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Constraints on the location of the  
liquid–liquid critical point in water
 

F. Sciortino    1, Y. Zhai    2,3,7, S. L. Bore    2,8 & F. Paesani    2,4,5,6 

The fascinating hypothesis that supercooled water may segregate into two 
distinct liquid phases, each with unique structures and densities, was first 
posited in 1992. This idea, initially based on numerical analyses with the ST2 
water-like empirical potential, challenged the conventional understanding 
of water’s phase behaviour at the time and has since intrigued the scientific 
community. Over the past three decades, advancements in computational 
modelling—particularly through the advent of data-driven many-body 
potentials rigorously derived from first principles and augmented by the 
efficiency of neural networks—have greatly enhanced the accuracy of 
molecular simulations, enabling the exploration of the phase behaviour of 
water with unprecedented realism. Our study leverages these computational 
advances to probe the elusive liquid–liquid transition in supercooled water. 
Microsecond-long simulations with chemical accuracy, conducted over 
several years, provide compelling evidence that water indeed exists in two 
discernibly distinct liquid states at low temperature and high pressure. By 
pinpointing a realistic estimate for the location of the liquid–liquid critical 
point at ~198 K and ~1,250 atm, our study not only advances the current 
understanding of water’s anomalous behaviour but also establishes a basis 
for experimental validation. Importantly, our simulations indicate that the 
liquid–liquid critical point falls within temperature and pressure ranges that 
could potentially be experimentally probed in water nanodroplets, opening 
up the possibility for direct measurements.

Water, life’s matrix1, also happens to be one of the most peculiar liquids 
on Earth2. Its unusual temperature- and pressure-dependent thermo-
dynamic response properties have puzzled and, at the same time, fas-
cinated scientists for a long time3. Numerous noteworthy experiments 
have been conducted over the past decade4–10, demonstrating that what 
was once considered an uncharted territory in the phase diagram of 
water (due to fast crystallization) can indeed be explored in the labo-
ratory. Particularly relevant have been the experiments demonstrat-
ing the existence of compressibility maxima on isobaric cooling both 

at positive6 and negative5 pressures, and the demonstration that a 
laser-heated high-density glass sample undergoes a crossover from a 
high-density liquid (HDL) structure to a low-density liquid (LDL) one 
in the submicrosecond time window7.

Over the past decade, it has become increasingly apparent that fur-
ther experimental progress strongly depends on the precise estimate 
of the liquid–liquid critical parameters, that is, critical temperature 
(Tc) and pressure (Pc). In this context, computational models play a 
crucial role in directing experimental studies towards the specific 
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MB-pol configurations for both liquid water and ice, spanning a wide 
range of temperatures and pressures. Although DNN@MB-pol is not 
an exact surrogate model for MB-pol over the entire phase diagram 
of water, it closely reproduces the properties of liquid water at 1 atm 
as predicted by MB-pol, from the boiling point down to deeply super-
cooled temperatures46. Among the DeePMD-based potentials trained 
on the MB-pol data reported in the literature52,53, DNN@MB-pol has 
been shown to provide the most robust representation of MB-pol54 
(a brief overview of the DNN@MB-pol potential is provided in Sup-
plementary Section 2). The primary advantage of DNN@MB-pol lies 
in its computational efficiency. By leveraging the high parallelization 
capabilities of deep neural networks on graphical processing units, 
DNN@MB-pol enables molecular dynamics (MD) simulations of liquid 
water at a substantially reduced computational cost compared with 
the parent MB-pol potential. Despite its efficiency, microsecond-long 
MD simulations of supercooled water with DNN@MB-pol are still com-
putationally fairly demanding, requiring several months of graphical 
processing unit time for each investigated state point.

