
1 How to calculate the Free Energy

Simulations are very helpful for calculating average values of all observables,
including the one of thermodynamic relevance. Still, it is possible to evaluate
the free energy by adopting specific strategies.

The simplest strategies is the thermodynamic integration, e.g. the connection
via a reversible path, of the required state point with a reference one.

The most common reference point is the ideal gas, which can be accessed as
limit for vanishing density or as limit of infinite temperature (for continuous
potential only. It is not valid in the case of excluded volume interactions).

Starting from the free energy

F (T, V ) = U − TS dF = dU − TdS − SdT
and invoking the first law of thermodynamics dU = dQ−PdV = TdS−PdV
one obtain

dF = −PdV − SdT
The integration of this expression, along V at constant T or along T at
constant V provide a mean for evaluating F (V, T ).

1.1 From the ideal gas

Aloing an isotherm, dF = −PdV and thus

F (V, T ) = F (T, V =∞)−
∫ V

∞
PdV

splitting P in the ideal and excess part

F (V, T ) = Fidealgas(T, V )−
∫ V

∞
P exdV = Fidealgas(T, ρ) +N

∫ ρ

0

Pex(ρ, T )

ρ2
dρ
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or

βF (V, T )

N
=
βFidealgas(T, V )

N
+

1

kBT

∫ ρ

0

Pex(ρ, T )

ρ2
dρ

1.2 From infinite T

Usually, it is much more convenient not to change the system density. In this
case it is possible to integrate along an isochore, where dQ = dU so that

dS =
dQ

T
=
dQ

dT

dT

T
= [C ig

V + Cex
V ]
dT

T
Hence

F (V, T ) = U(V, T )− TS(V, T ) =

U(V, T )− T
[
S(V, T =∞) +

∫ T

∞
[C ig

V (V, T ) + Cex
V (V, T )]

dT

T

]
=

Joining S(V, T =∞) with
∫ T
∞[C ig

V (V, T )dTT to produce the ideal gas entropy
at temperature T and splitting U in U ig + U ex

U ex(V, T )− T
[
−F

ig(V, T )

T
+

∫ T

∞

dU ex

dT

dT

T

]
Integrating by part the integral

∫ T
∞

dUex

T and assuming Uex(∞)
∞ = 0,

−T
∫ T

∞

dU ex

T
= −T

(
U ex(T ′)

T ′

)
|T∞ + kBT

∫ β

0

U ex(V, β′)dβ′

= −U ex(V, T ) + kBT

∫ β

0

U ex(V, β′)dβ′

F (V, T ) = F ig(V, T ) + kBT

∫ β

0

U ex(V, β′)dβ′ (1)

In the case there is an hard part of the potential, the infinite T limit does not
coincide with the ideal gas. In the case the potential is properly hard-sphere
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like, the high T limit can be properly modelled with the Carnahan-Starling
free energy. In the case of a continuous potential, e.g. the repulsive part
of the Lennard-Jones or the soft-sphere potential, the high T limit is not
properly defined. A convenient trick can be implemented to calculate the
free energy. Indeed one can define a modified potential as

V modified(r) = min(V (r), 100kBT0)

At T0, the system of particles interacting with V (r) and the one interacting
with V modified(r) are identical, since it is extremely rare to sample configu-
rations in which the energy is 100 kBT0. Hence the free enegy of V (r) and
V modified(r) at T0 coincide. But the modified potential has a clear hight T
limit provided by the ideal gas. With a simple change of one line in the
MC code, it is possible to run simulations of the modified potential at dif-
ferent T (from T0 to T =∞ and integrate

∫ β0
0 U ex(β′)dβ′. This last quantity

coincides with βF ex(V, T0). The following figure shows the case of a LJ po-
tential truncated at r = 3σ at ρσ3 = 0.7 and kBT/ε = 0.7. In this case
V modified(r) = min(VLJ(r), 100ε). Simulations have been run for a system of
256 particles at about 25 different values of β, from β = 10−7 to β = 1/0.7.
The 25 values have been splined and the spline function has been integrated
to evaluate βf ex. The numerical result is βf ex(ρσ3 = 0.7, T = 0.7) = −4.30.
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1.3 Integration along the potential shape

A very powerful technique to evaluate differences in Free energy between
two related system extent the concept of thermodynamic integration to the
case of a path along a sequence of Hamiltonians connecting the starting and
ending cases.

Let us assume we know the free energy of a system of N particles interact-
ing with the potential U(r1...rN) and to be interested in evaluating the free
energy of a system of N particles interacting with the potential U(r1...rN) +
W (r1...rN). We can define intermediate potentials as

Hλ = U(r1...rN) + λW (r1...rN)

where λ is a parameter going from zero to one. Then

−βFλ = lnQλ = ln

∫
e−βHλdr1...drN (2)

and

−∂βFλ
∂λ

=
1

Qλ

∂Qλ

∂λ
= − 1

Qλ

∫
βW (r1...rN)e−βHλdr1...drN = − < βW >λ

(3)
where < W >λ is the average value of the ”perturbation” calculated for a
system of N particles interacting with the Hamiltonian Hλ.

The difference in free energy is thus

βF1 = βF0 +

∫ 1

0

< βW >λ dλ (4)

Thus, it is possible to numerically calculate βF1 starting from the knowledge
of βF0 performing a series of simulations at different λ values and integrating
the λ dependence of < W >λ.
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2 Particle Insertion: Widom Method

A particularly simple and elegant method for measuring the chemical poten-
tial µ of a species in a pure fluid or in a mixture is the particle insertion
method (often referred to as the Widom method [172]). The statistical me-
chanics that is the basis for this method is quite simple. Consider the defi-
nition of the chemical potential µa of a species a. From thermodynamics, we
know that µ is defined as

µa =
∂G

∂Na
|PTNb 6=a

The partition function of the system (in the NVT ensemble — different rela-
tions hold for different ensembles) is

Q(N, V, T ) =
1

Λ3NN !

