
1 Ewald Sum (Allen)

The Ewald sum is a technique for efficiently summing the interaction between
an ion and all its periodic images. It was originally developed in the study
of ionic crystals [Madelung 1918]. The potential energy of a distribution of a
set of charges zj located in rj in the simulated cell, can be written as

V =
1

2

′∑
n

N∑
i=1

N∑
j=1

zizj|rij + n|−1

For simplicity of notation, we are omitting all factors of 4πε: this corresponds
to adopting a non-SI unit of charge. The sum over n is the sum over all simple
cubic lattice points, n = (nxLx, nyLy, nzLz) with nx, ny and nz integers. This
vector reflects the shape of the basic box. The prime indicates that we omit
i = j for n = 0.

For long-range potentials, this sum is conditionally convergent, i.e. the result
depends on the order in which we add up the terms. A natural choice is
to take boxes in order of their proximity to the central box. The unit cells
are added in sequence: the first term has |n| = 0, i.e. n = (0, 0, 0). The
second term, |n| = 1 comprises the six boxes centred at n = (±1, 0, 0),
n = (0,±1, 0) and n = (0, 0,±1) etc. As we add further terms to the sum,
we are building up our infinite system in roughly spherical layers. When we
adopt this approach, we must specify the nature of the medium surrounding
the sphere, in particular its relative permittivity (dielectric constant) ε. The
results for a sphere surrounded by a good conductor such as a metal (ε =∞)
and for a sphere surrounded by vacuum (ε = 1) are different [de Leeuw,
Perram, and Smith 1980].

V (ε =∞) = V (ε = 1)− 2π

3L2
|
∑
i

ziri|2 (1)

This equation applies in the limit of a very large sphere of boxes. In the
vacuum, the sphere has a dipolar layer on its surface: the last term in eqn 1
cancels this. For the sphere in a conductor there is no such layer. The Ewald
method is a way of efficiently calculating V (ε = ∞). Equation 1 enables us
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to use the Ewald sum in a simulation where the large sphere is in a vacuum,
if this is more convenient.

1.1 Procedure

To calculate the potential energy, we first calculate the electrostatic potential
in a generic point rj, e.g. the electrostatic potential experienced by one ion
in the presence of all the other ions in the system. The basic idea is to
evaluate the electrostatic potential in one point as a sum of two distinct
related potentials. To this aim we consider the system as composed by the
original charge distribution, plus two charge density distributions of gaussian
shape, centered in the same position as the ions and with two opposite signs.
In this way, the charge in the system is not altered. Both the charges and the
two gaussians are copied in all periodic image cells. Finally, the two gaussians
associated with the ion in rj (as well as its charge zj) are eliminated (but
only in the central cell).

The electrostatic potential of this apparently more complicated system (the
original charges and the sum of the two gaussian distributions) can be calcu-
lated as the sum of three pieces.

• The electrostatic potential ψa of a lattice with a Gaussian distribution of
charge situated at each lattice point (in the infinite system), with signs
the same as those of the real lattice.

• The electrostatic potential ψb of a single gaussian centered in rj whose
contribution needs to be subtracted

• The electrostatic potential ψc of a system composed by the ions and by
their compensating Gaussian distribution with signs opposite to those of
the ions.

The point of splitting the problem into parts is that by a suitable choice of
the parameter determining the width of each Gaussian peak we can get very
good convergence of both parts at the same time. The Gaussian distributions
drop out completely on taking the sum of the separate charge distributions
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Figure 1: Ewald method

giving rise to ψa−ψb, so that the value of the total potential φ is independent
of the width parameter, but the rapidity of convergence depends on the value
chosen for the parameter.

1.2 ψa

We calculate first the potential ψa of the periodic Gaussian distribution,
composed of gaussians centered on the ions and on their periodic images
(including ion j) e.g.

