
1 Constant Temperature (Tuckerman)

Our treatment of the canonical ensemble naturally raises the question
of how molecular dynamics simulations can be performed under the ex-
ternal conditions of this ensemble. After all, as noted in the previous
chapter, simply integrating Hamilton’s equations of motion generates
a microcanonical ensemble as a consequence of the conservation of the
total Hamiltonian. By contrast, in a canonical ensemble, energy is not
conserved but fluctuates so as to generate the Boltzmann distribution
exp[−βH] due to exchange of energy between the system and the ther-
mal reservoir to which it is coupled. Although we argued that these
energy fluctuations vanish in the thermodynamic limit, most simu-
lations are performed far enough from this limit that the fluctuations
cannot be neglected. In order to generate these fluctuations in a molec-
ular dynamics simulation, we need to mimic the effect of the thermal
reservoir. Various methods to achieve this have been proposed (Ander-
sen, 1980; Nosé and Klein, 1983; Berendsen et al., 1984; Nosé, 1984;
Evans and Morriss, 1984; Hoover, 1985; Martyna et al., 1992; Liu and
Tuckerman, 2000). We will discuss several of these approaches in the
remainder of this chapter. It must be mentioned at the outset, how-
ever, that most canonical ”dynamics” methods do not actually yield
any kind of realistic dynamics for a system coupled to a thermal bath.
Rather, the trajectories generated by these schemes comprise a set of
microstates consistent with the canonical distribution. In other words,
they produce a sampling of the canonical phase space distribution from
which equilibrium observables can be computed.

The most straightforward approach to kinetic control is a simple
periodic rescaling of the velocities such that the instantaneous kinetic
energy corresponds to a desired temperature. While easy to implement,
this approach does not guarantee that a canonical phase space distri-
bution is obtained. We can improve upon this approach by replacing
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the velocity scaling by a periodic resampling of the velocities from the
Maxwell- Boltzmann distribution. Such a scheme only guarantees that
a canonical momentum-space distribution is obtained. Nevertheless, it
can be useful in the initial stages of a molecular dynamics calculation
as a means of relaxing unfavorable contacts arising from poorly chosen
initial positions.

Of all the canonical dynamics methods, by far the most popular are
the ”extended phase space” approaches (Andersen, 1980; Nosé and
Klein, 1983; Nosé, 1984; Hoover, Canonical ensemble 1985; Martyna
et al., 1992; Liu and Tuckerman, 2000). These techniques supplement
the physical phase space with additional variables that serve to mimic
the effect of a heat bath within a continuous, deterministic dynamical
scheme. The extended phase space methodology allows the greatest
amount of flexibility and creativity in devising canonical dynamics al-
gorithms. Moreover, the idea of extending the phase space has lead
to other important algorithmic advances such as the Car-Parrinello
molecular dynamics approach (Car and Parrinello, 1985) for marry-
ing electronic structure with finite temperature dynamics as well as
methods for computing free energies (see Chapter 8).

1.1 Berendsen Thermostat

Just for historical reason, let’s describe the Berendsen thermostat. It
is based on the equation for the evolution of the temperature

dT

dt
=
Tthermostat − T

τ

e.g. an exponential relaxation of the T toward the desired Tthermostat
value. Discretising the equation one obtains

T (t+∆T ) = T (t)+∆t
Tthermostat − T (t)

τ
= T (t)

(
1 +

∆t

τ

[
Tthermostat
T (t)

− 1

])
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To achieve this time dependence, the velocities at each MD step are
rescaled by a factor α

α =

√(
1 +

∆t

τ

[
Tthermostat
T (t)

− 1

])
This thermostat does not produce the correct canonical sampling of
phase space and should never be used during a production run. Can
be conveniently implemented for equilibrating the system at the desired
T .

1.2 Anderson Thermostat (Frenkel-Smith)

In the constant-temperature method proposed by Andersen the system
is coupled to a heat bath that imposes the desired temperature. The
coupling to a heat bath is represented by stochastic impulsive forces
that act occasionally on randomly selected particles. These stochastic
collisions with the heat bath can be considered as Monte Carlo moves
that transport the system from one constant-energy shell to another.
Between stochastic collisions, the system evolves at constant energy
according to the normal Newtonian laws of motion. The stochastic
collisions ensure that all accessible constant-energy shells are visited
according to their Boltzmann weight. Before starting such a constant-
temperature simulation, we should first select the strength of the cou-
pling to the heat bath. This coupling strength is determined by the
frequency of stochastic collisions. Let us denote this frequency by ν.
If successive collisions are uncorrelated, then the distribution of time
intervals between two successive stochastic collisions, P (t; ν), is of the
Poisson form

P (t; ν) = νe−νt

Indeed, the probability of not colliding up to time t and collide in
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the following dt is

P (t, ν)dt = lim
∆t→0

(1− ν∆t)t/∆tνdt =

and calling t/∆t = n

P (t, ν) = lim
∆n→∞

(
1− νt

n

)n
ν = νe−νt

A constant-temperature simulation now consists of the following
steps:

• 1. Start with an initial set of positions and momenta and integrate
the equations of motion for a time ∆t.

• 2. A number of particles are selected to undergo a collision with
the heat bath. The probability that a particle is selected in a time
step of length ∆t is ν∆t .

• 3. If particle i has been selected to undergo a collision, its new
velocity will be drawn from a Maxwell-Boltzmann distribution cor-
responding to the desired temperature T . All other particles are
unaffected by this collision.