∫
drN exp[−βU(rN)]

For sufficiently large N values,

βµ = − ln
Q(N + 1, V, T )

Q(N, V, T )

so that

βµ = − ln
1

Λ3(N + 1)

∫
drN+1 exp[−βU(rN+1)∫
drN exp[−βU(rN)

By writing U(rN+1) = U(rN) + ∆U(rN , rN+1),

βµ = − ln
1

Λ3(N + 1)

∫
drN+1 exp[−βU(rN)] exp[−β∆U ]∫

drN exp[−βU(rN)
=

− ln
1

Λ3(N + 1)

∫
drN+1 < exp[−β∆U ] >N
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= − ln
V

Λ3(N + 1)
< exp[−β∆U ] >N= βµig − ln < exp[−β∆U ] >N

where the average denotes canonical ensemble averaging over the configura-
tion space of the N-particle system. The important point to note is that
equation (7.2.5) expresses µex as an ensemble average that can be sampled
by the conventional Metropolis scheme [6]. One aspect of the average in
equation (7.2.5) makes it different from the quantities usually sampled in a
computer simulation: we have to compute the average of an integral over the
position of particle N + 1. This last integral can be sampled by brute force
(unweighted) Monte Carlo sampling. In practice the procedure is as follows:
we carry out a conventional constant-NVT Monte Carlo simulation on the
system of N particles. At frequent intervals during this simulation, we ran-
domly generate a coordinate rN+1 uniformly over the volume. For this value
of rN+1 , we then compute exp[−β∆U ]. By averaging the latter quantity over
all generated trial positions, we obtain the average that appears in equation
(7.2.5). So, in effect, we are computing the average of the Boltzmann factor
associated with the random insertion of an additional particle in an N-particle
system, but we never accept any such trial insertions, because then we would
no longer be sampling the average needed in equation (7.2.5). The Widom
method provides us with a very powerful scheme for computing the chemical
potential of (not too dense) atomic and simple molecular liquids.

subroutine Widom

xtest=box*ranf()

call ener(xtest,entest)

wrest=wrest

+ +exp(-beta*entest)

return

end

Comments to this algorithm:

This algorithm shows the basic structure of the Widom test particle method
for the N,V,T ensemble. This subroutine is usually called in the sampling step
of a Monte Carlo simulation, for example, in subroutine sample in Algorithm
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• 1. Usually, many such test particle insertions are needed to obtain reli-
able statistics.

• 2. The excess chemical potential follows from βµex = −ln(
∑

i βEi)/M),
M is the total number of test particle insertions.

• 3. Subroutine ener calculates the energy of the test particle. Note that
the test particle insertion is virtual and is never accepted.

• 4. For pairwise additive interactions, we can approximately correct for
the effect of the truncation of the intermolecular interactions on the value
of the chemical potential by evaluating a tail correction. This correction
turns out to be a factor of 2 larger than that for the potential energy per
particle (see Case Study 14).

These equations were derived for a spatially homogeneous system. Widorn
[173] also considered the case of a spatially inhomogeneous system. In that
case, µex depends explicitly on the position r. However, in equilibrium the
chemical potential itself is constant throughout the system.

In the case in which tail corrections are included, one need to consider the en-
ergetic contribution associated to the introduction of the additional particle.
The tail correction is

U tail
N+1 − U tail

N = 4π(N + 1)
N + 1

V

∫ ∞
rc

r2dru(r)− 4πN
N

V

∫ ∞
rc

r2dru(r) =

4π
2N + 1

V

∫ ∞
rc

r2dru(r)

We also note that in principle it is possible to derive an equivalent formulation
related to the process of extracting a particle. While from a thermodynamic
point of view the two formulations are equally valid, from a numerical point
of view, the formulation based on the delete of a particle does not converge
properly. This is due to the fact that the repulsive part of the potential (that
contribute mostly in the delete method) is rarely sampled in the standard
MC approach, being irrelevant from a statistical point of view.
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2.0.1 Adding o removing ?

In principle, one could also design a Widom-like method by attempting to re-
move one particle in the system. This method, theoretically correct, provides
as expression for the chemical potential

µ = µig + kBT ln < e+β∆U >

One can immediately see that this expression is not going to work for hard-
spheres. But even for continuous potential this expression is not really ade-
quate, due to the fact that U is bounded only from below.

2.1 Overlapping distribution method

A method introduced in the context of a more general technique for mea-
suring free energy differences, first introduced by Bennett [184], is called the
overlapping distribution method.

Consider two N-particle systems, labeled 0 and 1 with partition functions Q0

and Q1. For convenience we assume that both systems have the same volume
V, but this is not essential. From equation (5.4.4) it follows that the free
energy difference ∆F = F1 − F0 can be written as

β∆F = − ln
Q1

Q0
= ln

Q0

Q1

Suppose that we are carrying out a (Metropolis) sampling of the configuration
space of system 1. For every configuration visited during this sampling of
system 1 we can compute the potential energy of system 0 for the same
configuration and, hence, the potential energy difference ∆U = U1(r

N) −
U0(r

N) We use this information to construct a histogram that measures the
probability density for the potential energy difference. Let us denote this
probability density by p1(∆U). In the canonical ensemble, p1(∆U) is given
by
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p1(∆U) =
1

Q1

∫
drN exp[−βU1(r

N)]δ(U1(r
N)− U0(r

N)−∆U)

Due to the presence of the δ-function, the argument of the Boltzmann factor
can be changed in

p1(∆U) =
1

Q1

∫
drN exp[−β(U0(r

N) + ∆U)]δ(U1(r
N)− U0(r

N)−∆U)

=
1

Q1
exp[−β∆U)]

∫
drN exp[−βU0(r

N)]δ(U1(r
N)− U0(r

N)−∆U)

so that

p1(∆U) =
Q0

Q1
exp[−β∆U)]p0(∆U)

which gives
ln p1(∆U) = β∆F − β∆U)− ln p0(∆U)

Performing two simulations, one with U1(r
N) and one with U3(r

N), it is pos-
sible to estimate ln p1(∆U) and ln p0(∆U) as a function of ∆U . Provided the
two functions are properly calculated in a region of overlapping ∆U values,
it is possible to fit their different and estimate in this way β∆F .

3 Multiple Histograms

As was shown previously the overlapping distribution function method can
work even if the two distributions do not really overlap. However, they
should not be too far apart. In case there is a large gap between f0 and
f1, it is often useful to perform additional simulations for intermediate val-
ues of the Hamiltonian. We thus obtain a sequence of distribution functions
f0, f1, f2...fn , such that f0 overlaps with f1, f1 with f2 etc. The free energy
difference between system 0 and system n can then be obtained by adding
∆F = ∆F01 + ∆F12 + ∆F23...∆Fn−1,n. The problem with a naive implemen-
tation of this approach is that the statistical errors in the individual free
energy differences ∆Fk−1,k add up quadratically in the final result. Fortu-
nately, techniques exist that prevent such error propagation. One approach,
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proposed by Ferrenberg and Swendsen [185], is based on the idea that it is
possible to construct a self-consistent estimate for the histograms without
assuming any specific functional form.

3.0.1 Order Parameter

Let’s break for a moment to see how one can properly define a Landau free
energy, e.g. an expression of the free energy as a function of an order pa-
rameter. This quantity is particularly informative in phase transitions and
in several conditions where high free energy barriers separates different con-
figurations (for example in the cis-trans conversion of several molecules) or
in the cross-over from different local structures.

