
1 Other ensembles in MC

In a conventional Molecular Dynamics simulation, the total energy
E and the total linear momentum P are constants of motion. Hence,
Molecular Dynamics simulations measure (time) averages in an ensem-
ble that is very similar to the microcanonical); namely, the constant-
NVE ensemble. In contrast, a conventional Monte Carlo simulation
probes the canonical (i.e., constant-NVT) ensemble. The fact that
these ensembles are different leads to observable differences in the sta-
tistical averages computed in Molecular Dynamics and Monte Carlo
simulations. Most of these differences disappear in the thermodynamic
limit and are already relatively small for systems of a few hundred par-
ticles. However, the choice of ensemble does make a difference when
computing the mean-squared value of fluctuations in thermodynamic
quantities. Fortunately, techniques exist to relate fluctuations in dif-
ferent ensembles [80]. Moreover, nowadays it is common practice to
carry out Molecular Dynamics simulations in ensembles other than the
microcanonical. In particular, it is possible to do Molecular Dynam-
ics at constant pressure, at constant stress, and at constant temper-
ature. The choice of ensembles for Monte Carlo simulations is even
wider: isobaric-isothermal, constant-stress-isothermal, grand canoni-
cal (i.e.,constant µVT), and even microcanonical [88-93]. A more re-
cent addition to this list is a Monte Carlo method that employs the
Gibbs ensemble technique [94], which was developed to study phase
coexistence in moderately dense (multicomponent) fluids. The Gibbs
ensemble method is discussed in detail in Chapter 8.

As explained in section 3.1 the principal idea of importance sam-
pling is to use a Monte Carlo procedure to generate a random walk
in those regions of phase space that have an important contribution
to the ensemble averages. The acceptance rules are chosen such that
these configurations occur with a frequency prescribed by the desired
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probability distribution. In section 3.1 it is shown that such a proce-
dure indeed yields the correct distribution of configurations. Essential
in the demonstration that our Monte Carlo scheme samples the desired
distribution is the condition of detailed balance. To be more precise,
detailed balance, in fact, is too strong a condition, but if detailed bal-
ance is obeyed we are guaranteed to have a correct sampling scheme.
It may very well be possible that a scheme that does not obey detailed
balance still samples the correct distribution. In a Monte Carlo scheme
errors are easily introduced, so one should be extremely careful. We
will give some examples where we can show that detailed balance is
not obeyed and the results show systematic errors. We have found
that we could demonstrate that detailed balance was not obeyed in all
cases where we observed strange results.

1.1 General Approach

In the following sections, we will use the following procedure to demon-
strate the validity of our Monte Carlo algorithms:

• 1. Decide which distribution we want to sample. This distribution,
denoted N will depend on the details of the ensemble.

• 2. Impose the condition of detailed balance,

K(o→ n) = K(n→ o)

where K(o → n) is the flow of configuration o to n. This flow is
given by the product of the probability of being in configuration o,
the probability of generating configuration n, and the probability
of accepting this move,

K(o→ n) = N (o)× α(o→ n)× acc(o→ n)

• 3. Determine the probabilities of generating a particular configu-
ration.
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• 4. Derive the condition that needs to be fulfilled by the acceptance
rules.

2 Isobaric-Isothermal – Frenkel Smith

The isobaric-isothermal (constant-NPT)ensemble is widely used in Monte
Carlo simulations. This is not surprising because most real experiments
are also carried out under conditions of controlled pressure and tem-
perature. Moreover, constant-NPT simulations can be used to measure
the equation of state of a model system even if the virial expression for
the pressure cannot be readily evaluated. This may be the case, for
instance, for certain models of nonspherical hard-core molecules, but
also for the increasingly important class of models where the (nonpair-
wise additive) potential energy function is computed numerically for
each new configuration. Finally, it is often convenient to use constant-
NPT Monte Carlo to simulate systems in the vicinity of a first-order
phase transition, because at constant pressure the system is free (given
enough time, of course) to transform completely into the state of low-
est (Gibbs) free energy, whereas in a constant-NVT simulation the sys-
tem may be kept at a density where it would like to phase separate
into two bulk phases of different density but is prevented from doing
so by finite-size effects. Monte Carlo simulations at constant pressure
were first described by Wood [88] in the context of a simulation study
of two-dimensional hard disks. Although the method introduced by
Wood is very elegant, it is not readily applicable to systems with ar-
bitrary continuous potentials. McDonald [89] was the first to apply
constant-NPT simulations to a system with continuous intermolecular
forces (a Lennard-Jones mixture), and the constant-pressure method
of McDonald is now being used almost universally and that is discussed
next.
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2.1 Statistical Mechanical Basis