The mixing of Newtonian dynamics with stochastic collisions turns
the Molecular Dynamics simulation into a Markov process. It has
been shown that a canonical distribution in phase space is invariant
under repeated application of the Andersen algorithm. Combined with
the fact that the Markov chain is also irreducible and aperiodic, this
implies that the Andersen algorithm does, indeed, generate a canonical
distribution.

subroutine integrate(switch, f,en,temp)

if (switch.eq.1) then

do i=l,npart

x(i) =x(i) +dt*v(i) + dt*dt*f(i)/2
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v(i)=v(i)+dt*f(i)/2

enddo

else if (switch.eq.2) then

tempa=0

do i=l,npart

v(i)=v(i)+dt*f(i)/2

tempa=tempa+v(i)^2

enddo

tempa=tempa/(s*npart)

sigma=sqrt(temp)

do i=1,npart

if (rand().lt.nu*dt) then

v(i)=auss(sima)

endif

enddo

endif

return

end

1.3 Nosé Thermostat (Tuckerman)

Extended phase space methods can be either Hamiltonian or non-
Hamiltonian in their formulation. Here, we begin with a Hamiltonian
approach originally introduced by S. Nosé (1983, 1984). Nose’s ap-
proach can be viewed as a kind of Maxwell daemon. An additional
”agent” is introduced into a system that ”checks” whether the instan-
taneous kinetic energy is higher or lower than the desired temperature
and then scales the velocities accordingly. Denoting this variable as s
and its conjugate momentum as ps, the Nosé Hamiltonian for a system
with physical coordinates r1, ....rN and momenta p1, ....pN , takes the
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form

HNose′ =
N∑
i=1

p2
i

2ms2
+ U(r1, ....rN) +

p2
s

2Q
+ gKT log(s) (1)

where Q is a parameter that determines the time scale on which the
daemon acts. Q is not a mass! In fact, it has units of energy × time2.
T is the desired temperature of the canonical distribution. If d is the
number of spatial dimensions, then the phase space now has a total of
2dN + 2 dimensions with the addition of s and ps. The parameter g
appearing in Eq. 1 will be determined by the condition that a micro-
canonical distribution of 2dN + 2-dimensional phase space of HNose′

yields a canonical distribution in the 2dN−dimensional physical phase
space. The presence of s in the kinetic energy is essentially what we
would expect for an agent that must scale the kinetic energy in order
to control its fluctuations. The choice gKT log(s) as the potential in
s, though seemingly mysterious, is carefully chosen to ensure that a
canonical distribution in the physical phase space is obtained. In or-
der to see how the canonical distribution emerges fromHNose′, consider
the microcanonical partition function of the full 2dN + 2-dimensional
phase space:

Ω =

∫
drNdpNdsdps δ

(
N∑
i=1

p2
i

2ms2
+ U(r1, ....rN) +

p2
s

2Q
+ gKT log(s)− E

)
(2)

where E is the energy of the ensemble. Here we are assuming that
there is only one conservation law, the one of the energy. (For clarity,
prefactors preceding the integral have been left out.) The distribution
of the physical phase space is obtained by integrating over s and ps.
We first introduce a change of momentum variables:
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p̃ =
p

s
which gives

Ω =

∫
drNdp̃Ns3Ndsdps δ

(
N∑
i=1

p̃2
i

2m
+ U(r1, ....rN) +

p2
s

2Q
+ gKT log(s)− E

)
=

(3)
(and renaming the dummy variable p̃ with p)

=

∫
drNdpNs3Ndsdps δ

(
H +

p2
s

2Q
+ gKT log(s)− E

)
(4)

where

H =
N∑
i=1

p2
i

2m
+ U(r1, ....rN)

is the physical Hamiltonian. We next exploit the properties of the
δ-function that

δ(f(s)) =
δ(s− s0)

|f ′(s0)|
where s0 is the single zero of (s). (espandendo f(s) intorno al suo zero
s0 abbiamo f(s) ≈ f ′(s0)(s − s0) e quindi occorre fare un cambio di
variabile per valutare la delta che porta ad un f ′(s0) a denominatore).
The argument of the δ-function in Eq. 4 vanishes when

s0 = eβ(E−H− p2s
2Q )/g

so that

f ′(s) =
gKT

s

1

|f ′(s0)|
=

s0

gKT
=

1

gKT
eβ(E−H− p2s

2Q )/g

Substituting in Eq. 4 and integrating over s gives

Ω =

∫
drNdpNe3Nβ(E−H− p2s

2Q )/gdps
1

gKT
eβ(E−H− p2s

2Q )/g =

∫
dNrdpNe(3N+1)β(E−H− p2s

2Q )/gdps
1

gKT
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so that, if one choose g = 3N + 1 and integrate over ps one obtains, a
part from a pre-factor, the canonical distribution

Ω =
eβE
√

2πQkT

(3N + 1)kT

∫
drNdpNe−βH

The analysis shows how a microcanonical distribution of the Nosé
Hamiltonian HNose′ is equivalent to a canonical distribution in the
physical Hamiltonian. This suggests that a molecular dynamics calcu-
lation performed using HNose′ should generate sampling of the canon-
ical distribution e−βH under the usual assumptions of ergodicity. Be-
cause the Nosé Hamiltonian mimics the effect of a heat bath by con-
trolling the fluctuations in the kinetic energy, the mechanism of the
Nosé Hamiltonian is also known as a thermostatting mechanism. The
equations of motion generated by HNose′ are

ṙi =
∂HNose′

∂pi
=

pi
ms2

(5)

ṗi = −∂HNose′

∂ri
= Fi

ṡ =
∂HNose′

∂ps
=
ps
Q

ṗs = −∂HNose′

∂s
=
∑
i

p2
i

ms3
− gKT

s
=

1

s

[∑
i

p2
i

ms2
− gKT

]
The ri and ps equations reveal that the thermostatting mechanism

works on an un-conventional kinetic energy
∑

i
p2
i

2ms2 . This form sug-
gests that the more familiar kinetic energy can be recovered by intro-
ducing the following (noncanonical) change of variables:
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p′i =
pi
s

(6)

ps
′ =

ps
s

dt′ =
dt

s

With these new variables, and considering that dpi/dt
′ = sFi, the

evolution is described by

dri
dt′

=
p′i
m

(7)

dp′i
dt′

= Fi −
sp′s
Q

p′i

ds

dt′
=
s2p′s
Q

dps
dt′

=
1

s

[∑
i

p2
i

m
− gKT

]
− s(p′s)

2

Q

Because of the noncanonical transformation, these equations lose
their symplectic structure, meaning that they are no longer Hamilto-
nian. In addition, they involve an unconventional definition of time
due to the scaling by the variable s. This scaling makes the equations
somewhat cumbersome to use directly in the form of Eq. 7.