In this study, we harness the realism and computational efficiency 
of the DNN@MB-pol potential to explore the phase behaviour of super-
cooled water across a broad range of temperatures and pressures 
through microsecond-long MD simulations, effectively achieving 
CCSD(T) accuracy. This level of performance remains prohibitively 
expensive and currently unattainable by any other means, not just for 
water but for any molecular species. Our analyses support the existence 
of a liquid–liquid critical point, although at pressures substantially 
lower than those estimated using empirical and DFT models. Our 
findings not only provide the first realistic molecular picture of super-
cooled water but also open new avenues for experimental validation 
and further exploration of water’s phase behaviour at low temperature 
and high pressure.

Mass density fluctuations in supercooled water
Figure 1a shows the temperature and pressure dependence of the mass 
density of liquid water, ρ, calculated from DNN@MB-pol simulations 
carried out in the isobaric–isothermal ensemble (NPT = constant num-
ber of molecules N, pressure P and temperature T) at 280 different 
state points across 20 temperatures between 188 K and 368 K, and 14 
pressures ranging from 1 atm to 1,300 atm. The variation in isothermal 
compressibility across the same temperature and pressure ranges is 
shown in Supplementary Fig. 7. It is important to note that none of 
the simulations were found to contain any crystalline aggregate (as 
detected by the CHILL+ algorithm55 or bond orientation order param-
eters56) at the end of the MD trajectories. All curves exhibit a distinct 
mass density maximum, characteristic of water’s anomalous expan-
sion on cooling. As the pressure increases, this maximum becomes 
less pronounced and shifts to lower temperatures, with the crossover 
from high density to low density on cooling becoming increasingly 
sharper, up to approximately P = 1,000 atm. Although the variation 
in water’s mass density predicted by DNN@MB-pol as a function of 
temperature and pressure aligns qualitatively with previous simulation 
studies, the jump in mass density at low T hints at the existence of a 
metastable liquid–liquid critical point in supercooled water at pres-
sures that are substantially lower than those predicted by empirical 
and DFT water models.

The existence of a metastable liquid–liquid critical point is rein-
forced by the analysis of the time dependence of mass density fluc-
tuations predicted by DNN@MB-pol for supercooled water at a given 
state point. To this end, Fig. 1b shows the variation in water’s mass 
density along NPT trajectories carried out at 188 K under three differ-
ent pressures (800 atm, 1,000 atm and 1,200 atm), providing direct 
evidence for the ability of supercooled water to access two distinct 
states. In particular, the DNN@MB-pol trajectory at 1,000 atm (and 
similarly for adjacent pressure values) exhibits large mass density 
fluctuations that occur on a microsecond timescale and connect two 

temperature and pressure ranges in which the liquid–liquid transition 
of water is likely to be observed. Despite their success in reproduc-
ing some properties of water11, empirical pairwise-additive models 
fall short at providing a reliable representation of water across all its 
phases, requiring ad hoc temperature and/or pressure shifts to be 
effectively compared with experimental measurements12,13. Similarly, 
ab initio models derived from density functional theory (DFT)14 have 
been widely used in simulations of water, but—in practice—suffer from 
both functional- and density-driven errors15–17 that limit their accuracy 
and transferability across phases18–20. These limitations often lead to 
non-physical predictions of the critical parameters, further compli-
cating the reliability of DFT-derived ab initio models in accurately 
representing the phase behaviour of water at the molecular level21,22. 
Models developed using the adaptive force matching method, such 
as the water model from adaptive force matching for ice and liquid 
(WAIL)23 and its revised version rWAIL24, also predict a liquid–liquid 
transition. The WAIL model, predicts a fairly low critical pressure due 
to the difficulties in handling the long-range corrections to pressure. 
In rWAIL, where such a limitation has been corrected, the estimated 
critical point location shifts to ~200 K and ~900 atm. As shown in Sup-
plementary Fig. 2, neither WAIL nor rWAIL (similar to other water 
models) reproduces the experimental isothermal compressibility 
measured at ambient pressure.

