
1 Equilibrium polymerization

The idea of this section is to discuss how to write the free energy for a system in which particles
interact to form transient clusters, in dilute conditions where we can assume that the equilibrium
state can be approximated by an ideal gas of clusters.

1.1 Ideal Gas in a Nutshell

Let’s start by reviewing the basic concepts of an ideal gas. The partition function is

QN =
1

N !λ3N

∫
d~r1....d~rN exp−βV (~r1, ~r2, ..., ~rN ) (1)

(note: V (~r...) is the potential, V without argument is the volume)

=
V N

N !λ3N
=
QN1
N !

(2)

where Q1 = V
λ3 . The Free Energy F can be written as

βFN = − lnQN = −[N ln
V

λ3
−N lnN +N ] = N [ln ρλ3 − 1] (3)

To evaluate the pressure, we differentiate βFN finding

βP = −∂βFN
∂V

=
N

V
= ρ (4)

and finally, the chemical potential µ is

βµ =
βG

N
=
βF + βPV

N
= ln ρλ3 (5)

and z = expβµ = ρλ3.

Going back to the expression for F (that we will generalize later on)

βFN = N [ln ρλ3 − 1] = Nβµ−N (6)
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1.2 Ideal gas of clusters

Q =

∞∏
n=1

QNn
n

Nn!
(7)

Note that Qn is the partition function of the cluster, i.e. the conditions for being a cluster must
be satisfied. This introduces a constraint (a reduction) of the phase space d~r1....d~rN , that we may
indicate with a ′ sign in the integration. While it is simple to define a cluster as a group of particles
such that each particle is connected to any other particle via a sequence of bond, it is sometime
less clear how to define a bonded pair. In the case of strong bonds (the one commonly found in
association) or in the case of square-well like interaction, there is not much ambiguity.

Qn =
1

n!λ3n

∫ ′

d~r1....d~rN exp−βV (~r1, ~r2, ..., ~rN ) (8)

Note also that particles can be not spherical. In this case

Qn =
1

n!λ3n

∫ ′

d~r1....d~rNdΩ1...dΩN exp−βV (~r1, ~r2, ..., ~rN ,Ω1, ....ΩN ) (9)

where now λ includes the rotational component of the integral over the kinetic energy. In these cases
it is convenient to redefine λ

′3 = λ3/
∫
dΩ1 and define a spherically averaged partition function

Qn =
1

n!λ′3n

∫ ′
d~r1....d~rNdΩ1...dΩN exp−βV (~r1, ~r2, ..., ~rN ,Ω1, ....ΩN )∫

dΩ1...dΩN
(10)

Going back to the calculation of F , we have

βF = − lnQ = −
∞∑
n=1

[Nn lnQn −Nn lnNn +Nn] (11)

To find the cluster size distribution in equilibrium Nn this time we have to minimize βF under the
constraint

∑
n nNn = N . Introducing a Lagrange multiplier α, we get

∂(βF + α
∑

k kNk)

∂Nn
= 0 (12)

ln
Nn

Qn
− nα = 0 (13)
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or
Nn = Qn(expα)n (14)

Since N1 = Q1 expα, the same expression can be written as

Nn = Qn
Nn

1

Qn1
= Qnz

n (15)

since ρ1 = z

The resulting free energy is

βF = −
∞∑
n=1

[Nn lnQn −Nn lnQn
Nn

1

Qn1
+Nn] = −

∞∑
n=1

[nNn ln
N1

Q1
+Nn] = N lnN1/Q1 −#c (16)

where #c is the total number of clusters in the system. Since Q1 = V/λ3 and lnN1/Q1 = ln ρλ3 =
βµ, the free energy, in the ideal gas of cluster approximation, can be written as

βF = Nβµ−#c (17)

which is reminiscent of the ideal gas relation #c = βPV . Note that the monomer concentration
(which fix the value of µ) and the total number of clusters are the only information we need to
write down the system free energy.

2 A case study: SW and KF

To warm up, let’s evaluate the partition function for the monomer (setting λ
′3 = 1)

Q1 = V (18)

If we assume that the interaction potential is a square well, with range ∆ and depth -u0 (u0 > 0)
then in calculating Q2

Q2 =

∫
dr1dr2e

−βV (r12)
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.

we have a term V from the center of mass coordinate of the first particle and a Vb = 4
3π[(σ+∆)3−σ3]

that measure the volume over which the two particles are bonded

Q2 =
V

2
Vb exp (βu0) (19)

In the case of the Kern-Frenkel potential, where bonding exists if the condition for SW are satisfied
and if in addition angular constraints are satisfied (cone of semiopening θ) V 11

b = 4
3π[(σ + ∆)3 −

σ3)]χ2 where χ is the coverage, i.e. the fraction of surface defining a patch χ = 1−cos θ
2 .