2 Nose’-Hoover

In 1985, Hoover (1985) introduced a reformulation of the Nose’ dy-
namics that has become one of the staples of molecular dynamics.
Starting from the Nose’ equations of motion (Eq. [?]), one introduces
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a non-canonical change of variables

p′i =
pi
s

dt′ =
dt

s
1

s

ds

dt′
=
dη

dt′

ps = pη

and a redefinition g = dN , which least to new equations of motion of
the form

dri
dt′

=
p′i
mi

(8)

dp′i
dt′

= Fi −
pη
Q

p′i

dη

dt′
=
pη
Q

dpη
dt′

=
N∑
i=1

p′2i
mi
− dNkBT

The additional term in the momentum equation acts as a kind of fric-
tion term, which, however, can be either negative of position in sign.
In fact, the evolution of the ”friction” variable pη is driven by the
difference in the instantaneous value of the kinetic energy (multiplied
by 2) and its canonical average dNkBT . Eq. 8 constitute an exam-
ple of a non-Hamiltonian system. In this case, they are, in a sense,
trivially non-Hamiltonian because they are derived from a Hamilto-
nian system using a noncanonical choice of variables. As we proceed,
however, we will encounter examples of systems that are intrinsically
non-Hamiltonian, meaning that there is no set of canonical variables
that transforms the equations of motion into a Hamiltonian structure.
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In order to analyze any non-Hamiltonian system, whether trivial or
not, we need to generalize some of the concepts previously developed
for non-Hamiltonian phase spaces.

3 Some needed background: Phase space volumes and Li-
ouville’s theorem (Tuckerman)

As noted previously, an ensemble is a collection of systems with a
set of common macroscopic properties such that each system is in a
unique microscopic state at any point in time as determined by its
evolution under some dynamical rule, e.g., Hamilton’s equations of
motion. Given this definition, and assuming that the evolution of
the collection of systems is prescribed by Hamilton’s equations, it is
important first to understand how a collection of microscopic states
(which we refer to hereafter simply as ”microstates”) moves through
phase space.

Consider a collection of microstates in a phase space volume element
dx0 centered on the point x0. The ”0” subscript indicates that each
microstate in the volume element serves as an initial condition for
Hamilton’s equations, which we had written

ẋ = η(x).

The equations of motion can be generalized to the case of a set of driven
Hamiltonian systems by writing them as ẋ = η(x, t). We now ask how
the entire volume element dx0 moves under the action of Hamiltonian
evolution. Recall that x0 is a complete set of generalized coordinates
and conjugate momenta:

x0 = (q1(0), q2(0).....q3N(0), p1(0)...p3N(0)

(We will refer to the complete set of generalized coordinates and their
conjugate momenta collectively as the phase space coordinates.) If
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we follow the evolution of this volume element from t = 0 to time t,
dx0 will be transformed into a new volume element dxt centered on a
point xt in phase space. The point xt is the phase space point that
results from the evolution of x0. xt is a unique function of x0 that
can be expressed as x(x0). Since the mapping of the point x0 to xt is
one-to-one, this mapping is equivalent to a coordinate transformation
on the phase space from initial phase space coordinates x0 to phase
space coordinates xt. Under this transformation, the volume element
dx0 transforms according to

dxt = J(xt;x0)dx0 (9)

where J(xt;x0) is the Jacobian of the transformation, the determi-
nant of the matrix J whose elements are

Jik =
∂xkt

∂xj0

We propose to determine the Jacobian by deriving an equation of
motion it obeys and then solving this equation of motion. To accom-
plish this, we start with the definition,

J(xt;x0) = det(J)

analyze the derivative

d

dt
J(xt;x0) =

d

dt
det(J)

and derive a first-order differential equation obeyed by J(xt;x0). The
time derivative of the determinant is most easily computed by applying
an identity satisfied by determinants

det(J) = exp[Tr[ln J ]]

where Tr is the trace operation:

Tr[J ] =
∑
k

Jkk
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and ln J is the matrix that satisfy the identiy eln J = J (remember that
eA = 1 + A+ A2/2 + ....)

The equivalence between det(J) and exp[Tr[ln J ]] is most easily
proved by first transforming J into a representation in which it is
diagonal. If J has eigenvalues λk, then ln(J) is a diagonal matrix with
eigenvalues lnλk, and the trace operation yields

Tr[ln J ] =
∑
k

lnλk.

Exponentiating the trace yields
∏

k λk which is just the determinant
of J.

