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The algorithmic preparation of ultrastable glasses (UG) has considerably expanded our understanding of
the glassy state. In this work, we report on a new protocol for UG preparation in a model colloidal glass that
iteratively modifies particle diameters to reduce local virial stress fluctuations, effectively homogenizing the
local mechanical environment of individual particles. We apply the algorithm to an additive Lennard-Jones
mixture and show that, compared to the states obtained via thermal annealing, virial homogenized glasses are
characterized by a considerable increase in both kinetic stability and the number of locally favored structures,
and melt during heating ramps via an accumulation of localized events. Our results show that microscopic
mechanical homogeneity, a widely applicable concept, can give rise to ultrastability.
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Since pioneering work by Ediger and collaborators [1],
the advent of ultrastable glasses has opened new frontiers
in the application and the understanding of glassy materials
[2,3]. They are defined by an enhanced kinetic and
thermodynamic stability with respect to glasses annealed
on experimental timescales; in experiment, they are com-
monly obtained from vapor deposition on a substrate at a
certain temperature and deposition rate [3]. The same
stability would require thousands of years of aging when
starting with annealed glasses [4]. Recent investigations
have shown that the use of sample size effects [5,6] or
“hyperaging” of systems with a glass transition just above
room temperature [7] may also be feasible strategies. The
enhanced stability of ultrastable glasses is reflected in many
properties [3,8–12]: these include resistance to permeation by
inert gas [2], resistance to crystallization [3,13], the ability to
modulate chemical reactivity [14], and resistance to devitri-
fication [2]. Promisingapplications of this technology include
the realization of organic light emitting diode displays [2], the
stabilization of amorphous pharmaceuticals [2], the minia-
turization of computing components [15–19], and improved
mechanical properties in metallic glasses [20–22].
At the same time, numerical simulations which repro-

duce these experiments, especially vapor deposition
[2,3,23–25], have yielded important insights into the
mechanism underlying ultrastable glass formation. The
timescales accessible, however, prevent reproduction of
the same degree of stability [4,24,26]. In order to reach the
same levels of ultrastability as those displayed in experi-
ments, simulations have exploited preparation routes based
on unphysical moves. The most successful so far are swap

moves [27–29], where particles are free to swap positions.
Swap has proven to be effective in equilibrating size
polydisperse mixtures well below the conventional (with-
out swap) glass transition temperature [27,30,31]. Swap
simulations close to the glass transition temperature have
shown that relaxation is initially localized, and that suc-
cessive events take place close to the original ones, which
point toward a dynamic facilitation as the main ingredient
for the dynamics at deeply supercooled conditions [32] and
are responsible for the asymmetric wings observed in
experimental relaxation spectra [33]. The greatest strength
of the swap algorithm can also, in some applications, be its
biggest weakness as its remarkable equilibration ability
often leads to the crystallization of the system unless
tailored size distributions are used [27]. Other unphysical
moves that promote the formation of ultrastable glasses
have been introduced, such as the random bonding of
monomers [34,35], random pinning of particles [36,37], or
changing particle diameters [30,38–42] to minimize the
potential energy with some population constraint.
Recently, a new move which changes the particle sizes in

a monodisperse repulsive system to even out local densities
was shown to produce weakly polydisperse glasses resist-
ant to devitrification [43]. These microscopically density
“uniform” glass states did not show any aging within the
timescales simulated, in contrast to the intermittent dynamics
seen in quenched glasses prepared with the same particle size
distribution [44,45] and enhanced resistance to crystalliza-
tion when placed adjacent to a crystal [46]. Analysis of
uniform glasses revealed a homogenization in the number of
load-bearing nearest neighbors for each particle, suggesting
that homogenization of local mechanical environments
might be used to produce more stable glasses.
In this work, we aim to show that mechanical homog-

