
1 Minima of a multidimensional function

Assume we have a quadratic form in a multidimensional space and we
are interested in searching for the minimum. The quadratic form can
be written as

f(x) = c− bx +
1

2
x ·A · x

The corresponding gradient is

∇f = A · x− b

2 Steepest descent

The steepest descent algorithm is based on the idea of progressive
minimisation along the direction of maximum slope (e.g. the gradient).

The algorithm is thus the following

• Calculate the force (the gradient) at x0

• Move along the direction of the force (x(λ) = x0 + λF) until a
minimum is found (at λmin)

• update x0 = x0 + λminF

• iterate the process

Note that at each iteration, the gradient is perpendicular to the
previous one, since by definition the starting point is a minimum for
the direction of the previous gradient.

3 Conjugate Gradient

For quadratic forms with very elongated shapes the steepest-descent
method is not very efficient, since it can continue exploring the same

1



directions over and over. A more effective way is provided by the so-
called conjugate gradient, which is based on the idea that ALL new
search directions should be orthogonal to the previously explored ones.

The method is based on the following mathematical properties.
Let’s define two arbitrary initial vectors

g0 h0 = g0

and let’s build the sequence of vectors

gi+1 = gi − λiA · hi hi+1 = gi+1 − γihi

where

λi ≡
gi · gi

gi ·A · hi
γi ≡ −

gi+1 ·A · hi

hi ·A · hi

With this choice

gi · gi+1 = 0 hi+1 ·A · hi = 0

Indeed,
gi · gi+1 = gi · gi − λigi ·A · hi

and
hi+1 ·A · hi = gi+1 ·A · hi + γihi ·A · hi

Both quantities vanish when the definitions of λi and γi are substituted
in the expressions.

It is possible to show (see the book Numerical Recipes) that the
sequence of generated vectors satisfy (for j 6= i)

gi · gj = 0 hj ·A · hi = 0 (1)

The gi are thus all orthogonal.

Using these definitions, we can prove two additional relations. Since
hi = gi + γi−1hi−1 (from the definition)

2



hi ·A · hi = (gi + γi−1hi−1) ·A · hi = gi ·A · hi + γi−1hi−1 ·A · hi

and the second contribution vanishes (due to Eq. 1) . Hence hi ·A ·
hi = gi ·A · hi (this does not means that gi = hi, but only that the
scalar product is the same !)

The second additional relation is

hi · gi = (gi + γi−1hi−1) · gi = gi · gi + γi−1hi−1 · gi

The last term can be written (iterating the definition of hi)

hi−1 · gi = (gi−1 + γi−2hi−2) · gi = γi−2hi−2 · gi

where we have used the condition of orthogonality of the past gi. It-
erating over and over this process by keeping substituting for hi−k one
ends with

hi−1 · gi =
i−2∏
k=0

γkh0 · gi

and since h0 = g0 and g0 is perpendicular to gi the term vanishes.
Hence we have demonstrated that

hi · gi = gi · gi

Let’s now go back to our minimisation problem. Let’s define gi as
the gradient of the function we want to minimiza in a generic point Pi

e.g.
gi = −∇f(Pi) = −A ·Pi + b

and let’s define gi+1 as the gradient evaluated at the minimum along
the (for the time being arbitrary) direction hi. Then

3



gi+1 = −∇f(Pi + λminhi) = −A · (Pi + λminhi) + b = gi − λminA · hi

In Pi + λminhi the gradient is perpendicular to the direction of the
previous ”search” direction and so

hi · gi+1 = 0

and hence
hi · gi − λminhi ·A · hi = 0

from which

λmin =
hi · gi

hi ·A · hi

But, according to what we have demonstrated before

λmin =
hi · gi

hi ·A · hi
=

gi · gi

gi ·A · hi
= λi

and hence λmin coincides with the definition of λi and thus it is possible
to build the sequence of vectors previously discussed simply identifying
gi with the gradient of the function we want to minimise.

This identity provides a method for generating the directions to
progressively search for the local minimum, avoiding resampling the
previously explored directions. What have we gained by doing all
this? We have been able to define the vectors gi without knowing
the Hessian matrix A, avoiding even the storage necessary to store
such a matrix. A sequence of directions hi is constructed, using only
line minimizations, evaluations of the gradient vector, and an auxiliary
vector to store the latest in the sequence of gi’s.

We also note that

γi ≡ −
gi+1 ·A · hi

hi ·A · hi

4



making use of the relation gi+1 = gi − λiA · hi can be written as

γi = −gi+1 · (gi − gi+1)

hi ·A · hi

1

λi
= −gi+1 · (gi − gi+1)

hi ·A · hi

gi ·A · hi

gi · gi
=

gi+1 · (gi+1 − gi)

gi · gi

and since gi is orthogonal to gi+1 and equivalent alternative way for
writing γi is

γi =
gi+1 · gi+1

gi · gi

In summary, evaluating the gradient one find gi+1. From this one
find γi and from γi one finds hi+1 which is the new search direction.

Finally, we comment on the fact that since gi · gi+1 = 0, then an
equivalent expression for γi is provided by

γi =
(gi+1 − gi) · gi+1

gi · gi

The two expressions for γi correspond to the Polak and Ribiere and
to the Fletcher-Reeves version of the conjugate gradient algorithm.
These two expressions are equal for exact quadratic forms, since gi ·
gi+1 = 0. In the real world, however, the function to be minimised
is not exactly a quadratic form. Arriving at the supposed minimum
of the quadratic form, one may still need to proceed for another set
of iterations. There is some evidence that the Polak-Ribiere formula
accomplishes the transition to further iterations more gracefully.

3.1 How do we really do it...

Implementation of the minimisation procedure requires a subroutine
to find the minimum along one direction. The standard algorithm is
explained in the figure. It requires as input the coordinates of three
points bracketing the minimum.

5



or the inverse parabolic interpolation

6



From the starting point x0, moving along the force directions one
first search for these three points bracketing the minimum and then
call the subroutine that find the minimum within a certain tolerance.

7