ρ(r) =
∑
n

∑
i

zi

(α
π

)3/2
exp[−α|ri + n− r|2]

We expand ψa and the charge density ρ in Fourier series:

ψa(r) =
∑
k

cke
ik·r
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and
ρ(r) =

∑
k

ρke
ik·r (2)

These two quantities are related by the Poisson equation (just to remember...
the Gauss theorem states that the flux of a vector is equal to the volume
integral of the divergence of the same vector. Since the flux of the electric
field is the volume integral of the charge density, it follows that the divergence
of the electric field and hence the laplacian of the electric potential is equal
to the charge density)

∇2ψa(r) = −4πρ(r)

which set a relation between ck and ρk. Indeed,

∑
k

[
−k2ck + 4πρk

]
eik·r = 0

or

ck =
4π

k2
ρk

If we now multiply both sides of Eq. 2 by e−ik·r and integrate over the cell
volume

∫
V

dre−ik·rρ(r) =
∑
k′

ρk′

∫
V

dreik
′·re−ik·r = ρkV

ρk =
1

V

∫
V

dre−ik·rρ(r)

Due to periodic boundary conditions, the integration over the cell volume can
be transformed to an integration over the infinite volume of only the density
originating in the central cell

4



-10 -5 0 5 10x
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ(
x)

Cella   -1 < x < 1

Graphic demonstration that the integration over the original cell of ρ(r) is equivalent to the integration of

the gaussian in the original cell over all space

ρ(r) =
∑
i

zi

(α
π

)3/2
exp[−α|ri − r|2]

so that

ρk =
1

V

∫
dr
∑
i

e−ik·r
(α
π

)3/2
exp[−α|ri − r|2]])

and

ψa(r) =
∑
k

4π

k2
eik·r

1

V

∫
dt
∑
i

e−ik·t
(α
π

)3/2
exp[−α|t− ri|2]])

Multiplying by e−ik·rie+ik·ri and completing the square [e.g. −{ ik
2
√
α
+
√
α(t− ri)}2 =

k2

4α − α|t− ri|2 − ik · (t− ri) ] the integration over the normalized guassian
gives one and

ψa(r) =
∑
k

4π

k2
eik·r

1

V

∑
i

zie
−ik·ri exp

[
− k

2

4α

]
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In rj, the point where the generic ion j is located

ψa(rj) =
4π

V

∑
k

1

k2

∑
i

zie
−ik·(ri−rj) exp

[
− k

2

4α

]

Now summing over all ions in the simulation box, after multiplying for zj to
obtain the potential energy and dividing by two to avoid over counting,

V tot
a =

1

2

∑
j

zjψa(rj) =
1

2

N∑
j=1

N∑
i=1

zjzi
4π

V

∑
k

1

k2
e−ik·(ri−rj) exp

[
− k2

4α2

]

1.3 ψb

Next we calculate the contribution in rj of the electrostatic potential gen-
erated by the gaussian centered in rj. Indeed, in calculating ψa we have
included also the gaussian in the central cell and now we need to correct for
that. Locating rj in the origin we are left with the calculation of the elec-
trostatic potential at the origin due to a Gaussian distribution centered also
in the origin. We can calculated this electrostatic potential making use of
Gauss theorem to evaluate the electric field of a spherical charge distribution

ψb(r = 0) = −
∫ 0

∞
E(R)dR = −

∫ 0

∞

∫ R
0 dtρ(t)

R2
dR =

∫ ∞
0

∫ R

0

dtρ(t)
1

R2
dR

By changing the integration limits to 0 < t <∞ and t < R <∞,

ψb(r = 0) = −
∫ ∞
0

ρ(t)4πt2dt

∫ ∞
t

1

R2
dR = 4π

∫ ∞
0

ρ(t)tdt

For the Gaussian distribution, changing tdt in d(αt2)/2α, one gets

ψb(r = 0) = 4π
(α
π

)3/2 1

2α
= 2

(α
π

)1/2
If the Gaussian models an ion of valence zi, this value need to be multiplied
by zi
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When summing over all ions in the system, after multiplying again by zi to
obtain the potential energy, we get a contribution

V tot
b = 2

∑
i

z2i

(α
π

)1/2

1.4 ψc

The electrostatic potential ψc is the potential generated by all charges in the
system associated to a gaussian distribution with opposite sign whose center
il located on the same charge.

