.5 to reach
the final stage of coarsening. Also note that the average density of
the numerical and experimental systems differ by almost an order
of magnitude, owing to the different (smaller) timescales accessible
with our method.

In Fig. 5(b), we also show the density of cross-linkers: at small
values of cx, they are concentrated at the A-B liquid interface, while
as cx increases, they start accumulating also in the bulk phases, up
to complete mixing for cx = 1.5. We note that the total density of the
droplets decreases as cx increases. This decrease could be interpreted
as a result of an effective decrease of the valence inside the droplets,
which are mainly composed of a tetravalent majority species, and
cross-linkers which, when isolated, can form only two bonds with it.
As shown in Ref. 2, a reduced valence results in a lower density of
the condensed phase. It would be interesting to test this prediction
in experiments.

Similar to the procedure followed in the experimental paper,”
from the final simulation configurations, we identify all the droplets
formed by two fused pure-A and pure-B droplets, and then measure
the contact angle 0 formed at each junction between the gas, liquid
A, and liquid B phases [see Fig. 6(a)]. Exploiting the von-Neumann
convention to express the liquid-liquid surface tension between the
A and B nanostar bulk phases in terms of 6, and imposing mechani-
cal equilibrium, the liquid-gas and A-B surface tensions, y and y, 5,
are connected by yap = 2y cos g. In the experimental study, it was
assumed that y,,(cx = 0) = 2y. Here, we can independently estimate
y,p(cx = 0) by using an expression analogous to Eq. (11), with F4
and Fp, the total free energy of two pure A and B systems, in place of
Fgas and Fliquid:

) (12)

where Fap refers to the total free energy of the final equilibrated
system, obtained by juxtaposing the two pure liquids A and B, and
letting the interfaces form.
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FIG. 5. (a) Simulated configurations of phase-separated systems as the cross-linker fraction cy is increased, from left to right. Each pixel is colored according to the density
of each species it contains, where species A and B are associated with magenta and yellow, respectively. The simulations have been run at T = 300 K and average densities
Py =pg=2x% 10~5 nm~2 and Pag = Cxp4, With cx € {0.2,0.5,1.0,1.5}. The images displayed here are the bottom-right fourths (size 512 x 512 pixels) of the originally
simulated system (size 1024 x 1024 pixels). The scale bar corresponds to 1 um. (b) The density of cross-linkers for the same configurations shown in panel (a). Note
that a color bar linking pixel intensity to the cross-linker number density in (nm)~2 is given; a similar approach is not possible for panel (a), where each pixel color is the
sum of individual components corresponding to the concentrations of the A and B nanostars. (c) Experimental configurations of phase-separated systems corresponding
to increasingly higher (from left to right) values of cx € {0.2,0.5,1.0,1.5}, taken at T = 293.15K and p, = p; = 3.0 x 10~ nm=2. Species A and B are tagged with two
different fluorescent molecules: magenta and yellow, respectively. The scale bar corresponds to 20 um. Adapted with permission from Jeon et al., J. Phys. Chem. B 124,

8888 (2020). Copyright 2020 American Chemical Society.

shows cos g as a function of cx, for three different aver-
age densities of species A and B, with p, = p;. All curves display
a decreasing trend for surface tension as the fraction of linkers cx
is increased, in agreement with theory; it is worth noticing that the
average densities p, = p, do not seem to significantly affect the plot-
ted quantity, as suggested by the quasi-overlapping points obtained
at different densities, although the low-density measurements
marginally diverge from the others, which is likely due to the smaller
size of clusters altering the contact angle. We note that the agree-
ment between simulation and experiment is only semi-quantitative,

as the numerical results are always higher than the experimen-
tal data, which falls off to zero for ¢, ~ 1; this mismatch may be
due to the assumptions behind the theory we use (including the
approximations of Wertheim theory described in the correspond-
ing subsection of the Methods and the lack of thermal diffusion
in the context of the Cahn-Hilliard equation), to the significantly
lower average density at which experiments were carried out, to the
different temperature of the experiments (namely T =293.15 K),
and to generally different and incomparable observation time
scales. Unlike the experimental points, our simulation-extracted
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FIG. 6. (a) Cartoon showing the contact angle between two liquid droplets of
species A and B. (b) Surface tension study as a function of the cross-linker
fraction cx in comparison with experimental data. The theoretical estimates at
pa = pg=1{1.0x1075,2.0 x 107°,3.0 x 10~°} nm~* have been obtained from
averaging over N = 4 equilibrated configurations at each state point; the calcula-
tion of cos 6 for each binary cluster was automated by exploiting Python libraries,
fitting curves on each species contour, and calculating derivatives at the contact
points. The empty point W has been derived empirically by measuring
¥,45(Ccx = 0) similarly to y, that is, through total free energy subtraction methods.
Note that in the figure, error bars (showing the mean-squared error calculated over
different droplets and different configurations for each value of c) are smaller than
the symbol size.

measurements also seem to describe a linear variation of (cos 50 ) with
respect to cx at low values of cx.