The definition of an order parameter is a research field by itself. In the Landau
language, it is a quantity that is equal to zero in the disordered phase and
different from zero in the ordered one. In addition, the order parameter
must reflect the symmetries of the problem. We will possibly touch it again
when we will discuss crystallization. You are surely familiar with the Landau
free energy for magnetic systems, where the order parameter is identified
with the the total magnetization. In the case of fluids, it could be the free
energy as a function of the density. When the free-energy as a function of
the order parameter shows a non-monotonic behavior, with multiple local
minima, a phase transition (or a cross-over between different well defined
basins in configuration space) is expected.

If we label the order parameter with the symbol Q, then the probability
distribution of sampling Q is

P (Q) =

∫
e−βUδ(Q(rN)−Q)drN∫

e−βUdrN
≡ Z(Q)

Z

One can thus define a Q dependent free energy

βFlandau(Q) = − lnP (Q) = − lnZ(Q) + lnZ

in which the entireQ dependence is in the Z(Q) term. (Note that
∫
e−βFlandau(Q)dQ =

1)
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3.1 Multiple histograms... continue

For what follows, it is convenient to define the distributions that we are
considering in a slightly more general form. We assume that the original
system that we are studying is characterized by a potential energy function
U0. We now define a sequence of n related models characterized by a potential
energy function Ui = U0 +Wi (i = 1, n) For example, W1 could be λ1(U1−U0)
with 0 < λ1 < 1. Alternatively, Wi could be a function of some order
parameter or reaction coordinate Q(rN). For the sake of generality, we take
the latter point of view, because W1 = λ1(U1 − U0) can be interpreted as a
function of the order parameter Q ≡ (U1−U0). We now consider histograms
Pi(Q) defined as follows:

Pi(Q) =

∫
rN exp[−β(U0 +Wi)]δ(Q(rN)−Q)

Zi
where

Zi =

∫
rN exp[−β(U0 +Wi)]

In some cases, we are interested in the ratio Z0/Zn, because that determines
the free energy difference between systems 0 and n. But, often, the distribu-
tion functionP0(Q) itself is of central interest, because it allows us to compute
the Landau free energy of the original system as a function of the order
parameter Q:

βFLandau(Q) = − lnP0(Q)

3.2 Self-Consistent Histogram Method

In a simulation, the histograms pi(Q) are estimated by measuring Hi(Q) the
number of times that a system with potential energy function U0 + Wi has
a value on the order of the parameter between Q and Q + δQ . If the total

11



number of points collected in histogram i. is denoted by Mi then

pi(Q)∆Q =
Hi(Q)

Mi

If we assume that the ”random” variable Hi(Q) (the number of points in the
bin i) has a Poisson statistics, then its variance is equal to its average and

< H2
i (Q) > − < Hi(Q) >2

M 2
i

=
< Hi(Q) >

M 2
i

=
pi(Q)∆Q

Mi

In what follows, we shall assume, without loss of generality, that our units
are chosen such that ∆Q = 1. This choice is not essential, of course, but it
simplifies the notation and does not affect the final results. Once we have
measured a set of histograms, we can try to combine this information to arrive
at an estimate of p0(Q) or, equivalently, of FLandau(Q). First of all, we should
note that, in principle, although not in practice, p0 can be reconstructed from
every individual histogram pi(Q):

p0(Q) = exp[+βWi]
Zi
Z0
pi(Q) (5)

In practice, this approach will hardly ever work because the range of Q val-
ues where p0(Q) and pi(Q) differ significantly from zero need not overlap.
Hence the most important contribution to p0(Q) would come from a range of
Q values where exp(+βWi) is very large but pi(Q) is vanishingly small. We
therefore shall attempt to construct our estimate pest0 (Q) by a linear combi-
nation of the estimates based on the different histograms:

pest0 (Q) =
n∑
i

wi(Q) exp[+βWi(Q)]
Zi
Z0
pesti (Q) (6)

where wi(Q) is a yet undefined weight function subjected to the constraint
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∑
i

wi(Q) = 1

Note that, at this stage, the values of the ratios Zi/Z0 are also still unknown.
Let us now choose the weights wi(Q) such that the estimated variance in
pest0 (Q) is minimised. Using the fact that fluctuations in different simulations
are uncorrelated (and hence that the variance of a sum is the sum of all
variances e.g. < pipj > − < pi >< pj >= σ2

pi
δij ), the variance is

< pest0 (Q)2 > − < pest0 (Q) >2=
n∑
i

wi(Q)2 exp[+2βWi(Q)]
Z2
i

Z2
0

(
< pesti (Q)2 > − < pesti (Q) >2

)
and exploit the previous result

< pest0 (Q)2 > − < pest0 (Q) >2=
n∑
i

wi(Q)2 exp[+2βWi(Q)]
Z2
i

Z2
0

pi(Q)

Mi

= p0(Q)
n∑
i

wi(Q)2 exp[+βWi(Q)]
Zi
Z0

1

Mi

Now we have to minimise the variance with the constraint imposed via a
Lagrange multiplier, e.g.

δ(< pest0 (Q)2 > − < pest0 (Q) >2 −α
∑
j

wj) = 0

which corresponds to

p0(Q)2wi(Q)δwi(Q) exp[+βWi(Q)]
Zi
Z0

1

Mi
− αδwi(Q) = 0

This variance is a minimum when

wi(Q) =
α

2p0(Q)
exp(−βWi(Q))Mi

Z0

Zi

where α, the Lagrange multiplier, is fixed by the condition that
∑

j wj(Q) =
1, e.g.
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α =
2p0(Q)∑

exp(−βWi(Q))Mi
Z0

Zi

The best solution for pest0 is thus

pest0 =

∑
iHi(Q)∑

exp(−βWi)Mi
Z0

Zi

Going now back to Eq. 5, we can write

p0(Q) exp[−βWi(Q)]Z0 = Zipi(Q)

and integrating over Q

Zi =

∫
dQZ0p0(Q) exp(−βWi(Q))

=

∫
dQ exp(−βWi(Q))

∑
iHi(Q)∑

exp(−βWi(Q))Mi

Zi

This is an implicit equation for Zi that must be solved self-consistently. In
fact, we cannot determine the absolute value of all Zi but only their ratio.
Therefore, we can arbitrarily fix one of the Zi (e.g. Z0) at a constant value.
The (nonlinear) set of equations is then solved for the remaining Zi until
self-consistency is reached. The free energy difference between system n and
system 1 then simply can be computed as

β∆F = − ln(Zn/Z1)

To give a specific example, assume that we have simulated only two systems
1 and 2, with potential energy functions U1 and U1 + ∆U Moreover, let us
assume, for the sake of simplicity, that both simulations resulted in the same
number of histogram entries (M = M1 = M2). Then the previous equation
becomes

Z2 =

∫
d∆U exp(−β∆U H1(∆U) +H2(∆U)

M(1/Z1 + exp(−β∆U)/Z2)
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and dividing everything by Z1,

Z2

Z1
=

∫
d∆U exp(−β∆U H1(∆U) +H2(∆U)

M(1 + exp(−β∆U)(Z1/Z2)

using β∆F = −Z2

Z1
we can rewrite the previous equation as

∫
d∆U p1(∆U)

1 + exp[−β(∆U −∆F )]
=

∫
d∆U p2(∆U)

1 + exp[−β(∆U −∆F )]

which is equivalent to the equation that must be solved self-consistently for
∆F in Bennett’s acceptance ratio method [184], to be discussed later on. This
is somewhat surprising because the acceptance ratio method was devised
to minimize the estimated error in the free energy difference between two
systems. In contrast, equation (7.3.10) minimizes the error in our estimate
of p0(Q). If the number of histograms is larger than 2, this expression is not
completely equivalent to the one obtained by minimizing the error in the free
energy difference between system 1 and n (say). But it is straightforward to
derive the equations for the set {Zi} that minimize the error in the estimate
of a particular free energy difference.