As a consequence of the limited accuracy of existing empirical 
and ab initio water models, a wide range in estimates for the critical 
pressure (Pc from ~36 to ~270 MPa) and temperature (Tc from ~150 to 
~250 K) has been reported by previous theoretical and computational 
studies12,22,23,25–27. Besides reflecting the high dependency of critical 
parameters on the specific water model used in the simulations, the 
uncertainty associated with the location of a possible liquid–liquid 
critical point in water points to a major gap in our fundamental under-
standing of water’s phase behaviour. This variability poses a substantial 
challenge for both theoretical predictions and practical applications, 
necessitating realistic models for a unified and physically accurate 
representation of water’s critical phenomena12,23,25,28–34.

Progress in correlated electronic structure methods35,36 has 
recently enabled routine calculations of interaction energies for small 
water clusters at the coupled cluster level of theory, including single, 
double and perturbative triple excitation, that is, CCSD(T), the current 
gold standard of chemical accuracy for molecular interactions37,38. 
These developments have led to the introduction of a new class of 
data-driven models of water, derived entirely from first principles. 
These models rigorously decompose the interaction energy of a 
water system, consisting of N molecules, into individual n-body 
contributions (n = 1, 2…N), which can be efficiently calculated at the 
CCSD(T) level of theory39–41. Among these first-principles data-driven 
many-body models, MB-pol42–44 has been shown to provide a realistic 
representation of water across all phases at pressures below ~1 GPa 
(refs. 45,46), where ice rules violation and partial molecular disso-
ciation are not effective. MB-pol achieves this high level of realism by 
integrating machine-learned representations of short-range n-body 
quantum-mechanical effects, such as Pauli repulsion and charge trans-
fer, with mean-field-like representations of many-body electrostatic 
interactions. This theoretical/computational framework ensures that 
MB-pol accurately reproduces the CCSD(T) reference data for diverse 
water systems41. MB-pol consistently predicts thermodynamic, dynami-
cal and spectroscopic properties of gas-phase water clusters, liquid 
water and ice, in agreement with the corresponding experimental 
values47,48. MB-pol accurately predicts the stability regions of all ice 
polymorphs below 1 GPa, closely reproducing the experimental phase 
diagram of water within this pressure range (a brief overview of the 
MB-pol potential is provided in Supplementary Section 1).

Building on the accuracy and predictive power of MB-pol, a deep 
neural network model (DNN@MB-pol)46 has recently been developed 
within the DeePMD framework49–51 from an extensive training set of 
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distinct liquid states, an LDL state and an HDL state. Figure 1b clearly 
shows that the LDL and HDL states correspond to the equilibrium states 
of supercooled water at 188 K and low (800 atm) and high (1,200 atm) 
pressures, respectively.

Free-energy landscape of supercooled water
To maximize the information contained in the comprehensive set of 
NPT simulations with DNN@MB-pol, the most accurate representation 
of the density of states with energy E and volume V, denoted as Ω(V, 
E), was calculated via the weighted histogram analysis procedures57, 
extended to the NPT ensemble58 (a brief overview of the weighted his-
togram method is provided in Supplementary Section 3). From Ω(V, 
E), it is possible to derive all the thermodynamic properties of the sys-
tem. In particular, the density of states facilitates the calculation of 
free-energy profiles at and below the temperatures directly explored in 
the NPT simulations. Figure 2a displays the Gibbs free-energy profiles, 
βG, as a function of the mass density for three temperatures in the 
neighbourhood of Tc. For each temperature, βG is plotted at the pres-
sure at which the depths of the two minima are equivalent. For all the 

