
How to calculate g(r)

To calculate g(r) (spherical average) one need to sit on an arbitrary particle i and
calculate the number of particles within a radial shell of inner radius r and outer radius
r + ∆r. Calling Ni(r) the number of particles found, gi(r) can be calculated as

gi(r) =
Ni(r)

N ig(r)
(1)

where N ig(r) is the number of pairs that one would have observed if the same system (same
number density) would have been an ideal gas, i.e.

N ig(r) =
4π

3

[
(r + ∆)3 − r3)

] N − 1

V

(note that we use (N − 1)/V to calculate the density, since we know already that one
particle is in the origin)

To improve the quality of the results, one can calculate Ni(r) for all particles in the
system. In this case one has to put in Eq.1 N(r) =< Ni(r) >i

g(r) =
N(r)

N ig(r)
(2)

Let us assume that all particles are within the box. Some codes do not unfold the
trajectory and one then need to apply first a fold-back procedure before calculating g(r).
For the time being, let’s assume all particles are in the box.

So, first of all we need to define a mesh ∆r (which must be reasonable to observe the
change in g(r)). Typically something like σ/20 is a good choice.

To calculate in an efficient way N(r) one can loop over all pairs of particle i > j
and calculate the relative distance, increasing the relative distance counter (H(r) in the
following) of that bin.

for i=1,N-1

for j=i+1,N

calculate rij

H(rij)=H(rij)+2 (to account for i>j)

next j

next i

H=H/N

gr=H/N ideal gas

Save g(r) in a xy file

1

So what is left is only the evaluation of the distance rij . This has to be done with
some care, to account for the periodic boundary conditions. Defining bx the box length
and boxh=bx/2 the half-box length, for each direction one has to calculate

rijx=x(i)-x(j)

if (abs(rijx)).gt.boxh) then

if (rijx>0) rijx=rijx-bx

else

rijx=rijx+bx

end if

end if

.... same for y and z

rij=sqrt(rijx^2+rijy^2+rijz^2)

How to calculate S(q)

The structure factor S(~q) is defined as

S(~q) =
1

N
< ρ∗(~q)ρ(~q) >=

1

N
|
∑
i

ei~q·~ri |2

where
ρ(~q) =

∑
i

ei~q·~ri

is the Fourier transform of the density ρ(r) =
∑

i δ(~r − ~ri)
Let’s first calculate S(~q) in a non efficient way, but less prone to mistakes. Later, we

will discuss how to make the code more efficient.
Assuming the system is isotropic, we know that we can average together all ~q with the

same modulus (which of course means to average together all ~q with modulus between q
and q + ∆q).

Due to the periodic boundary conditions, the only accessible ~q are the ones

qx =
2π

bx
nx

2

with nx integer, within −∞ < nx < ∞. In addition, since ρ(~q)∗ = ρ(−~q) only half of the
~q space need to be considered.

Here one need to set a value qmax, corresponding to a nmax beyond which we do
not calculate S(~q) anylonger, being ”inverse” distances which do not carry any further
information (too small). Typically qmax ∼ 42π

σ .

for nx=-nmax,nmax

for ny=0,nmax

for nz=0,nmax

calculate q modulus (in mesh units)

calculate rho(nx,ny,nz) (a complex quantity)

calculate S(q modulus) (a real quantity)

S(q modulus)=S(q modulus) + S(nx,ny,nz)

H(q modulus)=H(q modulus) +1

next nz

next ny

next nz

S(q modulus)= S(q modulus)/ H(q modulus)

Save S(q) in a xy file

To make the evaluation of S(~q) a little bit faster, one can pre-calculate

ρx(nx, i) ≡ ei
2π
bx
nxx(i) ρy(ny, i) ≡ e

i 2π
by
nyx(i)

ρz(nz, i) ≡ ei
2π
bz
nzx(i)

and then, when requested (remembering that the ρ are complex quantities)

ρ(nx, ny, nz) =
∑
i

ρx(nx, i)ρy(ny, i)ρz(nz, i)

Final consideration
We have not discussed the average over different configurations. This can be done in the

same code that calculate g(r) or S(q), adding a loop over the different configurations or it
can be done a posteriori by averaging all the produced xy files, one for each configuration.
This last strategy allow you to visualize the differences between the different configurations,
which sometimes is an useful thing to do.

3