Thus we can write

d

dt
det(J) =

d

dt
eTr[ln J ] =

deriving respect to t the argument of the exponential

= eTr[ln J ] d

dt
Tr[ln J ]] = eTr[ln J ]Tr

d ln J

dt
= eTr[ln J ]Tr

[
dJ

dt
J−1

]
where we have used the fact that

J = eln J = 1 + ln J +
(ln J)2

2!
+ .....

and, element by element

dJ

dt
=
d ln J

dt
+

1

2!

d(ln J)2

dt
+ .... =

d ln J

dt
+ 2 ln J

1

2!

d ln J

dt
+ ....

which gives

=
d ln J

dt
[1 + ln J + ......] =

d ln J

dt
eln J =

d ln J

dt
J

and multiplying by J−1 on both sides
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d ln J

dt
=
dJ

dt
J−1

Note that
dJkl
dt

=
∂ẋkt
∂xl0

and (considering that J−1 is simple the reversed in time trajectory )

J−1
lk =

∂xl0
∂xkt

Then
d

dt
J(xt;x0) = J(xt;x0)

∑
k

∑
l

[
∂ẋkt
∂xl0

∂xl0
∂xkt

]
The summation over l of the term in square brackets, is just the

chain-rule expression for ∂ẋkt
∂xkt

Thus, performing this sum yields the equa-

tion of motion for the Jacobian:

d

dt
J(xt;x0) = J(xt;x0)

∑
k

[
∂ẋkt
∂xkt

]
= J(xt;x0)∇·̇xt (10)

where we have made use of the phase space compressibility ∇·̇xt.
The equation also revealed that the phase compressibility is 0 for a sys-
tem evolving under Hamilton’s equations. Thus, the sum on the right
side of eqn. 10 vanishes, and the equation of motion for the Jacobian
reduces to

d

dt
J(xt;x0) = 0 (11)

This equation of motion implies that the Jacobian is a constant for
all time. The initial condition J(x0;x0) on the Jacobian is simply 1
since the transformation from x0 to x0 is an identity transformation.
Thus, since the Jacobian is initially 1 and remains constant in time, it
follows that

J(xt;x0) = 1 (12)
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Substituting eqn. 12 into eqn.9 yields the volume element transfor-
mation condition

dxt = dx0

an important result known as Liouville’s theorem (named for the nineteenth-
century French mathematician, Joseph Liouville (1809-1882)). Liou-
ville’s theorem is essential to the claim made earlier that ensemble
averages can be performed at any point in time. If the motion of the
system is driven by highly nonlinear forces, then an initial hypercu-
bic volume element dx0, for example, will distort due to the chaotic
nature of the dynamics. Because of Liouville’s theorem, the volume
element can spread out in some of the phase space dimensions but
must contract in other dimensions by an equal amount so that, over-
all, the volume is conserved. That is, there can be no net attractors
or repellors in the phase space.

4 Classical non-Hamiltonian statistical mechanics - Tucker-
man

Generally, Hamiltonian mechanics describe a system in isolation from
its surroundings. We have also seen that, with certain tricks, a Hamil-
tonian system can be used to generate a canonical distribution. But let
us examine the problem of a system interacting with its surroundings
more closely. If we are willing to treat the system plus surroundings
together as an isolated system, then the use of Hamiltonian mechanics
to describe the whole is appropriate within a classical description. The
distribution of the system alone can be determined by integrating over
the variables that represent the surroundings in the microcanonical
partition function, as was done above. In most situations, when the
surroundings are integrated out in this way, the microscopic equations
of motion obeyed by the system are no longer Hamiltonian. In fact, it
is often possible to model the effect of the surroundings simply posit-
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ing a set of non-Hamiltonian equations of motion and then proving
that the equations of motion generate the desired ensemble distribu-
tion. Under such a protocol, it is possible to treat systems interacting
with heat and particle reservoirs or systems subject to external driv-
ing forces. Consequently, it is important to develop an approach that
allows us to predict what the phase space distribution function is for
a given set of non-Hamiltonian equations of motion. Let us begin by
assuming that a system interacting with its surroundings and possibly
subject to driving forces is described by non-Hamiltonian microscopic
equations of the form

ẋ = ζ(x, t)

We do not restrict the vector function ζ(x, t) except to assume that
it is smooth and at least once differentiable. In particular, the phase
space compressibility ∇ · ẋ = ∇ · ζ(x, t) need not vanish for a non-
Hamiltonian system. If it does not vanish, then the system is non-
Hamiltonian. Note, however, that the converse is not necessarily true.
That is, there are dynamical systems for which the phase space com-
pressibility is zero but which cannot be derived from a Hamiltonian.
Recall that the vanishing of the phase space compressibility is central to
the derivation of the Liouville theorem and Liouville’s equation. Thus,
in order to understand how these results change when the dynamics is
not Hamiltonian, we need to revisit these derivations.

4.1 The phase space metric

Recall from Section 2.4 that a collection of trajectories initially in
a volume element dx0 about the point x0 will evolve to dxt about
the point xt, and the transformation x0 → xt is a unique one with a
Jacobian J(xt;x0) satisfying the equation of motion

d

dt
J(xt;x0) = J(xt;x0)∇·̇xt (13)
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Since the compressibility will occur many times in our discussion of
non-Hamiltonian systems, we introduce the notation κ(xt, t), to repre-
sent this quantity

κ(xt, t) = ∇·̇xt
Since κ(xt, t) cannot be assumed to be zero, the Jacobian is not unity
for all time, and the Liouville theorem dxt = dx0 no longer holds. The
formal solution of Eq, 13, subject to the initial condition J(x0;x0) = 1
is

J(xt, x0) = exp[

∫ t

0

dsκ(xs, s)]

If we now define a funciton w(s) such that

κ(xs, s) =
d

ds
w(xs, s)

then
J(xt, x0) = exp[w(xt, t)] exp[−w(x0, 0)]

Since the phase space volume element evolves according to

dxt = J(xt;x0)dx0

we have
dxt = exp[w(xt, t)] exp[−w(x0, 0)]dx0

exp[−w(xt, t)]dxt = exp[−w(x0, 0)]dx0

which constitutes a generalization of Liouville’s theorem; it implies that
a weighted phase space volume exp[−w(xt, t)]dxt is conserved rather
than simply dxt. This implies that a conservation law exists on a phase
space that does not follow the usual laws of Euclidean geometry. We
therefore need to view the phase space of a non-Hamiltonian system
in a more general way as a non-Euclidean or Riemannian space or
manifold. Riemannian spaces are locally curved spaces and, therefore,
it is necessary to consider local coordinates in each neighborhood of
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the space. The coordinate transformations needed to move from one
neighborhood to another give rise to a nontrivial metric (commonly
labeled by