IV. CONCLUSIONS

In conclusion, we have shown that the venerable Cahn-Hilliard
equation can be used to study the thermodynamics of phase sepa-
ration in DNA-based systems by leveraging an expression for the
free energy that models the self-assembly process. We have shown
that this approach can be generalized to mixtures of many molec-
ular species, and that its theoretical consistency and qualitative
agreement with experimental trends make it a powerful tool of char-
acterization for the properties of self-assembling systems. Indeed,
the phase-field method introduced here offers the possibility of

ARTICLE pubs.aip.org/aipl/jcp

simulating larger time and length scales with respect to molecu-
lar descriptions. Our study shows that the Wertheim theory™*”’
associated with the CH equation provides an accurate description
of available experimental data, although minor differences are still
observed in the dependence of the contact angle on the fraction of
cross-linkers. It will be interesting to understand in depth the origin
of these differences and whether these are related to the simplifying
choices adopted (e.g., the absence of thermal noise and the hypoth-
esis of equal K for each component), or to other factors such as
the different density in the experiments and in the simulations, or
the different time covered in experiments and in our study. There
are a few aspects that can be optimized to fully uncover the poten-
tial of this approach, including integrating thermal noise in the
Cahn-Hilliard equation (as done, e.g., in Ref. 20) and potentially
increasing the integration timestep through more refined numerical
algorithms.”*”” We envision applications for this method in the con-
text of multi-component liquid-liquid phase separation in cells,”*"’
to investigate the kinetics of self-assembly in complex geometries™
(with the caveat that some form of thermal diffusion accounting
for Brownian motion and coalescence effects has to be integrated in
the model to correctly capture the latter), or to model the coupling
between thermodynamics and matter flow (e.g., by coupling the
Cahn-Hilliard equation to Stokes or Navier-Stokes equations’*").

SUPPLEMENTARY MATERIAL

The supplementary material contains two movies showing the
time evolution of phase separation in an initially homogeneous
ternary mixture of DNA nanostars with [Na*] = 0.5M, T = 300 K,
pu=pg=20x10" nm™, cx = 0.5, and cx = 1.5. The movies show
the formation of tiny, densely distributed, and interconnected liquid
droplets of both species across the sample from an initially mixed
phase, which then tend to get larger and less numerous as coarsening
progresses. This behavior is consistent with thermodynamic expec-
tations, since at infinite time only two, possibly adhered, droplets
(one per species) should be expected.
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APPENDIX A: ADDITIONAL DETAILS
ON THE NUMERICAL ALGORITHM

To integrate Eq. (3) in time, we have implemented one explicit
and two semi-implicit methods. Indeed, in addition to the explicit
Euler method, which we have used throughout the paper, we have
also implemented the implicit-explicit Euler method,” which is
solved in Fourier space, and the finite-volume scheme of Bailo et al.”*
The latter two have better properties when it comes to mass conser-
vation and free-energy dissipation, which usually means that they
make it possible to use larger values of At. This is especially true
for the scheme of Ref. 24, which is unconditionally stable. Unfor-
tunately, it also requires solving a system of nonlinear equations at
each timestep, which dramatically decreases the overall performance
and makes it essentially unusable, at least with our implemen-
tation, for systems with a number of bins N larger than a few
hundred.

As for the explicit and implicit-explicit Euler methods, unfor-
tunately, our tests showed that the logarithmic term of the ideal
gas, which diverges as the density goes to zero, does not make it
possible to exploit the improved stability of the latter. Common
techniques such as logarithmic regularization*' did not help. As a
result, in both schemes, we have to rely on very small values of the
integration timestep. Moreover, the scaling of the Fourier scheme is
bound by the performance of the Fast-Fourier Transform method,
which is O(N log N). Therefore, for the rather large number of bins
we use for the 2D simulations, where N ~ 10°, the simpler explicit
Euler scheme, whose performance scales as O(N), yields a four-fold
speed-up and no sensibly worse quality of the results. The code we
used to run the simulations is freely available online.”

As far as simulation times are concerned, we run simulations
on NVIDIA A100 GPUs. To ensure phase separation starting from a
homogeneous configuration, ternary mixtures of nanostars in a 2D
box of size L = 1024 bins (with Ax = 10 nm) are simulated at least up
to Ty = 500 s (with At € [107°,107*] s depending on the state point).
Most simulations required 24 h to conclude.