three state points considered in Fig. 2a, the corresponding free-energy 
profiles exhibit a well-defined double-well shape, with a barrier height 
that increases on cooling—a hallmark of the emergence of a first-order 
phase transition between two disordered phases. The local curvature of 
the two wells is a measure of the isothermal compressibility of the two 
liquids. The LDL has a narrower basin than the HDL, indicating smaller 
mass density fluctuations in the LDL. This difference in isothermal 
compressibility is also consistent with previous estimates based on 
the equation of state12. At T = 188 K, the barrier height is approximately 
0.60kBT (kB is Boltzmann’s constant). Within the Ising universality class, 
a barrier height of 0.77kBT is indicative of the critical temperature in a 
finite-sized system when the mass density serves as the order param-
eter. Despite extensive computational efforts, the data from the present 
microsecond-long simulations with the DNN@MB-pol potential are 
still not sufficient for a precise comparison with the Ising universality 
class predictions based on mixed energy and mass density fluctua-
tions. As a result, the criterion of barrier height emerges as the most 
reliable method to estimate the critical point as predicted by the DNN@
MB-pol potential. This yields a critical temperature Tc = 188 ± 5 K and 
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Fig. 1 | Temperature and pressure dependence of the mass density of liquid 
water. a, Mass density of water, ρ, as predicted by DNN@MB-pol simulations 
carried out in the NPT ensemble as a function of temperature and pressure. Each 
NPT trajectory was divided into four blocks of equal length, with ρ calculated 

for each block and then averaged. The error bars represent the 95% confidence 
intervals, derived from the standard error of the mean across the blocks. b, Time 
dependence of ρ at 188 K calculated from microsecond-long NPT simulations 
carried out with DNN@MB-pol at 800 atm, 1,000 atm and 1,200 atm.
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a critical pressure Pc = 1,050 ± 50 atm. In particular, approximately 
5 K below this temperature, the barrier height rises to 1.2kBT, consist-
ent with recent estimates from other water models at similar relative 
temperatures (T – Tc)/Tc (refs. 22,33,59). As discussed in the Methods, 
our analyses pertain to a system of N = 256 water molecules. Although 
finite-size effects cannot be entirely ruled out, simulations conducted 
with models based on effective pairwise-additive interactions, where 
such analyses have been performed, suggest a weak dependence of 
the critical parameters Tc and Pc on the system size27,29.

As an additional investigation into the existence of a first-order 
transition between two distinct liquid phases, Fig. 2b depicts the time 
evolution of the densities of the LDL and HDL phases at T = 178 K, at 
a pressure approximately lying on the LDL–HDL coexistence line as 
determined by the density of states. This analysis unequivocally dem-
onstrates that at this state point, the LDL and HDL phases remain dis-
tinctly separated within their respective free-energy basins for several 
microseconds, exhibiting markedly different densities throughout the 
course of the corresponding NPT simulations. The persistent separa-
tion and distinct densities of the LDL and HDL phases under these 
conditions provides further evidence for the presence of a first-order 
transition between the two liquid phases at slightly higher tempera-
ture and lower pressure relative to this state point. To characterize 
the structural changes associated with LDL and HDL configurations, 
Supplementary Fig. 8 shows the oxygen–oxygen radial distribution 
functions and corresponding structure factors calculated from the 
same NPT simulations (Fig. 2b).

Phase diagram of supercooled water
Figure 3 summarizes the phase behaviour of supercooled water as 
predicted by the DNN@MB-pol potential. The liquid–liquid coexist-
ence curve departs from the critical point, with a negative slope of 
–21.4 bar K−1. By applying the Clausius–Clapeyron equation, this nega-
tive slope corresponds to an entropy change between the two liquid 
phases of ~3.5 J mol–1 K–1 at T = 183 K, confirming that the HDL phase is 
more ‘disordered’ despite being more dense. Two spinodal lines emerge 
from the critical point for T ≤ Tc, indicating the limit of metastability of 
each of the two liquid phases. At pressures lower than the HDL spinodal 
pressure, any HDL sample will immediately decompose into regions 
of low and high mass density via a spinodal mechanism, consistent 
with experimental results probing the so-called no man’s land in the 
phase diagram of water on the submicrosecond timescale7. For T ≥ Tc, 
the Widom line (corresponding to the locus of maximum fluctuations 
along isobars) departs from the critical point and reaches the ambient 
pressure at 217 K. The value predicted by the DNN@MB-pol potential 
is in excellent agreement with the experimental estimate of 225 K (ref. 
6). This behaviour is evident in the temperature dependence of the 
isothermal compressibility calculated with the DNN@MB-pol potential 
in the pressure range of 1–1,300 atm (Supplementary Fig. 7). To further 
characterize the molecular configurations of supercooled water near 
the critical point, Supplementary Fig. 9 shows the two-dimensional 
density distributions representing the probabilities of observing con-
figurations with specific energy and mass density values calculated at 
two different state points near the critical point. Both two-dimensional 
probability densities clearly indicate the presence of two distinct basins.