The appendix shows how to calculate the potential V (R) generated by a
gaussian distribution at distance R from its center,

V (R) =
1

R
− Erfc(

√
αR)

R

Adding the contribution of the charge on the same location eliminates the
1/R term, leaving only Erfc(

√
αR).

Focusing on the electrostatic potential created in ri by all other ions in the
system one get

ψtotc (rj) =
∑
n

N∑
i=1,i 6=j

zi
Erfc(

√
α|ri + n− rj|)

|ri + n− rj|

Now summing over all ions in the simulation box, after multiplying for zj to
obtain the potential energy and dividing by two to avoid over counting

V tot
c =

1

2

∑
j

zjψ
tot,j
2 (rj) =

1

2

′∑
n

N∑
j=1

N∑
i=1

zjzi
Erfc(

√
α|ri + n− rj|)

|ri + n− rj|

(as before the prime indicates that we omit i = j for n = 0).
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2 Result

The final potential energy thus contains a real space sum plus a reciprocal
space sum minus a self-term plus the surface term already discussed. The
final result is

V (ε = 1) =
1

2

N∑
i=1

N∑
j=1

 ′∑
n

zizj
erfc(κ|rij + n|)
|rij + n|

+
1

πL3

∑
k 6=0

zizj
4π2

k2
e−k

2/4κ2cos(k · rij)


− κ

π1/2

N∑
i=1

z2i +
2π

3L2
|
N∑
i=1

ziri|2 (3)

Here erfc(x) is the complementary error function (erfc(x) = (2/π1/2)
∫∞
x e−t

2

dt)
which falls to zero with increasing x. Thus, if κ is chosen to be large enough,
the only term which contributes to the sum in real space is that with n =
0, and so the first term reduces to the normal minimum image convention.
The second term is a sum over reciprocal vectors k = 2π

L n. A large value of
κ corresponds to a sharp distribution of charge, so that we need to include
many terms in the k-space summation to model it. In a simulation, the aim
is to choose a value of κ and a sufficient number of k-vectors, so that Eqn
3 (with the real space sum truncated at n = 0) and the total sum give the
same energy for typical liquid configurations. In practice, κ is typically set
to 5/L and 100-200 wave vectors are used in the k-space sum [Woodcock and
Singer 1971]. We stress that checks should be carried out on the reliability
of Eqn 3 for each individual system which is simulated before beginning the
run.

The original method of Ewald can be readily extended to dipolar systems.
In the derivation of eqn (5.20), zi is simply replaced by ~µi · ∇ri where ~µi is
the particle dipole. The resulting expression is [Kornfeld 1924; Adams and
McDonald 1976; de Leeuw et al. 1980.]

V µ(ε = 1) =
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1

2

N∑
i=1

N∑
j=1

 ∞′∑
|n|=0

(µi · µj)B(|rij + n|)− (µi · rij)(µj · rij)C(|rij + n|) +
∑
k 6=0

1

πL3
(µi · k)(µj · k)(

4π2

k2
)e−

k2

4κ2 cos(krij)


−2κ3µ2i

3
√
π

+
1

2

N∑
i=1

|
N∑
j=1

4π

3L3
µi · µj (4)

where

B(r) = erfc(κr)/r3 +
2κ√
π
e−k

2r2/r2

and

C(r) = 3erfc(κr)/r5 +
2κ√
π

(2κ2 + 3/r2)e−k
2r2/r2

This expression can be used in the same way as the Ewald sum, with the real
space sum truncated at |n| = 0 and a separate subroutine to calculate the k-
vector sum. Smith [1982a] has given an elegant formulation of the extension
of the Ewald method to dipoles and quadrupoles; his article contains explicit
expressions for forces and torques which will be of use in MD simulations.