Pictorial representation of a f = 4 Kern-Frenkel particle (left), in a non-bonded dimer configuration (center) and in a bonded one (right)

If there are f patches on the particle,

Q2 =
V

2
V 11
b f2 exp (βu0) (20)

Theory f = 2

Several interesting experimental systems are described by equilibrium polymerization, when aggre-
gating particles form chains of independent bonds
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For the case f = 2, the partition function (λ′ = 1)

Qn =
1

n!

∫ ′
d~r1....d~rNdΩ1...dΩN exp−βV (~r1, ~r2, ..., ~rN ,Ω1, ....ΩN )∫

dΩ1...dΩN
(21)

can be simplified as

Qf=2
n =

ωn
n!
V [V 11

b exp (βu0)]
#b (22)

with #b = n− 1
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To understand how to go from one to the next, one need to ”color” the particles and build the
cluster. The first particles can be anywhere in the volume (V ), the second one can be in one
of the two volumes Vb around the first particle and so on, up to the last one. This explain the
contribution V [V 11

b exp (βu0)]
#b . The term ωn measure the number of different particle arrangments

that generate a bonded state

To calculate ωn one considers that the first particle can be selected in n ways and that it has two
possible bonding configurations. The second one among the n− 1 remaining particles, always with
two bonding possibilities. Then we have to divide by two to account for the fact that the same
chain is generated starting from one of the two ends.

ωn =
2n× 2(n− 1)× 2(n− 2)× .....× 2

2
= n! 2n−1

so that

ωn
n!

= 2n−1 (23)

One simple way to check is to label the bonding sites with letters and write down all possible
distinct chains. For two particles, the first with site A and B and the second one with sites C and
D one get the four possible configurations

AB − CD BA− CD AB −DC BA−DC

and we should not include terms like DC −AB since they are identical to BA− CD.

Hence the partition function is

Qf=2
n = 2n−1V [V 11

b exp (βu0)]
n−1 = V [2V 11

b exp (βu0)]
n−1 (24)

This expression has a simple interpretation: V is the center of mass partition function and [2V 11
b exp (βu0)]

the partition function of a bond. In a chain of n particles there are n − 1 bonds. Often one find
defined a bond free energy as

e−βFb = 2V 11
b exp (βu0)

so that

Qf=2
n = V [e−βFb ]n−1.

The cluster size distribution is given by

Nn =
Nn

1

Qn1
Qn = ρn1V

[
e−βFb

]n−1
= N1

[
ρ1e
−βFb

]n−1

We can also find interesting to provide a more physical (or geometrical) interpretation of the cluster
size distribution. Let’s start by defining the bond probability pb as the probability that a random
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site in the system is bonded as the ratio between the number of bonded sites in the system 2#b

and the total number of sites in the system 2N . Then

pb =
2#b

2N

The total number of bonds in the system is
∑

n(n− 1)Nn, and hence∑
n

(n− 1)Nn = N −
∑
n

Nn = N −N1
1

1− [ρ1e−βFb ]

pb = 1− N1

N

1

1− [ρ1e−βFb ]

Now, it is easy to convince yourself that the number of monomers are given in term of pb by
N1 = N(1− pb)2, since a monomer must have a two unbonded sites. Hence ρ1 = N1

V = ρ(1− pb)2

(1− pb)�2

1− [ρ(1− pb)2e−βFb ]
= ����1− pb

�1− pb = �1− [ρ(1− pb)2e−βFb ]

or
pb

(1− pb)2
= ρe−βFb

In this language

Nn = N(1− pb)2[pb]n−1 (25)

Check
∑
nNn = N (1−pb)2

pb

∑
npnb = N

Hence we have an exponential decay of the cluster size distribution, with characteristic size 1/ ln pb,
diverging when pn → 1:

Nn = N
(1− pb)2

pb
en ln pb (26)

We also note on passing that the expression

pb
(1− pb)2

= ρe−βFb (27)
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could have been obtained by using the relation

N2 = Q2
N2

1

V 2

considering that N1 = N(1−pb)2 and N2 = NΩ2pb(1−pb)2. The value of Ω2 can be calculated with
simple consideration. A dimer is found by selecting randomly a particle (N), by selecting randomly
one of the two sites (2), by bonding it with another particle (pb), by imposing that all remaining
sites are empty (1− pb)2. The final result has to be divided by two to account for the probability
of starting on the second particle and re-generating the same dimer. Then N2 = Npb(1− pb)2, i.e.
Ω2 = 1. Since Q2 = 4