√
g) and a corresponding volume element denoted√

g(x0, 0) ≡ exp[−w(x0, 0)]

such that √
g(xt, t)dxt =

√
g(x0, 0)dx0

The implication of the previoius equation is that any phase space
integral that represents an ensemble average should be performed us-
ing

√
g(xt, t)dx as the volume element so that the average can be

performed at any instant in time.
Imbuing phase space with a metric is not as strange as it might at

first seem. After all, phase space is a fictitious mathematical construc-
tion, a background space on which a dynamical system evolves. There
is no particular reason that we need to attach the same fixed, Euclidean
space to every dynamical system. In fact, it is more natural to allow
the properties of a given dynamical system dictate the geometry of the
phase space on which it lives. Thus, if imbuing a phase space with a
metric that is particular to a given dynamical system leads to a volume
conservation law, then such a phase space is the most natural choice
for that dynamical system. Once the geometry of the phase space is
chosen, the form of the Liouville equation and its equilibrium solution
are determined, as we will now show.

5 Generalizing the Liouville equation

The important thing to realize is that if the system is not Hamiltonian
(for which case g(xt, t) = 1 for all t) the phase space volume need to be
multiplied by the function

√
g(xt, t) that provides its local curvature√

g(xt, t)dxt =
√
g(x0, 0)dx0
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This results in a conservation law of for the probability f(xt, t) that
must incorporate the geometry of space

f(xt, t)
√
g(xt, t)dxt = f(x0, 0)

√
g(x0, 0)dx0

and provides a generalization of the Liouville equation. All averages
over phase space must include the

√
g(xt, t) term.

For example, the continuity equation that for a space with g(xt, t) =
1 for all t is written as

∂f(xt, t)

∂t
= −∇ · f(xt, t)ẋt

becomes

∂
√
g(xt, t)f(xt, t)

∂t
= −∇ ·

√
g(xt, t)f(xt, t)ẋt

5.1 How to define f(x)

In equilibrium, both f(xt, t) and g(xt, t) have no explicit time depen-
dence, so that

f(xt)
√
g(xt)dxt = f(x0)

√
g(x0)dx0 (14)

which means that equilibrium averages can be performed at any in-
stant in time, the same as in the Hamiltonian case. To define the
function f(x) we follow the same idea encountered in the microcanon-
ical ensamble where the probability of all points with the same energy
is assumed to be idential. Here we assume to know all conservation
laws satisfied by the constant of motion and associate the same prob-
ability to all points in phase space that satisfy all constant of motion
and zero probability to all other phase space points.

To be more precise, let there be Nc conservation laws of the form

Λk(xt)− Ck = 0
d

dt
Λk(xt) = 0
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where k = 1...Nc. If we can identify these, then a general solution for
f(x) can be constructed from these conservation laws in the form

f(x) =

Nc∏
k=1

δ(Λk(xt)− Ck) (15)

This solution simply states that the distribution generated by the
dynamics is one that samples the intersection of the hypersurfaces rep-
resented by all of the conservation laws. Under the usual assumptions
of ergodicity, the system will sample all of the points on this intersec-
tion surface in an infinite time. Consequently, the non- Hamiltonian
system has an associated ”microcanonical” partition function obtained
by integrating the distribution in Eq. 15:

Z =

∫
dx
√
g(x)f(x) =

∫
dx
√
g(x)

Nc∏
k=1

δ(Λk(xt)− Ck)

The appearance of the metric determinant in the phase space integral
conforms to the requirement of eqn.14, which states that the number
of microstates available to the system is determined by f(x) when it
is integrated with respect to the conserved volume element

√
g(x)dx.

Eqns. 15 lie at the heart of our theory of non-Hamiltonian phase spaces
and will be used to analyze a variety of non-Hamiltonian systems in
this and subsequent chapters

5.2 Analysis of the Nosé-Hoover equations

We now turn to the analysis of eqns. 8. Our goal is to determine
the physical phase space distribution generated by the equations of
motion.We begin by identifying the conservation laws associated with
the equations. First, there is a conserved energy of the form

H(r, η,p, pη) = H(r,p) +
p2
η

2Q
+ dNkTη
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where H(r,p) is the physical Hamiltonian. If
∑N

i=1 Fi 6= 0 then
except for very simple systems, the conservation of the Hamiltonian is
the only conservation law. Next, we compute the compressibility. Of
all the derivatives (see Eq. 8) the only one which are different from
zero are ∇pi

· ṗi, thus giving

κ =
N∑
i=1

[∇pi
· ṗi +∇ri · ṙi] +

∂η̇

∂η
+
∂ṗη
∂pη

= −
N∑
i=1

d
pη
Q

= −dNη̇

Since w is the function whose time derivative is κ, we can im-
mediately associate w = −dNη and find that the metric is

√
g =

exp (−w) = exp dNη. The microcanonical partition function at a given
temperature T can be constructed using

√
g and the energy conserva-

tion condition,

Z(N, V, C1) =

∫
dNp

∫
dNr

∫
dpηdη exp [dNη]×δ(H(r,p)+

p2
η

2Q
+dNkTη−C1)

where the T subscript indicates that the microcanonical partition
function depends parametrically on the temperature T . The distri-
bution function of the physical phase space can now be obtained by
integrating over η and pη. Using the δ-function to perform the inte-
gration over η requires that