4 BAR - Bennett acceptance ratio method

The Bennett acceptance ratio method (sometimes abbreviated to BAR) is an
algorithm for estimating the difference in free energy between two systems.
It was suggested by C. H. Bennett in 1976.[Charles H. Bennett (1976) Effi-
cient estimation of free energy differences from Monte Carlo data. Journal of
Computational Physics 22 : 245]

Let’s name 0 and 1 the two systems. We can write, multiplying numerator
and denominator by the same quantity (w(rN) is an arbitrary function of the
coordinates)

Q0

Q1
=
Q0

Q1

∫
drNw(rN) exp[−β(U0 + U1)]∫
drNw(rN) exp[−β(U0 + U1)]

=
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< w(rN) exp[−β(U0)] >1

< w(rN) exp[−β(U1)] >0
(7)

which means that the difference in free energy between 0 and 1 can be written
as

β∆F = β(F1−F0) = ln
Q0

Q1
= ln < w(rN) exp[−β(U0)] >1 − ln < w(rN) exp[−β(U1)] >0

(8)

Bennett focused on the best choice for w(rN), e.g. the function that would
minimize the numerical error in the evaluation of ∆F .

First of all we need to evaluate the variance of ∆F , σ2
β∆F .

To remember of the variance of a function is related to the variance of its
argument let’s consider

y = ln ξ

where ξ = η
M and η =

∑M
i=1 xi. Since η is the sum of M random variables,

σ2
η = Mσ2

x and thus σ2
ξ = σ2

x

M . In addition, since dy = dξ
ξ , σ2

y =
σ2
ξ

ξ2 . Putting all
this together

σ2
y =

σ2
ξ

ξ2
=

σ2
x

Mξ2

Applied to β∆F we then get adding the two variances and defining n1 and
n2 as the number of sampled configurations in the two simulations

σ2
β∆F =

< (w(rN) exp[−β(U0)])
2 >1 −(< w(rN) exp[−β(U0)] >1)

2

n1(< w(rN) exp[−β(U0)] >1)2
+

< (w(rN) exp[−β(U1)])
2 >0 −(< w(rN) exp[−β(U1)] >0)

2

n0(< w(rN) exp[−β(U1)] >0)2

=
< (w(rN) exp[−β(U0)])

2 >1

n1(< w(rN) exp[−β(U0)] >1)2
− 1

n1
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< (w(rN) exp[−β(U1)])
2 >0

n0(< w(rN) exp[−β(U1)] >0)2
− 1

n0

Considering that

< (w(rN) exp[−β(U1)])
2 >0=

1

Q0

∫
drNw2(rN) exp[−2βU1)] exp[−βU0)]

and that

(< w(rN) exp[−β(U1)] >0)
2 =

1

Q2
0

(∫
drNw(rN) exp[−βU1] exp[−βU0]

)2

one get

σ2
β∆F =

Q0

n0

∫
drNe−βU1

[
w2(rN) exp[−βU1 − βU0)]

] 1

(drNw(rN) exp[−βU0 − βU1])
2−

1

n0
+

Q1

n1

∫
drNe−βU0

[
w2(rN) exp[−βU1 − βU0)]

] 1

(drNw(rN) exp[−βU0 − βU1])
2−

1

n1

The last equation does not change if we multiply w by a constant factor.
Without loss of generatity we can this arbitrary constant K by imposing
that ∫

drNw(rN)e−βU0−βU1 = K

(e.g. the denominator of the previous expressions is constant and equal to
K)

We can now minimize σ2
β∆F under the constraint

∫
drNw(rN)e−βU0−βU1 = K

obtaining

δ

[
σ2
β∆F − λ

∫
drNw(rN)e−βU0−βU1

]
= 0
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∫
drNe−βU0−βU1

{(
Q0

n0
e−βU1 +

Q1

n1
e−βU0

)
δ

[
w2(rN)

K2

]
− λδw(rN)

}
= 0

Substituting δ
[
w2(rN )
K2

]
with 2w(rN)δw(rN)/K2 the integral vanishes for any

arbitrary δw(rN) if

{(
Q0

n0
e−βU1 +

Q1

n1
e−βU0

)
2w(rN)

K2
− λ
}

= 0

e.g.

w(rN) =
constant(

Q0

n0
e−βU1 + Q1

n1
e−βU0

)
that provides the best w(rN).

Substituting this functional form in Eq. 7 the constant disappears and

Q0

Q1
=

< exp[−β(U0)](
Q0
n0
e−βU1+

Q1
n1
e−βU0

) >1

< exp[−β(U1)](
Q0
n0
e−βU1+

Q1
n1
e−βU0

) >0

=

< 1(
Q0
n0
e−βU1+βU0+

Q1
n1

) >1

< 1(
Q0
n0

+
Q1
n1
e−βU0+βU1

) >0

(9)

Now we define
Q0

n0

n1

Q1
= exp[βC] (10)

so that formally Eq. 9 simplifies in

Q0

Q1
=

< 1
Q1
n1

(eβC−βU1+βU0+1)
>1

< 1
Q0
n0

(1+e−βC−βU0+βU1)
>0

=
<
(
eβC−βU1+βU0 + 1

)−1
>1

< (1 + e−βC−βU0+βU1)
−1
>0

eβC
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Remembering that the Fermi-Dirac function fFD ≡ 1
1+ex we can write

Q0

Q1
=
< fFD(β(U0 − U1 + C)) >0

fFD(β(U1 − U0 − C)) >1
eβC (11)

Now... what is C ? C is nothing more than the free energy change (see
Eq. 10)

βC = β∆F + ln
n1

n0
β∆F = βC − ln

n1

n0

From Eq. 11 one also has

β∆F = ln
1
n0

∑n0
i=1 fFD(β(U0 − U1 + C))

1
n1

∑n1
i=1 fFD(β(U1 − U0 − C))

+ βC

The only way both expression are satisfied is that the value of C is the one
such that

n0∑
i=1

fFD(β(U0 − U1 + C)) =

n1∑
i=1

fFD(β(U1 − U0 − C))

In practical situations, C is treated as a adjustable parameter that is varied
untill the previous equation is satisfied. Once C has been found, the free
energy difference is also knon from β∆F = βC − ln n1

n0
.