2!V Vbe
βu0 we can write

Npb(1− pb)2 =
4

2!
V Vbe

βu0
N2(1− pb)4

V 2

or

pb
(1− pb)2

= ρ 2Vbe
βu0

The simplex expression for the density and T dependence of pb can be obtained by substituting
y = 1

1−pb so that

1− (1− pb)
(1− pb)2

= y2
(

1− 1

y

)
= y2 − y = ρ 2Vbe

βu0

whose solution is

y =
1±

√
1 + 4ρ 2Vbeβu0

2
→ 1− pb =

2

1 +
√

1 + 8ρVbeβu0

(where we have selected the positive solution since 0 < pb < 1) or

pb = 1− 2

1 +
√

1 + 8ρVbeβu0

It is important to note that pb depends on T and ρ via the combined term ρeβu0 . Hence state points
with different T and ρ can behave similarly when ρeβu0 has the same value. More specifically, along
any path in the T − ρ plane described by the function

log ρ = − u0
kBT

+ constant

the polymerization will be identical.
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The low T limit is

pb(T → 0) = 1− e−βu0/2

√
2ρVb

The same expression can be interpreted as a chemical reaction between two sites

A+A <=> A2

in which ρ2Vbe
βu0 ≡ ρe−βFb plays the role of free energy change from a free state in which the

volume per particle is V/N to a bonded state in which the volume is Vb and the energy is u0.
ρe−βFb = 2NVb

V eβu0 . The entropy change is the ratio between the total volume for bonding and V ,
while the energy change is u0.

Since the system energy E = −u0#b = −u0pbN , the T and ρ dependence of pb is the same as the
one of the potential energy. Along an isochore, pb has a sigmoidal shape, going from zero at high
T to one at low T . The T -dependence of the energy is just the opposite, going from zero at high
T to −Nu0 at low T .
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The fact that the energy is bounded has a relevant consequence on the behavior of the constant
volume specific heat, that must show a maximum at a finite T . The presence of a peak in Cv is an
hallmark of equilibrium polymerization and the locus in the T − ρ plane separates a region where
the system can be considered composed by isolated monomers from a region where polymerization
is relevant.

Once the cluster size distribution of chains is known, it is possible to calculate the average chain
length L as

L ≡
∑∞

n=1 nNn∑
nNn

=

∑∞
n=1 n[pb]

n−1∑
n[pb]n−1

= pb
d

dpb
ln
∑
n

[pb]
n = pb

d

dpb
ln

pb
1− pb

= ��pb
����1− pb
��pb

(1− pb) + pb

(1− pb)�2
=

1

1− pb
(28)
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Figure 1: Predictions for the T -dependence of the specific heat CV for different values of densities
ρ . The inset shows the value of the specific heat at the maximum CmaxV .

Thus,

L =
1 +

√
1 + 8ρVbeβu0

2
(29)

At high T , L→ 1, while at low T ,

L =

√
2ρVbe

βu0/2

2

and hence L grows in density as
√
ρ and in T as L ∼ eβu0/2.
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Figure 2: Average chain length as a function of the density for several temperatures.

Identical particles with f patches - Limited valence particles
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Let’s now discuss how the previous formal information can be applied to the case of single-bond-
per-patch cases (limited valence particles), when there are f patches per particle and under the
assumption of independent bonds...

Assuming no loops and independent bonds the general expression is

Qn =
ωn
n!
V [V 11

b exp (βu0)]
#b (30)

where #b = n − 1 is the number of bonds and ωn is the number of independent bonding configu-
rations (the permutations of all distinct r1...rn,Ω1....Ωn in the integral of Qn, i.e. colored particles
and colored bonding sites). In the absence of bond loops, the system partition function can be
written in term of the total number of bonds in the system #bT = N −#c

Q =
∏
n

QNn
n

Nn!
= [V 11

b exp (βu0)]
#bT

∏ 1

Nn!

(ωn
n!

)Nn

(31)

It is easy to see that ω1 = 1 and ω2 = f2. For n = 3 and f = 3 one can consider that there are 3
ways of forming a dimer, each with 9 possibilities. Each dimer has four open sites that can bond
with the f sites. Then we have to divide by two to account for identical configurations generated
via this process. The following figure explains the total counting.
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Stockmayer (JCP 11,1945) has shown that the general expression for ωn is

ωn =
fn(fn− n)!