The phase diagram in Fig. 3 also shows the isobaric temperature 
of the maximum mass density line. At ambient pressure, the tempera-
ture of the maximum mass density predicted by the DNN@MB-pol 
potential is ~267 K, approximately 10 K below the experimental value. A 
same shift of ~10 K between the DNN@MB-pol predictions and experi-
mental data for the isobaric temperature of maximum densities is 
observed across the entire pressure range shown in Fig. 3. Finally, the 
liquid–ice Ih coexistence line predicted by the DNN@MB-pol potential 
is also consistently shifted by ~10 K compared with the experimental 
line, over the entire pressure range. These comparisons indicate that 
DNN@MB-pol correctly predicts the shape of the phase diagram of 

supercooled water within the temperature and pressure ranges shown 
in Fig. 3, although effectively shifted to lower temperatures by ~10 K. 
It should be noted that the liquid–ice Ih coexistence line predicted by 
DNN@MB-pol closely follows the corresponding line predicted by the 
parent MB-pol potential46, confirming that the former represents a 
reliable—although not exact—surrogate model for the latter.

Conclusion
The MB-pol potential, which was rigorously derived from first principles 
using state-of-the-art CCSD(T) electronic structure data42–44, stands out 
for its accuracy in reproducing the phase diagram of water across gas, 
liquid and various crystalline phases45–47. Recent progress in machine 
learning algorithms49–51 has enabled the development of the DNN@
MB-pol potential, a computationally efficient deep neural network 
surrogate for the MB-pol potential. Remarkably, the only difference 
between the predictions of the DNN@MB-pol potential and actual water 
properties is a subtle shift of about 10 K and 200 atm towards lower 
temperatures and pressures, respectively. It, thus, follows that the iden-
tification of a liquid–liquid critical point within the DNN@MB-pol phase 
diagram of supercooled water—achieved through microsecond-long 
MD simulations that spanned several years of graphical processing unit 
computational effort—provides strong support for the thermodynamic 
hypothesis proposed earlier12. Besides providing realistic estimates for 
the critical temperature and pressure, currently elusive to experimental 
measurements, our study also reveals that the values of the critical 
parameters (Tc and Pc) notably differ from those predicted by previ-
ous studies using empirical and DFT models of water. Considering the 
~10 K and ~200 atm shifts in the DNN@MB-pol phase diagram relative 
to the experimental phase diagram (Supplementary Fig. 5), the criti-
cal parameters predicted for DNN@MB-pol water suggests an actual 
critical point in liquid water at Tc ≈ 198 ± 5 K and Pc ≈ 1,250 ± 50 atm. 
The critical pressure is substantially lower than predictions from DFT 
models of water29, but consistent with recent polynomial extrapola-
tions of the equation of state derived from experimental data60. This 
relatively low critical pressure not only pinpoints the pressure range 
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crucial for future experiments on critical fluctuations but also paves 
the way for directly probing the liquid–liquid critical point in nan-
odroplets composed of thousands of molecules, where such pressures 
are potentially attainable through leveraging Laplace pressure61. Our 
results, thus, set a clear direction for future measurements and offer a 
feasible approach to study the critical behaviour of supercooled water 
in a controlled experimental setting. Our findings further underscore 
that DNN@MB-pol (and by extension, MB-pol) serves as a highly real-
istic model of water, capable of accurately simulating its behaviour 
across diverse environments and thermodynamic conditions. Such 
transferability is crucial across a broad spectrum of disciplines, from 
biology and biochemistry to materials science and environmental 
sciences, where the unique properties of water play a central role in 
several fundamental processes.
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Methods
MD simulations
Classical MD simulations with the DNN@MB-pol model46 were carried 
out using LAMMPS62 through the DeePMD-kit63,64 plug-in. All details 
about the DNN@MB-pol model are discussed elsewhere46. Details about 
the DeePMD-kit software package, including how DeePMD-based mod-
els handle the computation of energies, forces and virial are reported 
in other work63,64. All simulations were carried out under periodic 
boundary conditions for a system containing N = 256 water molecules. 
The initial configurations at each temperature were taken from the 
MB-pol simulations at 1 atm (ref. 65). The subsequent MD simulations 
were performed in the NPT ensemble. The temperature was main-
tained using a global Nosé–Hoover thermostat chain of length 3 with a 
relaxation time of 0.05 ps, and the pressure was controlled by a global 
Nosé–Hoover barostat with a relaxation time of 0.5 ps, which was 
thermostatted by a Nosé–Hoover thermostat chain of length 3. The 
MD trajectories were propagated with a time step of 0.5 fs using the 
velocity Verlet algorithm66.