η =
1

dNkT

(
C1 −H(r,p)−

p2
η

2Q

)
Substitution of this result gives

Z(N, V, C1) =
eβC1

dNkT

∫
dpN

∫
drNe−βHr,p)

∫
dpηe

−βp2η/2Q

which is the canonical distribution function apart from constant prefac-
tors. This demonstrates that the Nosé-Hoover equations are capable of
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generating a canonical distribution in the physical subsystem variables
when H is the only conserved quantity. Unfortunately, this is not the
typical situation. In the absence of external forces, Newton’s third law
requires that

∑N
i=1 Fi = 0, which leads to an additional conservation

law
Peη = K

where P is the center-of-mass momentum of the system and K is an
arbitrary constant vector in d dimensions. When this additional con-
servation law is present, the Nosé-Hoover equations do not generate
the correct distribution

6 Nosé-Hoover chains (Tuckerman)

The reason for the failure of the Nosé-Hoover equations when more
than one conservation law is obeyed by the system is that the equa-
tions of motion do not contain a sufficient number of variables in the
extended phase space to offset the restrictions placed on the accessible
phase space caused by multiple conservation laws. Each conservation
law restricts the accessible phase space by one dimension. In order to
counterbalance this effect, more phase space dimensions must be intro-
duced, which can be accomplished by introducing additional variables.
But how should these variables be added so as to give the correct dis-
tribution in the physical phase space? The answer can be gleaned from
the fact that the momentum variable pη in the Nosé-Hoover equations
must have a Maxwell-Boltzmann distribution, just as the physical mo-
menta do. In order to ensure that such a distribution is generated,
pη itself can be coupled to a Nosé-Hoover-type thermostat, which will
bring in a new set of variables, ηj and pηj . But once this is done, we
have the problem that pη must also have a Maxwell-Boltzmann distri-
bution, which requires introducing a thermostat for this variable. We
could continue in this way ad infinitum, but the procedure must ter-
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minate at some point. If we terminate it after the addition of M new
thermostat variable pairs ηj and pηj , j = 1...M , then the equations of
motion can be expressed as

ṙi =
pi
m

(16)

ṗi = Fi −
pη1
Q1

pi

η̇j =
pηj
Qj

j = 1, ...M

ṗη1 =

[∑
i

p2
i

m
− 3NkT

]
− pη2
Q2
pη1

ṗηj =

[
p2
ηj−1

Qj−1
− kT

]
−
pηj+1

Qj+1
pηj j = 2, ....M − 1

ṗηM =

[
p2
ηM−1

QM−1
− kT

]
Eqns. 16 are known as the Nosé-Hoover chain equations. These

equations ensure that the first M − 1 thermostat momenta pη1....pηM−1
have the correct Maxwell-Boltzmann distribution. Note that for M = 1,
the equations reduce to the simpler Nosé-Hoover equations. However,
unlike the Nosé-Hoover equations, which are essentially Hamiltonian
equations in noncanonical variables, the Nosé-Hoover chain equations
have no underlying Hamiltonian structure, meaning no canonical vari-
ables exist that transform eqns. 16 into a Hamiltonian system. Con-
cerning the parameters Q1, ..., QM , Martyna et al. (1992) showed that
an optimal choice for these is

Q1 = 3NkTτ 2 Qj = kTτ 2 j = 2, ....M

where τ is a characteristic time scale in the system. Since this time
scale might not be known explicitly, in practical molecular dynamics
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calculations, a reasonable choice is τ > 20∆t where ∆t is the time
step.

7 Integrating the Nosé-Hoover chain equations

Numerical integrators for non-Hamiltonian systems such as the Nosé-
Hoover chain equations can be derived using the Liouville operator
formalism developed previously. However, certain subtleties arise due
to the generalized Liouville theorem and, therefore, the subject merits
some discussion. Recall that for a Hamiltonian system, any numer-
ical integration algorithm must preserve the symplectic property, in
which case, it will also conserve the phase space volume. For non-
Hamiltonian systems, there is no clear analog of the symplectic prop-
erty. Nevertheless, the existence of a generalized Liouville theorem,
provides us with a minimal requirement that numerical solvers for non-
Hamiltonian systems should satisfy, specifically, the preservation of the
measure

√
g(x)dx. Integrators that fail to obey the generalized Liou-

ville theorem cannot be guaranteed to generate correct distributions.
Therefore, in devising numerical solvers for non-Hamiltonian systems,
care must be taken to ensure that they are measure-preserving (Ezra,
2007).

For an accurate algorithm for the Nose-Hoover chain see Tucker-
man’s book.

8 The isokinetic ensemble: A simple variant of the canonical
ensemble (Tuckerman)

Extended phase space methods are not unique in their ability to gener-
ate canonical distributions in molecular dynamics calculations. In this
section, we will discuss an alternative approach known as the isokinetic
ensemble. As the name implies, the Canonical ensemble isokinetic en-
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semble is one in which the total kinetic energy of a system is maintained
at a constant value.

Equations of motion for the isokinetic ensemble were first written
down by D. J. Evans and G. P. Morriss (1980) by applying Gauss’s
principle of least constraint. The equations of motion are obtained by
imposing a kinetic-energy constraint

N∑
i=1

miṙ
2
i =

N∑
i=1

p2
i

2mi
= K (17)

on the Hamiltonian dynamics of the system. K is twice the kinetic
energy. The previous constraint is a nonholonomic constraint (it de-
pends on time), but one that can be expressed in differential form.
Thus, the Lagrangian form of the equations of motion is

d

dt

(
∂L
∂ṙi

)
− ∂L
∂ri

= α
∑
i

miṙi

which can also be put into Hamiltonian form

ṙi =
pi
mi

ṗi = Fi − αpi (18)