5 MBAR, Multistate Bennett acceptance ratio

The multistate Bennett acceptance ratio (MBAR) is a generalization of the
Bennett acceptance ratio that calculates the (relative) free energies of several
multi states. It essentially reduces to the BAR method when only two super
states are involved.
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6 Umbrella Sampling

Umbrella sampling is a technique in computational physics and chemistry,
used to improve sampling of a system (or different systems) where ergodicity
is hindered by the form of the system’s energy landscape. It was first sug-
gested by Torrie and Valleau in 1977. It is a particular physical application
of the more general importance sampling in statistics.

Umbrella Sampling aims at obtaining an accurate estimate of the free energy
difference between two systems (0 and 1), one should sample both the part
of configuration space accessible to system 1 and the part accessible to 0.

The method is based on the idea that it is possible to extract information
on the umperturbed system also simulating it with a modified hamiltonian.
With a proper choice of this modified hamiltonian, free-energy barriers can
be flatten out and the system can sample all relevant state point in one single
simulation.

To see how the method works, let’s consider replacing the Boltzmann factor
of the system by a non-negative weight function π(rN),

π(rN) =
ω(rN)e−βU0∫
drNω(rN)e−βU0

corresponding to a system with potential energy U0 − kBT lnw.

The expression for the average value of a generic observable < A >0 is

< A >0=

∫
exp(−βU0)A(rN)drN∫

exp(−βU0)drN

and multiplying by the identity π(rN)/π(rN)

< A >0=

∫
exp(−βU0)π(rN)A(rN )

π(rN )dr
N∫

exp(−βU0)π(rN) 1
π(rN )dr

N
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< A >0=

∫
drNπ(rN)A(rN )

w(rN )∫
drNπ(rN)(rN) 1

w(rN )

or introducing the notation < ..... >π to denote an average over a probability
distribution proportional to π(rN),

< A >0=
< A(rN )

w(rN ) >π

< 1
w(rN ) >π

Going back to the problem of evaluating the difference in free energy between
to states 0 and 1, we have seen that

exp[−β∆F ] =< exp[−β(U1 − U0)] >0

In the umbrella sampling scheme, identifying A ≡ exp[−β(U1 − U0)]

exp[−β∆F ] =
< exp[−β(U1−U0)]

w(rN ) >π

< exp[−βU0]
exp[−βU0]w(rN ) >π

=
< exp[−βU1]

π(rN ) >π

< exp[−βU0]
π(rN ) >π

For both the numerator and the denominator in this equation to be non-zero,
π(rN) should have an appreciable overlap with both regions of configuration
space that are sampled by system 0 and system 1. This bridging property of
π is responsible for the name umbrella sampling. At first sight, it might seem
advantageous to refine the computation of π in such a way that all relevant
configurations can be sampled in one run. Surprisingly, this is not the case.
It is usually better to perform several umbrella sampling runs in (partially
overlapping) windows. Umbrella sampling is a very general technique and, in
principle, will give the correct answer independently of the umbrella potential
that is used. However, the efficiency of this method does depend very much
on a clever choice of this umbrella potential.

Before concluding, let’s consider the case of a double-minima order parameter.
If we can provide a good estimate of P(Q) in advance, let’s call it Pbias(Q),
then we could define

π =
e− lnPbias(Q)e−βH0

Zπ
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so that

βFπ(Q) = − lnPπ(Q) = − ln

∫
e− lnPbias(Q)e−βH0δ(Q(rN)−Q)drN

Zπ

= − lnP−1
bias(Q)

∫
e−βH0δ(Q(rN)−Q)drN

Zπ
= lnPbias(Q)− lnP0(Q)− ln

Z0

Zπ

that shows that with a proper choice of Pbias(Q), the barrier in the order
parameter is completely flatten out and the system can sample all relevant
Q values with the same statistics.

The method can be applied also to other ensambles. For example in the case
of GCMC, US modifies the standard GCMC insertion/removal probabilities
as follows:

PUS−GCMC
ins = PGCMC

ins

Pex(N)

Pex(N + 1)

and

PUS−GCMC
del = PGCMC

del

Pex(N)

Pex(N − 1)

Indeed

π =
e− lnPbias(N)e−βH0

Zπ

and so the Boltzman weight of the ”new” state is e−βH0

Pbias(Nnew)

In these last equations Pex(N) is a forecast on the real probability of finding
N particles P (N) which can be for example extracted from previous higher-
T simulations through the histogram reweighting technique. If the predicted
probability distribution Pex(N) is a good approximation to the real P (N),
the resulting biased probability will result in being flat in N and the system
will thus not experience any difficulty in crossing the barrier between the
liquid and gas phase.
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7 Phase Coexistence - The Gibbs ensemble method

In many respects, computer simulations resemble experiments. Yet, in the
study of first-order phase transitions, there seems to be a difference. In ex-
periments, a first-order phase transition is easy to locate: at the right density
and temperature, we will observe that an initially homogeneous system will
separate into two distinct phases, divided by an interface. Measurement
of the properties of the coexisting phases is then quite straightforward. In
contrast, in a simulation we often locate a first-order phase transition by com-
puting the thermodynamic properties of the individual phases, then finding
the point where the temperature, pressure, and chemical potential(s) of the
two bulk phases are equal. The reason we are usually forced to follow this
more indirect route in a simulation is related to the small size of the system
studied. If two phases coexist in such systems, a relatively large fraction of
all particles resides in or near the interface dividing the phases. To estimate
this effect, consider the idealized case that we have a cubic domain of one
phase, surrounded by the other. We assume that the outermost particles in
the cube belong to the interface and that the rest is bulk-like. The fraction
of particles in the interface depends on the system size. Tipicallu, systems
with fewer than 1000 particles are interface dominated. And, even for quite
large systems, the fraction of particles in the interface is nonnegligible. It is
essential therefore to use relatively large systems to calculate reliable coex-
istence properties. Unfortunately, for large systems long equilibration times
are needed, not only because the systems contain many particles, but also
because equilibration times in two-phase systems tend to be longer than those
in homogeneous systems.