enization is not simply an emergent feature of stable states
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but may be applied as a direct means to achieve glass
stabilization. While homogenizing local densities applies
to monodisperse or weakly polydisperse systems [43], it
could not be applied to multicomponent systems: this
is a prohibitive roadblock to stabilizing widely studied
model glasses. Specifically, we propose an algorithm that
homogenizes local virial stress of the inherent structure
of a glass by incremental changes to individual particle
sizes. The algorithm acts on the configurational part of
the pressure tensor: as the distribution of virial stresses
sharpens, this progressively reduces both the bulk pres-
sure and the energy of the system without necessarily
reaching an equilibrium state.
We will show that, for an additive Lennard-Jones

mixture, our algorithm produces ultrastable glasses with
a considerable increase in the thermodynamic and kinetic
stability of the system with respect to conventional glasses
quantified by the potential energy and onset temperature.
Moreover, we will show that the increased stability is
associated with a drastic increase in the number of locally
favored structures, confirming the link between ultrastabil-
ity and structural properties that was recently introduced in
Ref. [25]. Finally, we will show that melting dynamics
emerge through a cascade of localized events, similar to
what was recently discovered in deeply supercooled states
[32,36,47–49]. Note that our method is not an equilibration
procedure and does not maintain detailed balance. We
focus on nonequilibrium melting dynamics; and yet, as will
be shown, we have achieved stabilization similar to those
reached by the above equilibration techniques.
Methods—Virial homogenized glasses (VHGs) are pro-

duced using an iterative scheme as illustrated in Fig. 1(a).
Briefly, we start from a supercooled configuration cooled to
some temperature significantly below the glass transition
temperature, where the inherent structure is no longer
strongly temperature dependent. For the Wahnström sys-
tem, we choose T ¼ 0.1. Here, first, we find the inherent
structure; this is our starting point. Then, we compute local
excess pressure contributions P2;i, apply modifications to
particle sizes to bring the local P2;i closer to the mean, and
find the inherent structure. The new structure is accepted if
the standard deviation ΔP2;i in the distribution of excess
pressures is reduced, and rejected if not. If rejected,
modifications are made smaller, and the process is repeated.
Details are provided in the End Matter. The action of the
algorithm can be traced by following distributions over
iterations. For example, the distribution of P2;i is seen to
sharpen significantly, as shown in Fig. 1(b); the standard
deviation in P2;i is reduced by an order of magnitude by the
end. The final size distribution is significantly wider than
the original binary configuration, as shown in Fig. 1(c),
but it is still possible to tell the two species apart. We also
confirm that despite some modification, the local Voronoi
volume fraction ϕi still has two peaks, as shown in
Supplemental Material [50].

The system we consider is a smoothed version (WAHNs)
of the equimolar additive Lennard-Jones binary mixture
introduced by Wahnström (WAHN) [52] (see Supplemental
Material [50]). This potential has been used to model
metallic glasses and represents a good model system to
monitor and correlate microscopic structural properties
with the thermodynamics of the material [52–57]. All
simulations are run with the LAMMPS molecular dynamics
package [58] at constant volume. In the following, we
report results in reduced units (energy in unit of ϵ, distances
in unit of σ, temperature in units of ϵ=kB).
Results and discussion—Stability: We start by cooling

a bidisperse smoothed Wahnström mixture from T ¼ 1.0 to
T ¼ 0.1 with a cooling rate of γ ¼ ΔT=Δt ¼ 1.8 × 10−7

corresponding to a change of ΔT ¼ 0.9 in 109 integration
steps (dt ¼ 0.005 in reduced units). The potential energy
during the cooling is plotted as an orange curve (overlapped
by the black curve) in Fig. 2(a), where a supercooled liquid
state is observed for T ≳ 0.55 followed by an out-of-
equilibrium glassy state at T ≲ 0.55. At low T, there is a
linear dependence on temperature with a slope approaching
the value 3kBT=2, showing that the state is trapped in an
essentially harmonic well.
At the end of the cooling ramp we take the last

configuration and produce a VHG state. Then, we test
the kinetic stability of both these configurations (before and
after the homogenization algorithm) by heating them at a

(a) (b)

(c)

if ,
if ,

Minimize

- If decreases, accept and repeat.
- If increases, reject , reduce , and repeat.