We will derive the basic equations of constant-pressure Monte Carlo
in a way that may appear unnecessarily complicated. However, this
derivation has the advantage that the same framework can be used to
introduce some of the other non-N V-I- Monte Carlo methods to be
discussed later. For the sake of convenience we shall initially assume
that we are dealing with a system of N identical atoms. The partition
function for this system is given by

Q(N, V, T ) =
1

Λ3NN !

∫ L

0

...

∫ L

0

exp[−βU(rN)]drN

It is convenient to rewrite this equation in a slightly different way.
We have assumed that the system is contained in a cubic box with
diameter L = V 1/3. We now define scaled coordinates sN by

ri = Lsi

If we now insert these scaled coordinates in the expression for the
partition function, we obtain

Q(N, V, T ) =
V N

Λ3NN !

∫ 1

0

...

∫ 1

0

exp[−βU(sN , L)]dsN

In this equation we have written U(sN , L) to indicate that U depends
on the real rather than the scaled distances between the particles. The
expression for the Helmholtz free energy of the system is

F (N, V, T ) = −kBT lnQ(N, V, T ) = −kBT ln
V N

Λ3NN !
−−kBT ln

∫ 1

0

...

∫ 1

0

exp[−βU(sN , L)]dsN =

F idelagas(N, V, T ) + F excess(N, V, T )

In the last line of this equation we have identified the two contributions
to the Helmholtz free energy on the previous line as the ideal gas

4



expression plus an excess part. Let us now assume that the system
is separated by a piston from an ideal gas reservoir (see Figure 5.2).

The total volume of this system plus reservoir is fixed at a value V0.
The total number of particles is M. Hence, the volume accessible to
the M − N ideal gas molecules is V0 − V . The partition function of
the total system is simply the product of the partition functions of the
constituent subsystems: The system S subsystem is defined by the N
particle in the volume V, with

QS(N, V, T ) =
V N

λ3NN !

∫
dsN exp[−βU(sN , L)] (1)

while the reservoir R subsystem, compose by ideal gas particles, has

QR(M −N, V0 − V, T ) =
(V0 − V )M−N

λ3(M−N)(M −N)!

∫
dsM−N

The final partition function Q(N,MV, V0, T ) is the product

Q(N,MV, V0, T ) = QS(N, V, T )QR(M − 1, V0 − V, T )

.
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For the sake of compactness, we have assumed that the thermal
wavelength of the ideal gas molecules is also equal to λ. The total free
energy of this combined system is F tot = −kBT lnQ(N,MV, V0, T ).

We now consider the limit that the size of the reservoir tends to
infinity, (V0 →∞, M →∞, (M − V )/V0 → ρ). In that limit, a small
volume change of the small system does not change the pressure P of
the large system. In other words, the large system works as a manostat
for the small system. In that case, we can simplify Eq. 2.1.

Remembering the thermodynamic relations

F = U − TS, G = Nµ = F + PV, βF = Nβµ− βPV

and the relation

βFR = −ln[QR(M −N, V0 − V, T )]

then

QR(M−N, V0−V, T ) = exp[−βFR(M−N, V0−V, T )] = exp[−(M−N)βµ+βP (V0−V )]

where the only dependence on the small system volume is in the
exp[−βPV ] contribution.