APPENDIX B: A THEORETICAL ESTIMATE
FOR THE SURFACE TENSION

Our goal here is to work out a theoretical approach to compute
the liquid-gas surface tension y as a function of temperature and
to compare this trend with the simulation-extracted data shown in
Fig. 4.

To do so, we first derive a simplified, yet general expression
for the surface tension y starting from the 1D-free energy functional
formula in Eq. (1) in the one-component case:

ARTICLE pubs.aip.org/aipl/jcp

rrv)= [ [f(p(X)) . f(fj”)]d (B1)

The expression of the generalized chemical potential reads
d’
u=f'(p)- Kd§> (B2)

which can be multiplied by % and set to zero (in equilibrium),

yielding
d pdp
KEBP_ i@ (83)

We integrate both sides by parts from —oco to x. This gives

(x) 2 2
P & (x) (dp) )
p(-o0)  dx? dx

for the left-hand-side term, and

fpf Y R = fp(x) ~ f(p(-00)),  (BS)

for the right-hand-side term of Eq. (B3), which therefore can be
written as

2(Z) = 1) - £(o(-0)) (86)

A similar computation can be performed when integrating from x to
oo, which gives

(o0) 2 7
K/P dp'(x) ,
( dx

. K(dp )2
=—-, B7
p(x) dxz P 2( ( )

for the left-hand-side term, and:

LU 5@ = S - S0, @9

for the right-hand side term, so that Eq. (B3) can also be written as

22 = 16 - £(o(e0)) (89)

Summing Egs. (B6) and (B9), we obtain

k(%) <2560 - fp(o0)) - fp-o). ®10)

The surface tension y is defined as in Eq. (11), that is,
=/ (f(p(x)) F(o-oo) + 5 (E) )dx
+ w(f(p(x))—f(p(oo)) 2 )dx. (B11)

Since [, f(p(o0))dx =2/ f(p(e0))dx and [, f(p(-00))
dx=2[°_ f(p(-00))dx, it follows that
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r= 2 (10 §(£) - S0 - Lot
(B12)

oo 2
Y= f K(?) dx, (B13)
—oo X

which is an expression of general validity (similar derivations for this
equation can be found in Ref. 42).

We now make the reasonable assumption that the equilibrium
density profile is described by a hyperbolic tangent function inter-
polating between the coexisting densities p(co0) and p(—oco) through
a smooth interface with a width controlled by the parameter «, i.e.,
takes the following expression:

and using Eq. (B10),

p(x) = p(0) +2p(—0<>) L P() —2/)(—00) tanh (ax).  (B14)

By substituting the expression for p(x) of Eq. (B14) in Eq. (B13), we
get an integral which is analytically solvable:

(p(20) =p(=00))* » = 1
=K
Y 4 * [oo cosh? ocxdx

— me (B15)

where we notice that y depends linearly on a.

We now focus on our system of interest and identify
f(p) = fuertheim (p)> P(00) = piiguia(T), and p(-o0) = pgas(T)' We
know that at equilibrium «, which as stated above controls the width
of the interface between the two coexisting densities, is equal to oy,
for which the total free energy F of the system in Eq. (B1) is mini-
mal. From Eq. (B15), it therefore follows that it suffices to work out
[in our case numerically, since the homogeneous free energy term
Swertheim (P(x)) cannot be analytically integrated] the law a4 (K, T)
near the critical point to obtain y(K, T) in the same region.
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FIG. 7. A direct comparison between the theoretical curve for the surface tension
y(T) and the corresponding simulation-extracted estimates of Fig. 4 at K = 10°

nm®. The quantity is plotted as a function of the reduced temperature e = @
where T, = 308.44 K.
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The integral in Eq. (B1) for the total free energy has been
calculated for different values of «, thus sampling the parameter
phase space, and the value of &, (T) that minimizes the integral
has been selected for each of the investigated values of temperature
T at constant fK = 10° nm’. This procedure allows reconstructing
numerically the law ay(T'), which can then be used in Eq. (B15) to
work out y(T).

Figure 7 shows a direct comparison between the theoretical
curve p(T) obtained in this way and the simulation-extracted data
in Fig. 4 plotted as a function of the reduced temperature € = T‘Tt I
showing an excellent agreement between the two approaches close
to the critical point. As the temperature decreases, a difference
between the theoretical and numerical data arises, likely because of
the relatively strong assumption of a symmetric density profile at
equilibrium made in Eq. (B14). Indeed, the latter is known to hold
close to the critical point, where the free energy takes on its universal
form, but not necessarily away from it.
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