FIG. 1. Creation of “virial homogenized” glasses (VHGs).
(a) Illustration of the iterative scheme used to make VHGs for
a move where dP2;i=dσi > 0. (b) The distribution of local virial
pressures P2;i with iteration. (c) The size distribution σi obtained
after producing a VHG from the Wahnström (binary Lennard-
Jones) glass.
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heating rate γ. The heating curves are reported in Fig. 2(a)
with a black and red line for the configuration before
(bidisperse) and after (VHG) the homogenization algo-
rithm. For the original bidisperse mixture, there is very little
difference in energy between cooling and heating (orange
and black curves, respectively). In contrast, not only is the
VHG state (red curve) lower in energy, it shows signifi-
cantly enhanced kinetic stability, staying glassy up to
higher temperatures (more details to follow).
To exclude the possibility that the exceptional stability

of the VHG glass is trivially due to its polydispersity, we
melt the VHG glass to T ¼ 1 and produce an annealed
glass at the same cooling rate γ as for the bidisperse system.
This cooling curve is shown in green in Fig. 2(a), labeled
“polydisperse”: the curve almost exactly mirrors the
behavior of the original bidisperse glass. This confirms
that the stability of the VHG state is not associated with its
size distribution, but from its position in a deep minima of
the potential energy landscape which is not accessible via
standard annealing.
In Fig. 2(b), we consider the dynamics of the three

different systems (bidisperse, polydisperse, and VHG)
during the heating ramps by plotting the mean square
displacement hΔr2i ¼ 1=N

PN
i¼1½riðTÞ − riðT ¼ 0.1Þ%2 of

allN particles compared to their starting state at T ¼ 0.1. In
agreement with the results obtained in Fig. 2(a), we observe
that the glass melting of the VHG system is more sharp and
occurs at considerably higher temperatures.
From the intersection between the glass line and the

supercooled line in Fig. 2(a), we may estimate the glass
transition temperature Tg for each model. We find

Tbidisperse
g ¼0.48 and TVHG

g ¼0.49. The onset of melting is
found in Fig. 2(b), where the mean squared displacement
hΔr2i versus T undergoes a sudden increase [TðhΔr2i≃1Þ].
We find Tbidisperse

o ¼ 0.52 and TVHG
o ¼ 0.68. Note that

the displacement of To from Tg is a common metric
for characterizing ultrastable states [2,3]. Here, we find
TVHG
o =TVHG

g ¼ 0.68=0.49 ¼ 1.39. This is significantly
larger than what is usually obtained with vapor deposition,
even though we expect this ratio to decrease for a lower γ,
approaching typical experimental values. For reference, the
typical value obtained for vapor deposited organic molecules
is To=Tg ∼ 1.05 [2].
Locally favored structures: Both the fragility and the

dynamic heterogeneities of the Wahnström system have
been linked with an increase in the number of icosahedral
environments that form around the small particles [52–57].
In the glass phase, both the composition and relative
orientation of the icosahedra are disordered and distinct
from those found in the crystalline structure (the Laves
phase A2B [56]). A similar correlation has recently been
found in a vapor deposited ultrastable glass of Wahnström
particles [25], where the fraction of icosahedral environ-
ments was linked with its stability. Thus, we study the
population of icosahedral environments in VHG glasses,
identifying icosahedra with the Voronoi topology based
tool VoroTop [59]. Figure 3 shows the fraction of icosahedra
with respect to the small particles (which in the original
Wahnström model have a diameter of σ11 and make up
half of the total) versus temperature. We consider the
cooling of the original bidisperse system, the VHG state
during melting, and cooling of the same polydisperse
particle population all performed at the same rate γ.
Characterization of equilibrium liquid configurations are
also presented for comparison. While increasing polydis-
persity usually disrupts icosahedral environments, the first

FIG. 2. Enhanced thermodynamic and kinetic stability of VHG
states. (a) Potential energy per particle vs T for bidisperse,
polydisperse (obtained by melting and cooling VHG), and VHG
systems. Vertical dashed lines indicate estimations of Tg and To