Now let us assume that the piston between the two subsystems
is free to move, so that the volume V of the N -particle subsystem
can fluctuate. If we now allow the composed system to change the
volume, then we need to sum over all possible V values. Then Eq. 2.1,
integrated over all possible volumes can be written as

Q(N,P, T ) ≡ βP

∫ ∞
0

dV exp[−(M−N)βµ] exp[+βP (V0−V )]QS(N, V, T ) =

= βP exp[−(M −N)βµ] exp[+βPV0]

∫ ∞
0

dV exp[−βPV ]QS(N, V, T )

Focusing only on the V -dependent part

βP

∫
dV V N exp[−βPV ]

∫
dsN exp[−βU(sN , L)],
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Since N , P , T and M are fixed quantities, they can all be reassorbed
in the normalization, leaving

Q(N,P, T ) ≡ βP

∫
dV V N exp[−βPV ]

∫
dsN exp[−βU(sN , L)]

where we have included a factor βP to make Q(N,P, T ) dimensionless
(this choice is not obvious). Note that the corresponding generalized
thermodynamic potential is the Gibbs free energy

G(N,P, T ) = −kBT lnQ(N,P, T )

Of course, the most probable value of V will be the one that mini-
mizes the free energy of the combined system. The probability density
N (V ) that the N -particle subsystem has a volume V is given by

NN,P,T (V ) =
V N exp[−βPV ]

∫
dsN exp[−βU(sN , L)]∫

dV ′V ′N exp[−βPV ′]
∫
dsN exp[−βU(sN , L′)],

(2)

Equation Eq 2 is the starting point for constant-NPT Monte Carlo
simulations. The idea is that the probability density to find the small
system in a particular configuration of the N atoms (as specified by
sN) at a given volume V is given by

N (V, sN) ∼ V N exp[−βPV ]

∫
dsN exp[−βU(sN , L)] (3)

= exp[−βU(sN , L) + PV −Nβ−1 lnV ] (4)

We can now carry out Metropolis sampling on the reduced coor-
dinates sN and the volume V . In the constant-NPT Monte Carlo
method, V is simply treated as an additional coordinate, and trial
moves in V must satisfy the same rules as trial moves in s (in par-
ticular, we should maintain the symmetry of the underlying Markov
chain). Let us assume that our trial moves consist of an attempted
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change of the volume from V to V ′ = V + ∆V where ∆V is a random
number uniformly distributed over the interval [−∆Vmax,∆Vmax]. In
the Metropolis scheme such a random, volume-changing move will be
accepted with the probability

acc(o→ n) = min(1, exp[−β(U(sN , V ′)−U(sN , V ))+P (V ′−V )−Nβ−1 lnV ′/V ]

Instead of attempting random changes in the volume itself, one
might construct trial moves in the box length L [89] or in the loga-
rithm of the volume [97]. Such trial moves are equally legitimate, as
long as the symmetry of the underlying Markov chain is maintained.
However, such alternative schemes result in a slightly different form for
equation for the acceptance rule. The partition function Q(N,P, T )
can be rewritten as

Q(N,P, T ) =
βP

λ3NN !

∫
d lnV V N+1 exp[−βPV ]

∫
dsN exp[−βU(sN , V )]

This equation shows that, if we perform a random walk in lnV the
probability of finding volume V is given by

N (V, sN) ∼ V N+1 exp[−βPV ] exp[−βU(sN , V )]

This distribution can be sampled with the following acceptance rule:

acc(o→ n) = min(1, exp[−β(U(sN , V ′)−U(sN , V ))+P (V ′−V )−(N+1)β−1 lnV ′/V ]

2.2 Implementation

The frequency with which trial moves in the volume should be at-
tempted is dependent on the efficiency with which volume space is
sampled. If, as before, we use as our criterion of efficiency

sum of squares of accepted volume changes

tCPU
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then it is obvious that the frequency with which we attempt moves
depends on their cost. In general, a volume trial move will require that
we recompute all intermolecular interactions. It therefore is compara-
ble in cost to carrying out N trial moves on the molecular positions.
In such cases it is common practice to perform one volume trial move
for every cycle of positional trial moves. Note that, to guarantee the
symmetry of the underlying Markov chain, volume moves should not
be attempted periodically after a fixed number (say N) positional trial
moves. Rather, at every step there should be a probability 1/N to
attempt a volume move instead of a particle move. The criteria deter-
mining the optimal acceptance of volume moves are no different than
those for particle moves. In one class of potential energy functions,
volume trial moves are very cheap, namely, those for which the total
interaction energy can be written as a sum of powers of the interatomic
distances,

