
1 Biased Moves: Beyond Metropolis

The general idea of biased sampling is best explained by considering a simple example. Let us
assume that we have developed a Monte Carlo scheme that allows us to generate trial configurations
with a probability that depends on the potential energy of that configuration:

α(o→ n) = f [U(n)]

For the reverse move, we have

α(n→ o) = f [U(o)]

Suppose we want to sample the N,V,T ensemble, which implies that we have to generate config-
urations with a Boltzmann distribution. Imposing detailed balance yields, as a condition for the
acceptance rule,

acc(o→ n)

acc(n→ o)
=
f [U(n)]

f [U(o)]
exp[−β[U(n)− U(o)]

A possible acceptance rule that obeys this condition is

acc(o→ n) = min

(
1,
f [U(n)]

f [U(o)]
exp[−β[U(n)− U(o)]

)

This derivation shows that we can introduce an arbitrary biasing function f [U ] in the sampling
scheme and generate a Boltzmann distribution of configurations, provided that the acceptance rule
is modified in such a way that the bias is removed from the sampling scheme. Ideally, by biasing
the probability to generate a trial conformation in the right way, we could make the term on the
right-hand side of equation (13.1.1) always equal to unity. In that case, every trial move will be
accepted. However, in general, biased generation of trial moves is simply a technique for enhancing
the acceptance of such moves without violating detailed balance. We now give some examples of
the use of non-Metropolis sampling techniques to demonstrate how they can be used to enhance
the efficiency of a simulation.

1.1 Orientational Bias

To perform a Monte Carlo simulation of molecules with an intermolecular potential that depends
strongly on the relative molecular orientation (e.g., polar molecules, hydrogen-bond formers, liquid-
crystal forming molecules), it is important to find a position that not only does not overlap with
the other molecule but also has an acceptable orientation. If the probability of finding a suitable
orientation by chance is very low, we can use biased trial moves to enhance the acceptance.
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1.1.1 Algorithm

Let us consider a Monte Carlo trial move in which a randomly selected particle has to be moved
and reoriented. We denote the old configuration by o and the trial configuration by n. We use
standard random displacement for the translational parts of the move, but we bias the generation
of trial orientations, as follows:

• 1. Move the center of mass of the molecule over a (small) random distance and determine
all those interactions that do not depend on the orientations. These interactions are denoted
by Upos(n). In practice, there may be several ways to separate the potential into orientation-
dependent and orientation-independent parts.

• 2. Generate k trial orientations {b1....bk} and for each of these trial orientations, calculate
the energy Urot(bk)

• 3. Define the Rosenbluth factor

W(n) =
k∑

i=1

exp[−βUrot(bk)]

Out of these k orientations, we select one, say, n, with a probability

p(bn) =
exp[−βUrot(bn)]

W(n)

• 4. For the old configuration, o, the part of the energy that does not depend on the orientation
of the molecules is denoted by Upos. The orientation of the molecule in the old position is
denoted by bo, and we generate k − 1 trial orientations denoted by b2...bk. Using these k
orientations, we determine

W(o) = exp[−βUrot(bo)] +
k∑

i=2

exp[−βUrot(bk)]

• 5. The move is accepted with a probability

acc(o→ n) = min

(
1,
W(n)

W(o)
exp[−β[Upos(n)− Upos(o)]

)

It is clear that equation ensures that energetically favorable configurations are more likely to be
generated. Next, we should demonstrate that the sampling scheme is correct.

1.2 Demonstration for Lattice Models

We assume that the molecules in our lattice model can have k discrete orientations (see Figure
13.1).
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We impose the condition of detailed balance:

K(o→ n) = K(n→ o)

The flow of configurations o to n is

K(o→ n) = N (o)× α(o→ n)× acc(o→ n)

In the orientational-bias scheme, the probability of selecting conformation n is

α(o→ n) =
exp[−βUor(n)

W(n)

Imposing detailed balance and substitution of the desired distribution for N (n) and N (o) imposes
the following condition on the acceptance rules:

acc(o→ n)

acc(n→ o)
=

exp[−βU(n)]

exp[−βU(o)]
× exp[−βUor(n)

W(n)
× W(o)

exp[−βUor(o)
=

=
W(n)

W(p)
exp[−β(Upos(n)− Upos(o))]

Acceptance rule (13.1.5) satisfies this condition. This demonstrates that for a lattice model detailed
balance is fulfilled.