(see text). Note that the orange line almost coincides with the
black line. (b) Squared displacement of particles, comparing
heating ramps of bidisperse, polydisperse, and virial homog-
enized glasses. hΔr2i is the squared displacement of particles
from their positions at T ¼ 0.1 during each ramp.
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FIG. 3. Fraction of icosahedra vs T for the following
systems: cooling of the bidisperse system (green) and the
polydisperse melt (blue), heating of VHG (red), and the liquid
at equilibrium (black).
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surprising result is that the homogenization procedure
produces a higher fraction of icosahedral environments,
despite the increased polydispersity. If we compare the
polydisperse system and the VHG state, which have the
same size distribution, the contrast is even stronger. We
stress that this does not correspond to crystallization; no
spatial correlations are seen in the positions of icosahedra
(see Supplemental Material [50]). These results confirm that
there is a strong link between glass stability and the fraction
of icosahedral environments, and that VHG states are
thermodynamically, kinetically, and structurally more stable.
Relaxation dynamics: From the curve of the mean

squared displacement of the VHG glass in Fig. 2(b), we
notice that during heating, the system moves from a frozen
to a diffusive regime through a steplike dynamics around
temperatures in the range 0.6 ≤ T ≤ 0.65. This suggests the
presence of avalanchelike behavior during glass melting
[44,45]. In the inset of Fig. 4(a), we plot the logarithm of
the displacement of all particles in the VHG state during the
heating ramp, where we observe the presence of a pop-
ulation of particles which exhibit occasional jumps before
the melting temperature, on the order of a particle diameter.
In Fig. 4(a), we plot the histogram of the logarithm of
displacements measured at three different temperatures.
At T ¼ 0.65 (in black), two populations of particles can be
distinguished based on their displacement Δr from the
initial configuration: a large population with small Δr
forming the left peak corresponding to the particles that are
trapped in their cages and exhibit only vibrational motion
and a (very) small population of particles that undergo
displacement comparable to the particle size (Δr ≈ 1). At
T ¼ 0.7 > TVHG

g (in red) the fast peak already comprises
the majority of particles, while at T ¼ 0.75 (in blue) all
particles have diffused several particle diameters.
Thus, melting of the bulk ultrastable glass occurs via a

well-defined population of particles with intermittent
(avalanchelike) dynamics. In Fig. 4(b), we plot the
trajectories of all particles during the heat ramp for the
temperature range going from T ¼ 0.6 to T ¼ 0.675:
trajectories where the particle has moved less than two
particle diameters are given in gray, while more mobile
particle trajectories are shown in color. It is clear that
the fast particles are spatially correlated and appear in
compact regions. These results confirm the presence of
localized fast regions [47] and that glass melting is akin to
a nucleation-and-growth process [48].
By computing the change in the displacement δ& under-

gone by each particle over the temperature range T ¼
0.6–0.65 where the system changes dynamical regime
[δ& ¼ ΔrðT ¼ 0.65Þ − ΔrðT ¼ 0.60Þ, ΔrðTÞ ¼ jxðTÞ−
xðT ¼ 0.1Þj], we can distinguish a subset of particles
displacing at larger distances with respect to the rest of
the system. The value of δ& separating these two subsets of
particles is conveniently fixed to 0.3 (see Supplemental
Material [50]). On considering the mobile fraction, there is

a clear correlation between larger displacement and small
particle size (see Fig. S2 in Supplemental Material [50]).
Furthermore, from Fig. 4(c), we can see a slice of the
box including particles with δ& > 0.3 which are found in
regions of the system free of icosahedra (indicated in gray).
This shows that glass melting starts in regions devoid of
locally favored structures.
Discussions and conclusions—While there are no direct

analogs to VHG glasses, we note that their stability is
consistent with previous work considering heterogeneity in
local mechanical environments in glasses. For example,
it has been shown that a heterogeneous local elasticity
can give rise to a Boson peak in the vibrational density of
states in molecular glasses [60,61] as well as in jammed
packings [62,63]. The presence of excess modes may be
interpreted as a “softening” of the material, though evi-
dence to link this to nonequilibrium melting remains a topic
of active debate (see, e.g., [64,65]).