3 reaction field (Allen)

In the reaction field method, the field on a dipole in the simulation consists
of two parts: the first is a short-range contribution from molecules situated
within a cutoff sphere or ’cavity’ R, and the second arises from molecules
outside R which are considered to form a dielectric continuum (εs) producing
a reaction field within the cavity [Onsager 1936]. The size of the reaction
field Ei acting on molecule i is proportional to the moment of the cavity
surrounding i

Ei =
2(εs − 1)

2εs + 1

1

r3c

∑
j∈R

µj

where the summation extends over the molecules in the cavity, including
i, and rc is the radius of the cavity. The contribution to the energy from
the reaction field is −1

2µi · Ei. The torque on molecule i from the reaction
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field is µi × Ei Barker and Watts [1973] first used the reaction field in a
simulation of water, and there are useful discussions by Friedman [1975] and
Barker [1980]. Whenever a molecule enters or leaves the cavity surrounding
another, a discontinuous jump occurs in the energy due to direct interactions
within the cavity and in the reaction field contribution. These changes do not
exactly cancel, and the result is poor energy conservation in MD. In addition,
spurious features appear in the radial distribution function at r = rc These
problems may be avoided by tapering the interactions at the cavity surface
[Adams, Adams, and Hills 1979]: the explicit interactions between molecules
i and j are weighted by a factor f(rij), which approaches zero continuously
at rij = rc.

The static reaction field is straightforward to calculate in a conventional
MD or MC simulation, and it involves only a modest increase in execution
time. A potential difficulty with the reaction field method is the need for
an a priori knowledge of the external dielectric constant εs. Fortunately, the
thermodynamic properties of a dipolar fluid are reasonably insensitive to the
’choice of εs.

3.1 Appendix A

Here we calculate the electrostatic potential generated by a spherical charge
distribution in a point at distance R from its center.

According to the Gauss theorem, in a generic point at distance r from the
center of the spherical distribution ρ(r), the electric field is

E(r) =

∫ r
0 ρ(t)4πt2dt

r2
.

The electrostatic potential at distance R can be calculated integrating the
electric field from infinite to R

φ(R) = −
∫ R

∞
E(r)dr

10



so that

φ(R) = −
∫ R

∞
dr

∫ r

0

dt
1

r2
ρ(t)4πt2

By changing the integration limits from

R < r <∞
0 < t < r (5)

to (splitting 0 < t < r in two parts 0 < t < R and R < t < r)

0 < t < R

R < r <∞ (6)

and

R < t <∞
t < r <∞ (7)

one gets

φ(R) = −
∫ ∞
R

dtρ(t)4πt2
∫ ∞
t

dr

r2
−
∫ R

0

dtρ(t)4πt2
∫ ∞
R

dr

r2
=

φ(R) =

∫ ∞
R

dtρ(t)4πt2
1

t
+

∫ R

0

dtρ(t)4πt2
1

R
=

∫ ∞
R

dt
ρ(t)

t
+

1

R

∫ R

0

dtρ(t)

which can also be written as

φ(R) =

∫ ∞
R

dt
ρ(t)

t
+

1

R

[∫ R

0

dtρ(t) +

∫ ∞
R

dtρ(t)−
∫ ∞
R

dtρ(t)

]
=∫ ∞

R

dt
ρ(t)

t
+

1

R
− 1

R

∫ ∞
R

dtρ(t)
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When (assuming an integrated unit charge)

ρ(r) =
(α
π

)3/2
exp[−αr2]

φ(R) =
1

R
+ 4π

(α
π

)3/2(∫ ∞
R

drr exp[−αr2]− 1

R

∫ ∞
R

drr2 exp[−αr2]
)

Considering that drr exp[−αr2] = −d exp[−αr2]/(2α) and that drr2 exp[−αr2] =
−rd exp[−αr2]/(2α) we get (integrating by part the second integral)

φ(R) =
1

R
+4π

(α
π

)3/2(exp[−αR2]

2α
− 1

R

[
R exp[−αR2]

2α
−
∫ ∞
R

exp[−αr2]
2α

dr

])
=

φ(R) =
1

R
−4π

(α
π

)3/2 1

R

∫ ∞
R

exp[−αr2]/(2α)dr =
1

R
−2
(α
π

)1/2 1

R

∫ ∞
R

exp[−αr2]dr =

=
1

R
− 1

R

2√
π

∫ ∞
√
αR

exp[−t2]dt =
1

R
− 1

R
Erfc(

√
αR)

where we have defined the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−x
2

dx
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