Here, α is the single Lagrange multiplier needed to impose the con-
straint. Using Gauss’s principle of least constraint gives a closed-form
expression for α. We first differentiate eqn.17 once with respect to
time, which yields ∑

i

pi
mi
·̇pi = 0

Thus, substituting in Eq. 18 gives∑
i

pi
mi
· [Fi − αpi] = 0
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which can be solved for α. Thus, the equations of motion for the
isokinetic ensemble become

ṗi = Fi −

[∑
j Fj · pj/mj∑
j p2

j/mj

]
pi (19)

The previous equations are non-Hamiltonian, as we will see by eval-
uating the phase space compressibility and noticing it is different from
zero. In order to carry out the analysis, we first need to calculate the
phase space compressibility:

κ =
N∑
i=1

[∇ri · ṙi +∇pi
· ṗi] =

since ∇ri · ṙi = 0 (ṙi is pi)

N∑
i=1

∇pi

{
Fi −

[∑
j Fj · pj/mj∑
j p2

i/mj

]
pi

}
Since ∇pi

Fi = 0 , one need only to calculate (indicating with K

twice the kinetic energy)

κ = −
N∑
i=1

∇pi

∑
j Fj · pj/mj

K
pi

Evaluating

N∑
i=1

∇pi

∑
j Fj · pj/mj

K
pi =

∑
i

∑
α

∂

∂piα

∑
j Fj · pj/mj

K
piα =

dN

∑
j Fj · pj/mj

K
+
∑
i

∑
α

piα
∂

∂piα

∑
j Fj · pj/mj

K

= dN

∑
j Fj · pj/mj

K
+
∑
i

∑
α

piα
1

K2

[
K

∂

∂piα

∑
j

Fj · pj/mj −
∑
j

Fj · pj/mj
∂K

∂piα

]
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= dN

∑
j Fj · pj/mj

K
+
∑
i

∑
α

piα
1

K2

[
K
Fi,α
mi
− 2

∑
j

Fj · pj
mj

piα
mi

]
=

= dN

∑
j Fj · pj/mj

K
+

1

K

∑
j

Fj ·pj/mj−
2

K2

∑
j

Fj · pj
mj

∑
i

∑
α

p2
iα

mi
=

= dN

∑
j Fj · pj/mj

K
+

1

K

∑
j

Fj·pj/mj−
2

K

∑
j

Fj · pj
mj

= (dN−1)

∑
j Fj · pj/mj

K

and substituting
dU

dt
= −

∑
j

Fj · pj/mj

κ =
dN − 1

K

dU(r1....rN)

dt
=

d

dt

dN − 1

K
U(r1....rN)

Thus, the function w(x) is just dN−1
K U(r1....rN), and the phase space

metric becomes √
g = e−w = e−

dN−1
K U(r1....rN )

Since the equations of motion explicitly conserve the total kinetic
energy we can immediately write down the partition function generated
by the equation of motion

Ω =

∫
dpNdrNe−

dN−1
K U(r1....rN )δ

(
N∑
i=1

pi
2

2mi
− (dN − 1)kBT

)
The analysis shows that if the constant parameter K (the kinetic

energy) is chosen to be (dN − 1)kBT , then the partition function be-
comes

Ω =

∫
dpNdrNre−βU(r1....rN )δ

(
N∑
i=1

pi
2

2mi
− (dN − 1)kBT

)
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which is the partition function of the isokinetic ensemble. Indeed, the

constraint condition δ
(∑N

i=1
pi

2

2mi
− (dN − 1)kBT

)
is exactly what we

would expect for a system with a single kinetic-energy constraint based
on the virial theorem, since the number of degrees of freedom is dN−1
rather than dN .

8.1 Numerical Integrator

A simple yet effective integrator for the isokinetic equations can be
obtained by applying the Liouville operator approach. As usual, we
begin by writing the total Liouville operator

iL =
N∑
i=1

[
pi
mi
· ∇ri +

(
Fi −

[∑
j Fj · pj/mj

K

]
pi

)
· ∇pi

]
as the sum of two contributions iL = iL1 + iL2 where

iL1 =
N∑
i=1

pi
mi
· ∇ri

and

iL2 =
N∑
i=1

(
Fi −

[∑
j Fj · pj/mj

K

]
pi

)
· ∇pi

The approximate evolution of an isokinetic system over a time ∆t
is obtained by acting with a Trotter factorized operator exp(iL∆t) =
exp(iL2∆t/2)exp(iL1∆t)exp(iL2∆t/2) on an initial condition p(0), r(0).
The action of each of the operators in this factorization can be evalu-
ated analytically (Zhang, 1997; Minary et al., 2003).

The action of exp(iL2∆t/2) refer to the evolution of the momenta.
Hence it propagate p. But we can use Eq. 19 to solve analytically the
evolution of p for ∆t/2 by solving the coupled first-order differential
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equations (but in the same spirit of the propagation, with rN and
F(r)N held fixed at the value at time t). In this way, the momentum
propagation is given by (Eq. 19)

dpi,α
dt

= Fi,α −
[∑

j Fj · pj/mj

2K

]
pi,α = Fi,α − ḣ(t)pi,α

with r1, ..., rN (and hence Fi,α) held fixed. Here, we explicitly index
both the spatial components (α = 1, ..., d) and particle numbers i =
1, ..., N .