1.3 Demonstration for Continuum Model

If the orientation of a molecule is described by a continuous variable, then there is an essential
difference with the previous case. In the lattice model all the possible orientations can be considered
explicitly, and the corresponding Rosenbluth factor can be calculated exactly. For the continuum
case, we can never hope to sample all possible orientations. It is impossible to de- termine the
exact Rosenbluth factor since an infinite number of orientations are possible. Hence, the scheme
for lattice models, in which the Rosenbluth factor for all orientations is calculated, cannot be used
for a continuum model. A possible solution would be to use a large but finite number of trial
directions. Surprisingly, this is not necessary. It is possible to devise a rigorous algorithm using an
arbitrary subset of all possible trial directions. The answer we get does not depend on the number
of trial directions we choose but the statistical accuracy does. Let us consider the case in which we
use a set of k trial orientations; this set is denoted by

bk = {b1....bk}

Conformation bn can be selected only if it belongs to the set bk. The set of all sets bk that includes
conformation n is denoted by

Bn = {{bk}|bn ∈ {b}k}
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Every element of B can be written as b, b∗, where b∗ is the set of k− 1 additional trial orientations.
In the flow of configuration o to n we have to consider the sum over all sets in Bn

K(o→ n) = N (o)
∑
i∈Bn

α((o→ n, i)× acc((o→ n, i)

in which the probability of generating configuration n and the acceptance depend on the particular
set of trial orientations i.

Similarly, for the reverse move, we define the set Bo

Bo = {{bk}|bo ∈ {b}k

for which each element can be written as (bo, b
′∗). The expression for the reverse flow then becomes

K(n→ o) = N (n)
∑
j∈Bo

α((n→ o, j)× acc((n→ o, j)

It should be stressed that infinitely many different sets of orientations include b, and the same holds
for sets that include bo. Moreover, the probability of selecting b from such a set depends on the
remainder of the set b∗. Hence, the acceptance probability must also depend on the sets b∗ and
b
′∗. Detailed balance is certainly obeyed if we impose a much stronger condition, ”super-detailed

balance,” which states that for every particular choice of the sets b∗ and b
′∗, detailed balance should

be obeyed,

K(o→ n, b∗, b
′∗) = K(n→ o, b

′∗, b∗)

N (o)α(o→ n, b∗, b
′∗)acc(o→ n, b∗, b

′∗) = N (n)α(n→ o, b
′∗, b∗)acc(n→ o, b

′∗, b∗)

in which b∗ and b
′∗ are two sets of k−1 arbitrary additional trial orientations. It may seem strange

that the sets b∗ and b
′∗ show up on both sides of the equations. However, bear in mind that, to

decide on the acceptance of the forward move, one should generate both the set b∗ that includes the
new orientation and the set b

′∗ around the old orientation. Hence, the construction of a trial move
includes both sets of trial orientations. As the probabilities of generating b∗ and b

′∗ appear on both
sides of the equations, they cancel each other. Moreover, the a priori probability of generating a
random orientation b in the forward move is equal to the a priori probability of generating bo in
the reverse move. So these generation probabilities also cancel each other. This leads to a great
simplification of the acceptance criterion. For the canonical ensemble, substitution it yields

acc(o→ n, b∗, b
′∗)

acc(n→ o, b′∗, b∗)
=

exp[−βU(n)]

exp[−βU(o)]

exp[−βUor(o)]

W(bn, b
′∗)

W(bo, b
∗)

exp[−βUor(n)]
exp[−β(Upos(n)− Upos(o))] =

W(bn, b
′∗)

W(bo, b∗)
exp[−β(Upos(n)− Upos(o))]

As the previously proposed acceptance rule satisfies this condition, detailed balance is indeed
obeyed. Note that, in this demonstration, we did not have to assume that the number of trial
orientations k had to be large. In fact, the result is independent of the number of trial orientations.
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1.3.1 Application to dipolar spheres

In systems with dipoles, the energy depends on the mutual orientation of the molecules and a
bias in the sampling of the orientation can be useful. For models of dipoles embedded in an
otherwise spherical particle (e.g., the dipolar hard-sphere fluid) the scheme of section 13.1.2 can
be implemented elegantly as pointed out by Caillol [225]. For a dipolar hard sphere (or any point
dipole), we can calculate the Rosenbluth factors exactly once the electric field (E) at the position
of the inserted particle and that at the position of the old configuration are known:

W(r) =

∫
db exp[−βµ ·E(r)] =

sinh[β|µ||E(r)|
β|µ||E(r)|

where µ is the dipole moment of the molecule.

A trial orientation can now be drawn directly from the distribution

p(r, ω) =
exp[−βµ ·E(r)]

W(r)

2 An example of a biased MC (AVB, Advanced Volume Biasing)

Very often it is necessary to go beyond the simple MC scheme and devise moves that allow for a
significantly faster equilibration of a system. The choice of the moves (which must always satisfy
the detailed balance condition) is very general and very often need to be optimized for the problem
at hand.

One typical example is provided by associating liquids and in all other particle systems in which a
small bonding volume is associated to a very strong interaction energy (for example the lock and
key interactions in proteins) where bonding can take place only at very high ratios between bonding
energy and thermal energy, such that the Boltzmann factor is extremely small.

As a prototipe, we can condider the adhesive sphere model (Baxter model), e.g. the generalization of
a square-well potential in the limit of vanishing well width. For this model (and for ranges δ smaller
than few per cent of the particle diameterσ the critical temperature is to good approximation given
by

βcε = ln

[
1 +

2.174σ3

((σ + δ)3 − σ3

]
≈ ln

[
1 +

0.7σ

δ

]
≈ ln 0.7− ln

δ

σ

Since typically when βε ≈ 20 (e.g. kT/ε ≈ 0.05) one need e20 ≈ 5 108 attemps to break a bond, it
becomes almost impossible to equilibrate.