Direct simulations of first-order phase coexistence therefore often are com-
putationally rather expensive) However, in the mid-1980s, Panagiotopoulos
[94] devised a new computational scheme for studying first-order phase tran-
sitions. This scheme has many of the advantages of a direct simulation of
coexistence yet few of its disadvantages. Where applicable, this scheme (usu-
ally referred to as the Gibbs ensemble method) results in a very significant
reduction of the computer time required for phase equilibrium calculations.
With this method, phase equilibria can be studied in a single simulation. At
present, the Gibbs ensemble method has become the technique par excellence
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to study vapor-liquid and liquid-liquid equilibria. However, like simulations
in the grand-canonical ensemble, the method does rely on a reasonable num-
ber of successful particle insertions to achieve compositional equilibrium. As
a consequence, the Gibbs ensemble method is not very efficient for studying
equilibria involving very dense phases. However, there is a technique that
greatly facilitates the numerical study of phase equilibria of dense phases.
This is the so-called semigrand ensemble method of Kofke and Glandt [198],
which is discussed in chap.9 of Frenkel and Smith. The success of the Gibbs
ensemble method relies on the possibility of exchanging particles between the
two coexisting phases. If one of the coexisting phases is a crystal, one would
need to find a vacancy in order to insert a particle. However, the equilibrium
concentration of such defects is usually so low that the conventional Gibbs
ensemble method becomes impractical. Tilwani and Wu [199] suggested an
alternative approach in which an atom is added to the unit box of the solid
and this new unit box is used to fill up (tile) space. In this way particles can
be added or removed from the system, while the crystal structure is main-
tained. Tilwani and Wu showed that for the two-dimensional square-well
fluid, their method agrees well with the results from free energy calculations
[200].

The condition for coexistence of two or more phases I, II,.. is that the pres-
sure of all coexisting phases must be equal (PI = PII = P ), as must be
the temperature (TI = TII = T ) and the chemical potentials of all species
( µαI = µαII = µα) Hence, one might be inclined to think that the best en-
semble for studying would be the constant µPT ensamble. The quotation
marks around the name of this ”ensemble” are intentional, because, strictly
speaking, no such ensemble exists. The reason is simple: if we specify only
intensive parameters, such as P, T and µ the extensive variables (such as V )
are unbounded. Another way to say the same thing is that the set P, T, µ is
linearly dependent. To get a decent ensemble, we must fix at least one exten-
sive variable. In the case of constant-pressure Monte Carlo simulations this
variable is the number of particles N , while in grand-canonical Monte Carlo
the volume V of the system is fixed. After this introduction, it may come
as a surprise that the Gibbs ensemble method of Panagiotopoulos [94,147]
comes very close to achieving the impossible: simulating phase equilibria un-
der conditions where the pressure, temperature, and chemical potential(s) of
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the coexisting phases are equal. The reason this method can work is that, al-
though the difference between chemical potentials in different phases is fixed
(namely, at ∆µ = 0), the absolute values are still undetermined. Here, we
show how the Gibbs ensemble method can be derived, following the approach
developed in the previous chapters.

At this stage, we focus on the version of the Gibbs ensemble where the to-
tal number of particles and the total volume of the two boxes remain con-
stant; that is, the total system is at N, V, T conditions. The description
of the N,P, T version can be found in [147]. This constant-P method can
be applied only to systems containing two or more components because in
a one-component system, the two-phase region is a line in the P − T plane.
Hence, the probability that any specific choice of P and T will actually be
at the phase transition is vanishingly small. In contrast, for two-component
systems, the two-phase region corresponds to a finite area in the P −T plane.
Note that in either formulation of the Gibbs method, the total number of par-
ticles is fixed. The method can be extended to study inhomogeneous systems
[146] and is particularly suited to study phase equilibria in multi-component
mixtures [147]. A review of applications of the Gibbs ensemble technique is
given in [201]. The great advantage of the Gibbs method over the conven-
tional techniques for studying phase coexistence is that, in the Gibbs method,
the system spontaneously ”finds” the densities and compositions of the co-
existing phases. Hence, there is no need to compute the relevant chemical
potentials as a function of pressure at a number of different compositions and
then construct the coexistence line.

7.1 The Partition Function - Gibbs Ensamble

In his original article [94], Panagiotopoulos introduced the Gibbs ensemble
as a combination of the N, V, T ensemble, N,P, T ensemble, and V t, V, T
ensemble. In the previous section we stated that the Gibbs ensemble is not
a ”constant-µ, P, T ensemble”, but we did not say what ensemble it actu-
ally corresponds to. This point is considered in detail in Appendix H of
Frenkel and Smith, where we demonstrate that, in the thermodynamic limit,
the (constant-V) Gibbs ensemble is rigorously equivalent to the canonical
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ensemble.

We start our discussion with the expression for the partition function for a
system of N particles distributed over two volumes V1 and V2 = V −V1, where
the particles interact with each other in volume 1 and 2

Q(N, V1, V − V1, T ) =
N∑

n1=0

V n1
1 (V − V1)

N−n1

Λ3Nn1!(N − n1)!
×

∫
dsN−n12 exp[−βU(sN−n12 )]

∫
dsn11 exp[−βU(sn11 )]

We have now to integrate over the volume V1 ( 1
V

∫ V
0 dV1), which means a

partition function

Q(N, V, T ) =
N∑

n1=0

1

V Λ3Nn1!(N − n1)!
×

∫ V

0

dV1V
n1

1 (V − V1)
N−n1

∫
dsN−n12 exp[−βU(sN−n12 )]

∫
dsn11 exp[−βU(sn11 )]

and a probability to find the system with n1 particles in V1 at positions sn11

and N − n1 particles in V − V1 at position sN−n12

N (n1, V1, s
n1
1 , s

N−n1
2 ) ∼ V n1

1 (V − V1)
N−n1

n1!(N − n1)!
exp[−βU(sN−n12 )] exp[−βU(sn11 )] =

V n1
1 (V − V1)

N−n1

n1!(N − n1)!
exp[−βU(sN)

This equation suggests the following Monte Carlo scheme for sampling all
possible configurations of two systems that can exchange particles and vol-
ume. In this scheme, we consider the following trial moves

• 1. Displacement of a randomly selected particle.

• 2. Change of the volume in such a way that the total volume remains
constant.
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• 3. Transfer of a randomly selected particle from one box to the other.