FIG. 4. (a) Histogram of the logarithm of displacements during
the heating ramp of the VHG system at three specific temper-
atures, T ¼ 0.65, 0.70, 0.75. There are two populations, corre-
sponding to caged (left peak) and diffusing (right peak) particles.
At T ¼ 0.75 no more particles are caged. Inset: Logarithm of
the displacement vs T for all particles during the heating ramp
(full T range is given in Supplemental Material [50]) applied
to the VHG system. Around T ¼ 0.6 diffusing particles (with
Δr > 1) start to appear. (b) Trajectories of all particles of the
VHG system during the heating ramp taken from T ¼ 0.6 to
T ¼ 0.675. Gray trajectories show particles whose displace-
ment at T ¼ 0.65 is less than two starting from the T ¼ 0.6
state. Particles where Δr > 2 are plotted in color. (c) Slice
through VHG at T ¼ 0.65 during heating ramp showing
particles with variation of the displacement δ& > 0.3 (red)
and regions where there are icosahedra.
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We note that it may be possible to encapsulate the VHG
approach by direct adjustment of a Hamiltonian. Previous
work [30] studying swap dynamics has defined a thermo-
dynamic approach with a conventional interparticle
Hamiltonian but with particle size as an evolving variable.
In principle, it would be possible to use this as a starting
point and add a Hamiltonian term that penalizes variance in
nearest-neighbor virial stress. We note that the coupling
between the elimination of virial stress fluctuations and
energy in our system may be a product of the strong
coupling between virial stress and local energy for
Lennard-Jones states [66]. Indeed, if this is the case, then
the ultrastability from VHG may be a common character
shared between a whole family of “isomorphic” systems.
We also briefly consider how numerical studies like this

might inform the experimental realization of ultrastable
colloidal packings. Though evidence of suppressed particle
dynamics has been reported for two-dimensional systems
[67], the experimental realization of bulk ultrastable col-
loidal glasses remains difficult. The single particle editing
required for swap or the VHG protocol would be imprac-
tical. The random bonding suggested by Ozawa et al. [34]
could be realized using particles with directional inter-
actions, but it is unclear whether this would be a route of
choice for arbitrary particle populations However, our
work suggests that the homogenization of mechanical
environments itself might be an effective route to improv-
ing the stability of glasses, given an appropriate annealing
procedure. Despite there being no reports of ultrastability
through annealing alone as of yet, mechanically or
thermally annealed states do show some of the hallmarks
of a more equilibrated glass, such as brittle fracture
[68,69], and reduced energy or enhanced modulus [70].
Heterogeneity in local elasticity in metallic glasses as
expressed by a heterogeneous local yield stress, has been
shown to lead to material softening (as reviewed in [71]):
this suggests that their removal would yield the hardest,
most equilibrated glass. The feasibility of annealing to
produce mechanical homogeneity and ultrastability
remains a topic for future work.
To summarize, we explored a new protocol for the

preparation of ultrastable glasses, an algorithm that homog-
enizes local virial stress fluctuations. Applying this algo-
rithm to an additive Lennard-Jones mixture, we observed
significant improvements in the thermodynamic, kinetic,
and structural stability of the glass. Thermodynamic
stability is seen in a sharp decrease in the potential energy
of the system. Kinetic stability was observed in a consid-
erable increase in the onset or melting temperature of the
glass and in the transition becoming more sharp. Structural
stability was inferred by a strong increase in locally favored
structures, which, for this system, are the icosahedral
environments. Then, we considered the melting behavior
of the ultrastable glass, finding that bulk melting starts
from localized regions devoid of icosahedral ordering.