Density of states
To maximize the information contained in the extensive set of NPT 
simulations carried out with the DNN@MB-pol potential, Ω(V, E) was 
calculated via the weighted histogram analysis procedures57, extended 
to the NPT ensemble58 (Supplementary Section 3). From Ω(V, E), the 
probability 𝒫𝒫𝒫V, E) of observing a thermodynamic state point, charac-
terized by volume V and energy E at any given temperature T and pres-
sure P (whether within the range covered by actual NPT simulations or 
extrapolated beyond it), can be calculated as

𝒫𝒫𝒫V, E ) = Ω𝒫V, E )e−β(E+PV )

∑V∑EΩ𝒫V, E )e−β(E+PV )
. (1)

Here β = 1/kBT and

𝒫𝒫𝒫V) = ∑
E
𝒫𝒫𝒫V, E ), 𝒫𝒫𝒫E ) = ∑

V
𝒫𝒫𝒫V, E ). (2)

The average value of 𝒫𝒫𝒫V ) at fixed T and P, namely, 〈V〉(P, T), provides 
the equation of state for the system of N = 256 water molecules simu-
lated in this study. The logarithm of 𝒫𝒫𝒫V ) provides—except for a con-
stant—the (restricted) Gibbs free energy βG at a given thermodynamic 
state point with temperature T and pressure P.

All the thermodynamic quantities can then be calculated from 
𝒫𝒫𝒫V, E ). For example, the LDL–HDL coexistence line (Fig. 3) was deter-
mined by identifying the pressure at each temperature T, where 
−kBT ln [𝒫𝒫𝒫V)] displays two minima of equal depth. Similarly, the LDL 
and HDL spinodal pressures can be calculated by identifying, for each 
temperature T, the pressure values at which the LDL and HDL minima 
disappear, respectively.

Data availability
All data used in the figures are available via GitHub (https://github.com/
paesanilab/Data_Repository/tree/main/MB-pol_critical_point)69. The 
DNN@MB-pol potential used in the MD simulations, along with the 
corresponding training set, is publicly available via Zenodo (https://
doi.org/10.5281/zenodo.7863744)67. The MB-pol potential used in the 
MD simulations is available in the MBX software68,69. Owing to their 
large sizes, all DNN@MB-pol and MB-pol MD trajectories are stored 
on a dedicated local server and are available from the corresponding 
author upon request.

Code availability
All DNN@MB-pol MD simulations were carried out with LAMMPS62 
patched with the DeePMD-kit plug-in63. All MB-pol simulations were 
carried out with LAMMPS62 patched with the MBX software68,69.
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