These moves are shown schematically in the following figure:

The acceptance rules for these steps in the Gibbs ensemble can be derived
from the condition of detailed balance

K(old→ new) = K(new → old)

where K(old→ new) is the flow of configuration old to new, which is equal to
the product of the probability of being in configuration old N (old) , the prob-
ability of generating configuration new α(old→ new), and the probability of
accepting this move acc(old→ new):

K(old→ new) = N (old)× α(old→ new)acc(old→ new)
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The MC code is composed of three type of moves: particle displacement,
volume exchange and particle exchange. The displacemnt of a randomly se-
lected particle in the same box is perfermed as usual in standard MC codes,
e.g. by accepting with the Boltzmann probability. The acceptance probabil-
ity for the volume change moves V1(new) = V1(old) + ∆V can be evaluated
considering that

N (new)

N (old)
=
V1(new)n1(V − V1(new))N−n1

V1(old)n1(V − V1(old))N−n1
exp[−βU(snew

N)]

exp[−βU(soldN)]

which suggests

α(old→ new) = min

{
1,
V1(new)n1(V − V1(new))N−n1

V1(old)n1(V − V1(old))N−n1
exp[−βU(snew

N)]

exp[−βU(soldN)]

}

If we perform a random walk in ξ = ln( V1
V−V1 ), so that the domanin of ξ

coincides with all possible V1 values, (e.g. with dξ = (V−V1)+V1
(V−V1)2

V−V1
V1

dV1 =
V

V1(V−V1)dV1) then the partition function can be written as

Q(N, ξ, T ) =
N∑

n1=0

1

V Λ3Nn1!(N − n1)!
×

∫ V

0

dξ
V1(V − V1)

V
V n1

1 (V−V1)
N−n1

∫
dsN−n12 exp[−βU(sN−n12 )

∫
dsn11 exp[−βU(sn11 )

and

N (new)

N (old)
=
V1(new)n1+1(V − V1(new))N−n1+1

V1(old)n1+1(V − V1(old))N−n1+1

exp[−βU(snew
N)]

exp[−βU(soldN)]

and finally

α(old→ new) = min

{
1,
V1(new)n1+1(V − V1(new))N−n1+1

V1(old)n1+1(V − V1(old))N−n1+1

exp[−βU(snew
N)]

exp[−βU(soldN)]

}
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Concerning the particle exchange, if we remove a particle from volume V1

and insert it in volume V − V1, we have

N (new)

N (old)
=

V
n1−1
1 (V−V1)N−n1+1

(n1−1)!(N−n1+1)! exp[−βU(snew
N)]

V
n1
1 (V−V1)N−n1

n1!(N−n1)! exp[−βU(soldN)]

=
n1

(N − n1 + 1)

(V − V1)

V1

exp[−βU(snew
N)]

exp[−βU(soldN)]

which suggests a Metropolisi-like acceptance rule for removing a particle from
volume V1 and insert it in volume V − V1

α(old→ new) = min

{
1,

n1

(N − n1 + 1)

(V − V1)

V1

exp[−βU(snew
N)]

exp[−βU(soldN)]

}

7.2 Implementation

A convenient method for generating trial configurations is to perform a simu-
lation in cycles. One cycle consists of (on average) Npart attempts to displace
a (randomly selected) particle in one of the (randomly chosen) boxes, Nvol
attempts to change the volume of the subsystems, and Nswap attempts to
exchange particles between the boxes. It is important to ensure that at each
step of the simulation the condition of microscopic reversibility is fulfilled. In
the original implementation of a Gibbs ensemble simulation the calculations
were performed slightly differently [94]; instead of making a random choice
of the type of trial move (particle displacement, volume change, or particle
exchange) at every Monte Carlo step, the different trial moves were carried
out in a fixed order. First, N attempts were made to move every particle
in succession (the N, V, T part), then one attempt was made to change the
volume (the N,P, T part), and finally N try attempts were made to exchange
particles (the µ, V, T part). However, if in a simulation it is possible to choose
from a repertoire of trial moves, random selection of the type of trial move is
recommended, because this way microscopic reversibility is guaranteed. An
additional disadvantage of performing trial moves in a fixed order is that it
may make a difference at what point in the program the measurement of
the physical properties is performed (e.g., after the N, V, T part, the N,P, T
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part, or the µ, V, T part). If trial moves are selected at random, all trial
moves are on average equivalent and one can simply perform measurements
after a predetermined number of MC cycles.

PROGRAM mc_Gibbs

do icycl=l,ncycl

ran=ranf()*(npart+nvol+nswap)

if (ran.le.npart) then

call mcmove

else if (ran.le.(npart+nvol))

call mcvol

else

call mcswap

endif

call sample

enddo

end

SUBROUTINE mcvol

call toterg(boxl,enlo)

call toterg(box2,en2o)

vol=boxl**3

vo2=v-vol

lnvn=log (vol/vol2) +

+ (ranf()-0.5)*vmax

vln=v*exp (lnvn) / (l+exp (lnvn))

v2n=v-vln

boxln=vln**(1/3)

box2n=v2n**(1/3)

do i=l,npart

if (ibox(i).eq.1) then

fact=boxln/boxlo

else

fact=box2n/box2o
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endif

x(i)=x(i)*fact

enddo

call toterg(boxln,enln)

call toterg(box2n,en2n)

argl=-beta* ((enln-enlo) +

+ (npbox(1) +1) *1og(vln/vlo)/beta)

arg2=-beta* ((en2n-en2o) +

+ (npbox(2) +1) *1og(v2n/v2o)/beta)

if (ranf() .gt.exp(argl+arg2)) then

do i=l,npart

if (ibox(i).eq.) then

fact=boxlo/boxln

else

fact=box2o/box2n

endif

x(i)=x(i)*fact

enddo

endif

return

end

Comments on this algorithm: This algorithm ensures that, in each Monte
Carlo step, detailed balance is obeyed. On average, we perform per cycle
npart attempts to displace particles, nvol attempts to change the volume,
and nswap attempts to swap particles between the two boxes. Subroutine
incmove attempts to displace a randomly selected particle; this algorithm is
very similar to Algorithm 2 (but remember that particles are in two different
boxes). The subroutine incvol attempts to change the volume of the two boxes
, the subroutine mc swap attempts to swap a particle between the two boxes,
and subroutine sample samples the ensemble averages. The implementation
of trial moves for particle displacement and volume change in Gibbs ensemble
simulations is very similar to that of the corre- sponding trial moves in a
normal N, V, T or N,P, T simulation. However, the attempts to exchange
particles require some care. To ensure that detailed balance is obeyed, it is
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important to first select at random from which box a particle will be removed
and subsequently select a particle at random in this box. An alternative
would be to first select one particle at random (from all N particles) and
then try to move this particle to the other simulation box. However, in
that case, the previously derived acceptance rule has to be replaced by a
slightly different one [125]. The number of attempts to exchange a particle
will depend on the conditions of the system. For example, it can be expected
that close to the critical temperature, the percentage of accepted exchanges
will be higher than close to the triple point. As a possible check whether
the number of attempts is sufficient, calculate the chemical potential. Since
the calculated energy of a particle that is to be inserted corresponds to just
the test particle energy, the chemical potential can be calculated without
additional costs.

Inspection of the partition function shows that one must allow for n1 = 0 (box
1 empty) and n1 = N (box 2 empty) to calculate ensemble averages correctly.
It is important therefore to ensure that the program can handle the case that
one of the boxes is empty. The derived acceptance rule is constructed such
that it indeed rejects trial moves that would attempt to remove particles from
a box already empty.