If we define a function

y(t) =
y(0) + a

∫ t
0 e

h(t′)dt′

eh(t)

its time derivative is

ẏ =
aeh(t)eh(t) − [y(0) + a

∫ t
0 e

h(t′)dt′]eh(t)ḣ

(eh(t))2
= a− y(t)ḣ(t)

Hence the solution can be written as

pi,α(t) =
pi,α(0) + Fi,α

∫ t
0 e

h(t′)dt′

eh(t)

and by defining
ṡ(t) = eh(t)

or

s(t) =

∫ t

0

eh(t′)dt′

pi,α(t) =
pi,α(0) + Fi,αs(t)

ṡ(t)
(20)

Deriving the definiton of ṡ(t) one get

s̈(t) =
d

dt
eh(t) = ḣ(t)ṡ(t)

29



or

s̈(t) =

[∑
j Fj · pj/mj

2K

]
ṡ(t) =

[∑
j Fj · pj ṡ(t)/mj

2K

]
But since (eq. 20) piṡ(t) = pi(0) + Fis(t)

s̈(t) =

[∑
j Fj · pi(0)/mj

2K

]
+

[∑
j Fj · Fj/mj

2K

]
s(t)

As know, the Eq. s̈ = a+ bs has as a solution

s(t) =
a

b

(
cosh(t

√
b)− 1

)
+

1√
b
sinh(t

√
b) (21)

where

a =

[∑
j Fj · pj(0)/mj

2K

]
(22)

and

b =

[∑
j Fj · Fj/mj

2K

]
Similarly, one can calculate exactly ṡ(t).
The operator is applied by simply evaluating eqn. 21 and its deriva-

tive at t = ∆t/2. The action of the operator exp(iL1∆t) on a state
(p, r) yields

exp(iL1∆t)pi = pi

exp(iL1∆t)ri = ri + ∆tpi,

which has no effect on the momenta.
The combined action of the three operators in the Trotter factor-

ization leads to the following reversible, kinetic energy conserving al-
gorithm for integrating the isokinetic equations:

• 1. Evaluate new s(∆t/2), ṡ(∆t/2) and update the momenta ac-
cording to

pi ←
pi + Fis(∆t/2)

ṡ(∆t/2)
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• 2. Using the new momenta, update the positions according to

ri ← ri + ∆tpi

• 3. Calculate new forces using the new positions.

• 4. Evaluate new s(∆t/2), ṡ(∆t/2) and update the momenta ac-
cording to

pi ←
pi + Fis(∆t/2)

ṡ(∆t/2)

Note, s(∆t/2), ṡ(∆t/2) are evaluated by substituting the present
momentum and the forces into eqns. 22 with t = ∆t/2. The symbol,
← indicates that on the computer, the values on the left-hand side
are overwritten in memory by the values on the right-hand side. The
isokinetic ensemble method has recently been shown to be a useful
method for generating a canonical coordinate distribution. First, it
is a remarkably stable method, allowing very long time steps to be
used, particularly when combined with the RESPA scheme. Unfortu-
nately, the isokinetic approach suffers from some of the pathologies of
the Nosé-Hoover approach so some care is needed when applying it.
Minary et al. (2004b) showed that such problems can be circumvented
by combining the isokinetic and Nosé-Hoover chain approaches.

9 Molecular Dynamics at constant pressure - Frenkel-Smith

Most experiments are performed at constant pressure instead of con-
stant volume. If one is interested in simulating the effect of, for exam-
ple, the composition of the solvent on the properties of a system one
has to adjust the volume of an N,V,T simulation to ensure that the
pressure remains constant. For such a system it is therefore much more
convenient to simulate at constant pressure. To simulate at constant
pressure in a Molecular Dynamics simulation the volume is considered
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as a dynamical variable that changes during the simulation. In Chapter
5 we have seen that one can perform Monte Carlo simulations at con-
stant pressure by changing the volume of the simulation box. Here we
consider the equivalent for a Molecular Dynamics simulation. Similar
to the Monte Carlo case, this is an excellent method for homogeneous
fluids. For inhomogeneous systems, however, one may need to change
the shape of the simulation box as well [102,103]. In Appendix B we
have shown that the correct thermostating of a Molecular Dynamics
simulation has many subtleties related to the conservation laws and
whether a simulation is performed with a fixed center of mass. Simi-
lar problems arise with the isothermal-isobaric ensemble. The earlier
scheme of Hoover [132] can only approximate the desired distribution
[137]. Since the scheme of Martyna et al. does give the desired distri-
bution, we focus on this scheme. All these schemes are based on the
extended ensemble approach pioneered by Andersen [104]. The equa-
tions of motion proposed by Martyna et al. [138] for the positions and
the momenta are

ṙi =
pi
mi

+
pe
W

ri

ṗi = Fi −
(

1 +
1

N

)
pe
W

pi −
pξ1
Q1

pi

where N is the number of particles. In these equations of motion we
recognize a thermostat that is introduced via the variables ξ1, pξ1 and
Q1 similar to the N, V, T version of the Nosé-Hoover chain algorithm.
A barostat is introduced via the variables ε, pε and W . ε is defined as
the logarithm of the volume V of the system

ε = ln
V

V (0)

where V (0) is the volume at t = 0, W is the mass parameter asso-
ciated to ε and pε is the momentum conjugate to ε. The equations of
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motion are complemented with an equation of motion for the volume,
which reads in d dimensions

V̇ =
dV pε
W

ṗε = dV (Pint − Pext) +
1

N

N∑
i=1

p2
i

mi
− pε1
Q1
pε

In these equations Pext is the external pressure, which is imposed
(like the temperature). Pint is the internal pressure, which can be
calculated during the simulation

PINT =
1

dV

[
N∑
i=1

(
p2
i

mi
+ riḞi

)
− dV ∂U(V )

∂V

]
where U is the potential. This equation differs from the conventional

virial equation for a constant-volume simulation. The equations of the
chain of length M are

ξ̇k =
pξk
Qk

k = 1,M

ṗξ1 =
N∑
i=1

p2
i

mi
+
p2
ε

W
− (dN + 1)kBT −

pξ2
Q2
pxi2

ṗξk =
p2
ξk−1

Qk−1
− kBT −

p2
ξk+1

Qk+1pξk
k = 2...M − 1

ṗξM =
p2
ξM−1

QM−1
− kBT
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