Un =
∑
i<j

ε

(
σ

rij

)n
=
∑
i<j

ε

(
σ

Lsij

)n
or, possibly, a linear combination of such sums (the famous Lennard-
Jones potential is an example of the latter category). Note that Un in
the previous equation changes in a trivial way if the volume is modified
such that the linear dimensions of the system change for L to L′

Un(L′) =

(
L

L′

)n
Un

Clearly, in this case, computing the probability of acceptance of
a volume- changing trial move is extremely cheap. Hence such trial
moves may be attempted with high frequency, for example, as fre-
quent as particle moves. One should be very careful when using the
scaling property if at the same time one uses a cutoff (say rc) on the
range of the potential. Use of the previous equation implicitly assumes
that the cutoff radius rc scales with L. e.g. r′c = (L′/L)rc. The corre-
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sponding tail correction to the potential (and the virial) should also be
recomputed to take into account both the different cutoff radius and
the different density of the system.

Finally, it is always useful to compute the virial pressure during a
constant pressure simulation. On average, the virial pressure should
always be equal to the applied pressure. This is easy to prove as follows.
First of all, note that the virial pressure Pv(V ) of an N -particle system
at volume V is equal to

Pv(V ) = −
(
∂F

∂V

)
N,T

In an isothermal-isobaric ensemble, the probability-density P(V ) of
finding the system with volume V is equal to exp[−β(F (V )+PV )]/Q(N,P, T )
, where

Q(N,P, T ) = βP

∫
dV exp[−β(F (V ) + PV )]

Let us now compute the average value of the virial pressure:

< Pv >= − βP

Q(NPT )

∫
dV

(
∂F

∂V

)
exp[−β(F (V ) + PV )] =

βP

Q(NPT )

∫
dV β−1∂ exp[−β(F (V ))]

∂V
exp[−βPV ]

Integrating by parts∫
dV

∂ exp[−β(F (V ))]

∂V
exp[−βPV ] =

exp[−β(F (V )) exp[−βPV ]|∞0 −
∫

exp[−β(F (V ))]d exp[−βPV ]

and assuming that F (0) =∞ (infinite high density, since N is fixed)

=
βP

Q(NPT )

∫
dV P exp[−β(F (V ) + PV )] = P
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Thus far we have limited our discussion of Monte Carlo at con-
stant pressure to pure, atomic systems. Extension of the technique to
mixtures is straightforward. The method is also easily applicable to
molecular systems. However, in the latter case, it is crucial to note that
only the center-of-mass positions of the molecules should be scaled in
a volume move, never the relative positions of the constituent atoms
in the molecule. This has one practical consequence, namely, that the
simple scaling relation can never be used in molecular systems with
site-site interactions. The reason is that, even if the center-of-mass
separations between molecules scale as a simple power of the system
size, the site-site separations do not.

2.3 Equation of state

2.4 P(V )

P(V ), the probability density of finding a system with volume V is
proportional to exp[−β(F (V ) + PV )]. This probability density can
be obtained from a constant-pressure simulation by constructing a his-
togram of the number of times a certain volume V is observed during
the simulation. Once we know F (V ) as a function of V , we can locate
the coexistence points. This histogram technique does lead to a correct
estimate of the coexistence density. One of the important applications
of this technique is the investigation of finite-size effects. In practice
this scheme for deriving F (V ) from P(V ) only works near the critical
point unless special sampling techniques are used.

3 Isotension-Isothermal Ensemble

The NPT-MC method is perfectly adequate for homogeneous fluids.
However, for inhomogeneous systems, in particular crystalline solids,
it may not be sufficient that the simulation box can change size. Often
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we are interested in the transformation of a crystal from one structure
to another or even in the change of the shape of the crystalline unit
cell with temperature or with applied stress. In such cases it is essen-
tial that the shape of the simulation box has enough freedom to allow
for such changes in crystal structure without creating grain boundaries
or other highly stressed configurations. This problem was first tack-
led by Parrinello and Rahman [102,103], who developed an extension
of the constant-pressure Molecular Dynamics technique introduced by
Andersen [104]. The extension of the Parrinello-Rahman method to
Monte Carlo simulations is straightforward (actually, the method is
quite a bit simpler in Monte Carlo than in Molecular Dynamics).