The motion in these regions is characterized by avalanche-
like intermittent motion of a small number of particles with
a lower than average radius, which then trigger the melting
of the rest of the glass. There is also an interesting converse
question regarding whether existing ultrastable glass states
(e.g., generated using the swap algorithm) bear any of the
hallmarks of VHG states, particularly given that most
existing ultrastable states are equilibrium states while
VHG states are not. We present a preliminary analysis
as End Matter, and leave a more detailed discussion for
future work.
Our results provide strong evidence for a deep link

between thermodynamic and mechanical stability of ultra-
stable glasses. The observed virial stress homogenization,
in addition to the well-established link between stability
and the fraction of icosahedral structures, provides valuable
insights into the mechanisms governing glass stabilization.
In this respect, the regions with virial stress heterogeneity
can be seen as mechanical defects whose suppression
considerably increases the thermodynamic stability of
the ultrastable state, i.e., the height of the energy barriers
that separate it from nearby minima.
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Appendix A: VHG algorithm—Here, we detail the
steps of the algorithm designed to homogenize local
excess pressure contributions. First, we compute the
excess contributions P2;i of individual particles i in a
glassy configuration. If P2;i is larger (smaller) than the
mean pressure (P2;i), then the particle is resized by a set
amount such that the pressure is reduced (increased).
Whether this is an increase or decrease in particle size
will depend on the derivative of the pressure with respect
to σi. If dP2;i=dσi > 0, then σi becomes σi þ Δσ if
P2;i < P2;i, and vice versa; if dP2;i=dσi < 0, then the
particle size corrections are reversed. The newly obtained
configuration is, then, energy minimized using the FIRE
algorithm [72]. If the newly obtained configuration has a
decreased standard deviation in virial pressure over the
whole system ΔP2;i, then the move is accepted and the
process is repeated. If not, Δσ is halved and the process
repeated from the previous configuration, much like the
variable step size of an optimization scheme. Typically,
we start with an initial size adjustment factor Δσ of 0.01.
Note that P2;i is recalculated after every newly accepted
configuration and set of particle sizes, and the system
volume is constant. The configuration is considered
“converged” when five size change reductions have been
carried out, but further reduction is needed to produce a
configuration with a sharper P2;i distribution. We verified
that considering more than five attempts to reduce Δσ
does not lead to significant further reductions in ΔP2;i.

Appendix B: Virial homogeneity in ultrastable systems
derived from equilibration—The converse question of
whether ultrastable glasses produced by other means
bear the hallmarks of virial homogeneity is key to
contextualizing this work, particularly whether methods
based on equilibration to stabilize glasses are
fundamentally related to our nonequilibrium protocol.
Thus, we present preliminary analysis of the VHG
nature of swap equilibrated glasses. Since direct swap
equilibration of weakly polydisperse Wahnström states
induce crystallization, we considered an asymmetrically
polydisperse state described in previous work [27]
where pðσÞ ∼ σ−3 over a range 0.7253 < σ < 1.6095.

The density is set to ρ& ¼ 1.0. Note that the interparticle
interaction is a smoothed Lennard-Jones interaction.
Applying swap to liquids and glasses at a variety of

temperatures, we found that the inherent structures of
equilibrated glasses at lower temperatures have signifi-
cantly narrower distribution in local virial stress (see
Fig. 5). This suggests that the generation of ultrastable
glasses via swap equilibration spontaneously develops a
homogeneity in local stress. Combined with the behavior
of the VHG states, one can claim that it is a key factor
underpinning their stability. We note that the relationship
between the second moment of local stress and the temper-
ature has been noted for supercooled liquids in the past,
e.g., for metallic glasses [73]. The accelerated equilibration
afforded by swap has allowed us to confirm this at
temperatures significantly below the glass transition tem-
perature. Thus, it is clear that virial homogenization works
both ways: nonequilibrium virial homogenization can
produce an ultrastable glass, but the converse also applies,
i.e. that ultrastable colloidal glasses bear the key hallmark
of VHG states.
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FIG. 5. Local virial stress distribution of the inherent structure
of swap equilibrated glasses using a continuously polydisperse
size distribution. The distributions become sharper at lower
temperature. Inset: the energy of the inherent structures of the
equilibrated states.
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