One possibility is to devise MC moves that exploit the large entropic component involved in the
breaking-forming of the bond to bring back the acceptance probability at reasonable values.
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One of this more elaboated MC scheme, developed by XXXX starts by defining a bonding volume
for each particle (or site) (the square well width in the AHS case) named Vin. Then, with probability
pbias and 1 − pbias a move that try to break a bond (in → out) or to form a bond (out → in) is
attempted.

In the (out → in) move, first a generic particle i is selected among the N particles in the system
and the number of particles in the bonding volume Nin is calculated. Then a j particle is selected,
among the Nout = N −Nin− 1 ones that are NOT in the bonding volume of i (e.g. j is not bonded
with i for the ASW model). Then, j is located inside the bonding volume of i and the new energy
Efinal is evaluated. The move is accepted according to the probability

α(out→in) = min

(
1,

1− pbias
pbias

Vin
Vout

Nout

Nin + 1
exp(−β[Efinal − Einitial])

)

In the (in→ out) move, first a generic particle i is selected among the N particles in the system and
the number of particles in the bonding volume Nin is calculated. If Nin = 0 the move is rejected.
Else, one particle among Nin is selected randomly and located in a random position outside Vin.
and the new energy Efinal is evaluated. The move is accepted according to the probability

α(in→out) = min

(
1,

pbias
1− pbias

Vout
Vin

Nin

Nout + 1
exp(−β[Efinal − Einitial])

)

To see how these acceptance probability arises we remember that detailed balance requires, calling
initial the state in which i has one more neighbour than what i has in the final state (e.g. we
always focus on the state of i).

Pinitialα(in→out)selection(in→out) = Pfinalα(out→in)selection(out→in)

The probability selection(in→out) is composed by a factor pbias to select the (in→ out) move, a

factor 1
N associated to the choice of i, a factor 1

Nin
associated to the choice of j and 1

Vout
associated

to the choice of the position in which the j particle is transfered, e.g.

selection(in→out) ∼ pbias
1

N

1

Nin

1

Vout

The reverse probability selection(out→in) is proportional to a factor 1−pbias to select the (out→ in)

move, a factor 1
N associated to the choice of i, a factor 1

N ′
out

to select one of the outside particles

and 1
Vin

to select a point inside the in volume, resulting in

selection(out→in) ∼ (1− pbias)
1

N

1

N ′out

1

Vin

6



Note that if we call Nin and Nout the number of particles in the selection(in→out) move, then
N ′out = Nout + 1, since in the reverse move one particle has gone from the in volume of i to the out
volume of i.

It is important to note that the ratio Vin/Vout now enters in the acceptance probability, compen-
sating the very small Boltzmann factor.

The AVB method is very useful also simulating systems at very low densities and low temperatures.
It is also useful in equilibrating limited valence particles, e.g. living polymers.

In the case of living polymers, another possibility is offered by the design of MC moves that perform
end-to-end moves, e.g. in which one of the two final particles of the chain is transfered to increase
by one the lenght of a randomly selected polymer. In this case the moves can be performed with
this acceptance probability

At very low temperatures the Boltzmann factor associated with the energy penalty of breaking
a bond completely suppresses the acceptance probability of the unbonding move. To solve this
sampling problem, we introduce here the end hopping move, which generates trial moves that leave
the en- ergy unchanged. The move proceeds by selecting randomly a chain end, i.e., a particle which
is engaged in only one bond, and moving it into the bonding volume of another chain end or of a
monomer. Because the move leaves the number of bonds unchanged, its energy cost is null, and,
therefore, it is cost-effective at any temperature (provided that chain ends exist in the simulation
box). This move allows different chains to exchange particles, and allows efficient exploration
of configurations with equal energy. We provide here the details of the algorithm with the trial
probabilities in parentheses after each step. The number of chain ends is Nend (an end particle has
one bond and each polymer contributes with two ends) and the number of monomers is Nmon (a
monomer particle has no bonds).

• Select a particle i which is also a chain end ( 1
Nends

);

• select a target particle j which is either a chain end different from i, or a monomer ( 1
Nends+Nmon−1

• place particle i in the in volume of particle j (1/Vin if j is a chain end; 2/Vin, if j is a monomer
(which has two bonding sites available) );

• if after the move particle i is not a chain end, reject the move;

• accept the move with probability

acc =
Nend(Nend +Nmonomers − 1)

(N∗end +N∗monomers − 1)N∗end
× 1 + δmon

1 + δ∗mon

exp(−β∆E)

where N∗end and N∗monomers are, respectively, the number ends and the number of monomers in the
reverse move, and δmon = 1(0), if the target particle in the direct move is a monomer (end) (δ∗mon

is the same quantity for the reverse move).
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