In this case, one define the box coordinates by three vectors a,b, c
such that the volume is det|a · b× c|. A change in these three vectors
generate a volume change and, at the same time, a change in the box
geometry. Particles are located by the scaled vectors si, related to the
real coordinated by the transformxiyi

zi

 =

ax bx cx
ay by cy
az bz cz

sxisyi
szi

 (5)

or defining the matrix h

h =

ax bx cx
ay by cy
az bz cz

 (6)

ri = hsi

Of the nine element of h only six are independet, since a rotation
of the box does not change the system. Hence, one can fix a along x̂
and b in the xy plane.
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h =

ax bx cx
0 by cy
0 0 cz

 (7)

or without loss of generality we can choose h to be a symmetric matrix.
A MC step in any of the six non-vanishing element of h can be per-

formed and the move can be accepted or rejected with the previously
derived probability for volume changes.

4 Grand Canonical Simulations (Frenkel)

The original Metropolis scheme could not be used to determine those
thermodynamic properties of a system that depend explicitly on the
configurational integral. Examples of such thermal properties are the
Helmholtz free energy F, the entropy S, and the Gibbs free energy
G. However, although the Metropolis method cannot be used to mea-
sure, for instance, free energies directly, it can be used to measure the
difference in free energy between two possible states of an N-body sys-
tem. This fact is exploited in the grand-canonical Monte Carlo method
first implemented for classical fluids by Norman and Filinov [91], and
later extended and improved by a number of other groups [92, 106-
113]. The basic idea of the grand-canonical Monte Carlo method is
explained next. To understand the statistical mechanical basis for the
grand-canonical Monte Carlo technique, let us recall the equation that
gives the partition function of a combined system of N interacting
particles in volume V and M−N ideal gas molecules in volume V −V0

Q(N,M, V, V0, T ) =
V N(V0 − V )M−N

Λ3MN !(M −N)!

∫
dsM−N

∫
dsN exp[−βU(sN)]

Now, instead of allowing the two systems to exchange volume, let
us see what happens if the systems can exchange particles. To be more
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precise, we assume that the molecules in the two sub-volumes are ac-
tually identical particles. The only difference is that when they find
themselves in volume V , they interact and, when they are in volume
V0 − V , they do not. If we transfer a molecule i from a reduced co-
ordinate si in the volume V0 − V to the same reduced coordinate in
volume V , then the potential energy function U changes from U(sN)
to U(sN+1). The expression for the total partition function of the sys-
tem, including all possible distributions of the M particles over the
two sub-volumes (that creates the

∑M
N=0) is

Q(N,M, V, V0, T ) =
M∑
N=0

V N(V0 − V )M−N

Λ3MN !(M −N)!

∫
dsM−N

∫
dsNexp[−βU(sN)]

The probability density N (sN , V, sM−N , V0 − V ) to find a system with
M −N particles at reduced coordinates sM−N in volume V ′ = V0 − V
and N particles at reduced coordinates sN in volume V is

N (sN , V, sM−N , V0−V ) =
V NV ′M−N

Q(N,M, V, V0, T )Λ3MN !(M −N)!
exp[−βU(sN)]

such that

M∑
N=0

∫
dsM−N

∫
dsNN (sN , V, sM−N , V0 − V ) = 1

Now let us consider the limit that the ideal gas system is very much
larger than the interacting system: M → ∞ , V ′ → ∞, (M/V ′) → ρ.
As we did before, we can write in the thermodynamic limit

QR(N, V, T ) = exp[−βFR] = exp[−(M −N)βµ+ βP (V − V0)]

= exp[Nβµ] exp[−Mβµ+ βP (V − V0)]
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where the only part depending on N is exp[Nβµ].
Therefore, in the limit M/N →∞, reassorbing in the normalization

all quantities which do not depend on N (being V , T , µ fixed) the
partition function becomes

Q(µ, V, T ) =
∞∑
N=0

V N

λ3NN !
exp[Nβµ]

∫
dsN exp[−βU(sN)]

and the corresponding probability density

Nµ,V,T (N, sN) ∼ V N

λ3NN !
exp[Nβµ] exp[−βU(sN)]

The last two equations are the basic equations for Monte Carlo simu-
lations in the grand-canonical ensemble. Note that, in these equations,
all explicit reference to the ideal gas system has disappeared.