(fn− 2n+ 2)!
(32)

resulting in

Nn = Nn
1

Qn
Qn1

= Nn
1

Qn
V n

=
Nn

1

V n

fn(fn− n)!

n!(fn− 2n+ 2)!
V [V 11

b expβu0]
n−1 (33)

By grouping the terms in power n− 1,

Nn = N1
f(fn− n)!

n!(fn− 2n+ 2)!
[fN1V

11
b expβu0/V ]n−1 (34)

For example, N2 = N1f [fN1V
11
b expβu0/2V ]

Now, for a better understanding, let’s define 1 − pb the probability that an arbitrary patch is not
bonded. Clearly, then the number of monomers is N1 = N(1− pb)f . Also, considering that in the
no-loop approximation the number of bonds in a cluster of size n is n − 1, then —- apart from
geometric factors — Nn must be proportional to pn−1b and to (1− pb)fn−2(n−1) (the number of free
sites is equal to the total number of sites fn minus the number of sites involved in bonding and
each bond blocks two sites). Hence

Nn ∼ pn−1b (1− pb)n(f−2)+2 = pn−1b [(1− pb)(f−2)]n(1− pb)2 = [pb(1− pb)(f−2)]n−1(1− pb)f

This allow us to confirm that
N1 = N(1− pb)f

and identifying the contributions in powers of n− 1
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pb(1− pb)(f−2) = fN(1− pb)fV 11
b expβu0/V (35)

so that
pb

(1− pb)2
= fρV 11

b expβu0 (36)

Once more, pb depends only on the combined quantity ρeβu0 , the potential energy is proportional
to pb and there is a peak in the constant-volume specific heat.

We can thus write

Nn = N(1− pb)f
f(fn− n)!

n!(fn− 2n+ 2)!
[pb(1− pb)f−2]n−1 (37)

Here N2 = f
2N(1− pb)f [pb(1− pb)f−2] = f

2N [pb(1− pb)2f−2] and N2

N2
1

= 1
2V f

2V 11
b exp (βu0).

One can check that
∑

n nNn = N , but only when p < pp. pp signals the onset of an infinite cluster
in the system and it is equal to 1/(f − 1).

The two boxed equations (Eq. 36 and 37) are particularly important, since they completely define
the self-assembly process. The T and ρ dependence of the aggregation enters in pb. Solving this
expression provides pb(T, ρ). Plugging pb in Eq. 37 allows us to calculate the cluster size distribution.

Understanding Wertheim

Let’s assume we are dealing with particles with valence f , all identical and with the single-bond
per patch condition, and assume that all sites can bind. The maximum number of bonds that the
system can form is Nmax

b = Nf/2. If we call #b the number of bonds in the system, then we can
define a bond probability pb as pb = #b/N

max
b = 2#b/Nf . In term of pb the monomer number is

N(1 − pb)f . Similarly, the total number of clusters is #c = N −#b. Indeed, each bond decreases
by one the number of clusters. Hence #c = N −Nfpb/2 = N(1− fpb/2) and

βF = N ln[ρ(1− pb)f ]−N(1− fpb/2) = N [ln(ρ)− 1] +N{ln[(1− pb)f ] + fpb/2} (38)

This can be written in a more transparent way, separating the ideal gas component from the
bonding remaining part

βF = βFig + βFbonding (39)
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where
βFbonding = N{ln[(1− pb)f ] + fpb/2} (40)

The density and T dependence of pb controls everything. All systems with the same valence behave
in the same way if pb is assumed as a scaling variable.

One can do a little better by adding the bonding free energy βFbonding to the hard-sphere reference.
Also, consistently, the hard-sphere radial distribution function gHS modulates the bonding volume

V 11
b =

∫
dr12dω1dω2gHS(r12)e

−βV (r12,ω1,ω2)∫
dω1dω2

(41)

The following figures shows the Wertheim phase diagram resulting from the above free energy and
the way the percolation line, the specific heat maxima line and the coexistence lines behave.
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Figure 3: Spinodal curves calculated according to TPT for the studied patchy particles for several
f = M and f =< M > values.
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Figure 4: Theoretical predictions for the phase diagram of patchy systems on varying the particles
functionality form f = 3 to 5. Coexistence curves and CmaxV lines are evaluated according to the
Wertheim theory and by finding the zeroes of the temperature derivative of CV , i.e. (∂CV /∂T )V =
0. Percolation lines are evaluated according to the Flory-Stockmayer theory as the locus of points
in the (T, ρ) plane such that pb(T, ρ) = ppb .
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