5 Grand Canonical Simulation

We have seen that any acceptance rule that allows for detailed balance
with the proper probability distribution is a proper rule for sampling
the desired ensamble. We recall that detailed balance requires (if the
probability to select the move o→ n and n→ o have the same proba-
bility by construction (e.g. same amounts of attempt to insert or delete
a particle)

P (o)acc(o→ n) = N (N)acc(n→ o)

In the case of the grand canonical ensemble, at fixed V and T

Z(V, T, z) =
∞∑
N=0

zNV N

Λ3NN !

∫
drNexp[−βU(sN , V )]

and the probability to find a system with N particles in sN is
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N (N, sN , z, V ) =
1

Z(V, T, z)

zNV N

Λ3NN !
exp[−βU(sN , V )]

If in the MC code the probability that an attempt is made to remove
a particle is equal to the probability of attempting to add one (e.g.
α(N → N + 1) = α(N + 1 → N) then the probability distribution
N (N, sN , z, V ) suggests a Metropolis rule of the type

acc(Ninitial → Nfinal) =

Min

(
1,
zNfinal−NinitialV Nfinal−NinitialNinitial!

Λ3(Nfinal−Ninitial)Nfinal!
exp[−βU(sNfinal, V ) + βU(sNinitial, V )]

)
that gives for the addition of a particle

acc(N → N+1) = Min

(
1,

zV

Λ3(N + 1)
exp[−βU(sN+1, V ) + βU(sN , V )]

)
and, for the delation of a particle,

acc(N → N − 1) = Min

(
1,

Λ3N

zV
exp[−βU(sN−1, V ) + βU(sN , V )]

)
5.1 What do we learn from a GC simulation

In principle, a well converged GC simulation provides an accurate es-
timate of N (N, z). If the histogram of the potential energy for each N
has also been saved, then one has the reacher N (N,E, z) distribution.

From N (N, z), several interesting quantities can be calculated. The

simplest is the density, ρ =
∑

N NN (N)
V .

It is also possible to evaluate the pressure. Since the grand potential
is exp(βPV ), then
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∑
N

zNZN = exp(βPV )

Hence

N (N) =
1

exp(βPV )
zNZN

But since Z0 = 1,

N (0) =
1

exp(βPV )
or

βPV = − ln(N (0))

Thus, if the simulation is able to sample all densities down to N = 0,
then it is possible to evaluate P without calculating any virial. This
is convenient for example for hard-bodies, when impulsive forces are
present.

A GC simulation is surely rather expensive, since to be well con-
verged, it has to sample all different N and all different configuration
at fixed N . Assuming this is the case, then one can recover canonical
quantities from the grand canonical data. Remembering that Z(0) = 1,

N (N)

N (0)
=

zN

λ3NN !
ZN

and that exp[−βFN ] = ZN

λ3NN !

N (N)

N (0)
= zN exp[−βFN ]

Then it is possible to evaluate the free energy

−βFN = ln

[
N (N)

N (0)

]
−N ln z

(where z is the activity of the GC run).
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Let’s now consider the ratio

N (N)

N (N + 1)
=

1

z
exp[βFN+1 − βFN ]

If N is rather large, then one make use of the thermodynamic relation

∂F

∂N
= µ ≈ FN+1 − FN

1

so that

z
N (N)

N (N + 1)
= exp[βµN ]

Exploiting the thermodynamic definitions

NβµN = βAN + βPNV

one can find the entire equation of states

βPNV = N ln

[
z
N (N)

N (N + 1)

]
+ln

[
N (N)

N (0)

]
−N ln z = N ln

[
N (N)

N (N + 1)

]
+ln

[
N (N)

N (0)

]
=

(N + 1) lnN (N)−N lnN (N + 1)− lnN (0)

Hence, N (0) acts as a constant, but the entire N (or ρ) dependence
is encoded in N (N) and N (N + 1). Interestingly, this expression is
independent on z (we will understand this better later on, when dis-
cussing histogram reweigh).

5.2 Histogram Reweigh

5.2.1 In z

Consider we have performed a GCMC simulation at one selected value
of the activity z1 and we are interested in predictingN (N) at a different
z2 value. The ratio between N (N, z1) and N (N, z2) is
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N (N, z1)

N (N, z2)
=

1
Z(V,T,z1)

zN1
Λ3NN !ZN

1
Z(V,T,z2)

zN2
Λ3NN !ZN

=
Z(V, T, z2)

Z(V, T, z1)

(
z1

z2

)N
Since the only N dependence is in the exponent, we obtain (calling

K = Z(V,T,z1)
Z(V,T,z2))

N (N, z2) = KN (N, z1)

(
z2

z1

)N
where the constant K can be determined by imposing

∑
N N (N, z2) =

1.
If we go back to the previous expression for the equation of state,

(N + 1) lnN (N, z2)−N lnN (N + 1, z2)− lnN (0, z2) =

(N+1) lnN (N, z1)−N lnN (N+1, z1)−lnN (0, z1)+(N+1) lnK−N lnK−lnK+

(N + 1) ln

(
z2

z1

)N
−N ln

(
z2

z1

)N
− ln

(
z2

z1

)N
e.g.

(N + 1) lnN (N, z2)−N lnN (N + 1, z2)− lnN (0, z2)

= (N + 1) lnN (N, z1)−N lnN (N + 1, z1)− lnN (0, z1)

that proves that the equation of state does not depend on the value of
z selected in the GCMC simulation

5.2.2 In T

If the entire histogram of potential energy values E has been recorded
during the simulation, it is also possible to calculate N (N,E) at a T
different from the one used in the simulation. Indeed

N (N,E, z, β) =
1

Z(V, T, z)

zN

Λ3NN !
Ω(E) exp[−βE]
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where we have written

ZN =
∑
E

Ω(E) exp[−βE]

Assuming we are interested into a different β2. Then

N (N,E, z, β1)

N (N,E, z, β2)
=
Z(V, T2, z)

Z(V, T1, z)

exp[−β1E]

exp[−β2E]
= K exp[−(β1 − β2)E]

so that

N (N,E, z, β2) = N (N,E, z, β1)K exp[−(β2 − β1)E]

and
N (N, z, β2) = K

∑
E

N (N,E, z, β1) exp[−(β2 − β1)E]

Once again, K can be determined by the normalization of the dis-
tribution.

6 Successive Umbrella Sampling

We have seen how convenient GCMC is for providing thermodynamic
information on the system. We will later on see how useful GCMC
informations are for estimating phase coexistence and surface tension.
It is thus of paramount important to be able to generate well con-
verged histograms, both in N and in E. One particularly convenient
way has been proposed by Virnau and M. Müller, J. Chem. Phys. 120,
10925 (2004) to exploit the computer power made available by massive
clusters, effectively parallellizing the evaluation of N (N). The trick is
based on the distribution of different N intervals over different pro-
cessors, asking each processor only to evaluate N (N + 1)/N (N) for a
fixed N values. The code thus reject all moves for which the number
of particles leave the selected interval [N,N + 1].
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Note that if the number of particles in the system is already N+1,
the insertion move is reject, but the histogram is incremented. Simi-
larly, if the number of particles in the system is already N, the dele-
tion move is rejected but the histogram is incremented. Indeed, the
rejection due to boundary crossing is equivalent to a unconstrained
trajectory that leave the boundary and comes back.

When all products N (N + 1)/N (N) have been calculated, they can
be combined

N (N)

N (N − 1)

N (N − 1)

N (N − 2)
........

N (3)

N (2)

N (2)

N (1)

N (1)

N (0)
=
N (N)

N (0)

and again the unknown N (0) can be fixed by normalization. We
note on passing that in some cases (e.g. in phase separation) can be
convenient to sum the log of the ratios to avoid numerical divergences.

lnN (N)− lnN (0) =
N∑
i=1

ln
N (N)

N (N − 1)
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