The following figure shows the evolution of the density in the case of a LJ
simulation
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8 Tracing Coexistence Curves

Once a single point on the coexistence curve between two phases is known,
the rest of that curve can be computed without further free energy calcu-
lations. A numerical technique for achieving this has been proposed by Kofke
[149,150]. In its simplest form, Kofke’s method is equivalent to the numerical
integration of the Clausius-Clapeyron equation (although Kofke refers to his
approach as Gibbs-Duhem integration). Let us briefly recall the derivation
of the Clausius-Clapeyron equation. When two phases α and β coexist at a
given temperature T and pressure P, their chemical potentials must be equal.
If we change both the pressure and the temperature by infinitesimal amounts
dP and dT , respectively, then the difference in chemical potential of the two
phases becomes

dµα − dµβ = −(sα − sβ)dT + (να − νβ)dP

Along the coexistence curve µα = µβ and hence

dP

dT
|coex =

sα − sβ
να − νβ

At coexistence T∆s = ∆h , where hα is the enthalpy per particle and hence

dP

dT
|coex =

∆h

T∆ν
(12)

As ∆h, ∆ν and T all can be computed directly in a simulation, dP
dT |coex can

be computed.

Note that if the slope of the coexistence curve is large, it becomes convenient
to integrate the inverse equation

dT

dP
|coex =

T∆ν

∆h

It is also possible to generalise the method adding one additional dimension
that can couple with a modification of the Hamiltonian. In this case one
can for example follow the evolution of the melting temperature at constant
pressure upon a change in the potential. This is possible since when a coupling
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parameter λ is introduced within the expression of the potential energy of
the system, then the Gibbs free energy per particle becomes a function of λ,
g(T, V, λ) and the phase equilibrium

dµα − dµβ = 0 = −(sα − sβ)dT + (να − νβ)dP +

(
∂g

∂λα
− ∂g

∂λβ

)
δλ

so that, if P is constant

−(sα − sβ)dT +

(
∂g

∂λα
− ∂g

∂λβ

)
δλ = 0

and

dT

dλ
|coex =

(
∂g
∂λα
− ∂g

∂λβ

)
(sα − sβ)

=
T
(
∂g
∂λα
− ∂g

∂λβ

)
(hα − hβ)

We remember that

∂g

∂λ
= −kBT

1

Qλ

∂Qλ

∂λ
= −kBT <

∂Hλ

∂λ
>λ

Kofke used a predictor-corrector algorithm to solve equation 12. If one of the
two coexisting phases is the (dilute) vapour phase, it is convenient to cast
equation 12 in a slightly different form:

d lnP

d1/T
|coex =

∆h

P∆ν/T

Kofke and co-workers have applied this method to locate the vapor-liquid
[149,150] and solid-liquid coexistence curve of the Lennard-Jones fluid [240].
Other applications of the Kofke method can be found in [241-244]. It should
be stressed that Gibbs-Duhem integration is in no way limited to the compu-
tation of coexistence curves in the P, T plane. A particularly important class
of problems that can be treated in an analogous fashion is that where one
studies the location of a phase transition as a function of the intermolecular
interaction potential. For instance, Agrawal and Kofke have investigated the
effect of a change of the steepness of the intermolecular potential in atomic
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systems on the melting point (see Example 9). In the same spirit, Dijk-
stra and Frenkel [245, 246] studied the effect of a change in flexibility of
rodlike polymers on the location of the isotropic nematic transition, Bolhuis
and Kofke [247] the freezing of polydisperse hard spheres, and Bolhuis and
Frenkel [248] the isotropic-solid coexistence curve of spherocylinders. Al-
though Gibbs-Duhem integration is potentially a very efficient technique for
tracing a coexistence curve, it is not very robust, as it lacks built-in diagnos-
tics. By this we mean that the numerical errors in the integration of equation
(9.2.2) may result in large deviations of the computed coexistence points from
the true coexistence curve. Similarly, any error in the location of the initial
coexistence points will lead to an incorrect estimate of the coexistence curve.
For this reason, it is important to check the numerical stability of the scheme.
This can be achieved by performing additional free energy calculations to fix
two or more points where the two phases are in equilibrium. Meijer and E1
Azhar [249] have developed such a scheme in which the estimates of the coex-
istence densities are systematically improved by combining the Gibbs-Duhem
scheme with a free energy difference calculation. In addition, the stability of
the integration procedure can be checked by integrating backward and for-
ward in the same interval. There is some evidence [244] that other integration
schemes may be preferable to the predictor-corrector method used by Kofke.
In fact, use of the predictor-corrector scheme to estimate phase-coexistence
curves can lead to unphysical oscillations. These oscillations occur because
of inevitable inaccuracies in our estimate of the initial coexistence point.

In some cases, for example, for systems containing long-chain molecules, per-
colating systems, or lattice models it is very difficult to perform volume
changes. Escobedo and de Pablo [250] have shown that, under those con-
ditions, it may be preferable to combine Gibbs-Duhem integration with the
grand-canonical ensemble. In this scheme, µ and T are the independent vari-
ables, rather than P and T .

8.1 Runge-Kutta (Numerical Recipes)

The formula for the Euler method is

yn+1 = yn + hf ′(xn, yn) (13)
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which advances a solution from xn to xn+1 = xn + h. The formula is unsym-
metrical: It advances the solution through an interval h, but uses derivative
information only at the beginning of that interval. That means (and you can
verify by expansion in power series) that the step’s error is only one power of
h smaller than the correction. There are several reasons that Euler’s method
is not recommended for practical use, among them, (i) the method is not very
accurate when compared to other, fancier, methods run at the equivalent step
size, and (ii) neither is it very stable.

Consider, however, the use of a step like Eq. 13 to take a ”trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the ”real” step across the whole interval. The following figure
illustrates the idea.

In equations,
k1 = hf ′(xn, yn)

k2 = hf ′(xn + h/2, yn + k1/2

yn+1 = yn + k2 +O(h3)

As indicated in the error term, this symmetrization cancels out the first-order

36



error term, making the method second order. [A method is conventionally
called nth order if its error term is O(hn+1).] In fact, the previous equation
is called the second-order Runge-Kutta or midpoint method.

We need not stop there. There are many ways to evaluate the right-hand
side f(x, y) that all agree to first order, but that have different coefficients of
higher-order error terms. Adding up the right combination of these, we can
eliminate the error terms order by order. That is the basic idea of the Runge-
Kutta method. Abramowitz and Stegun [1], and Gear [2], give various specific
formulas that derive from this basic idea. By far the most often used is the
classical fourth-order Runge-Kutta formula, which has a certain sleekness of
organization about it:

k1 = hf ′(xn, yn)

k2 = hf ′(xn + h/2, yn + k1/2)

k3 = hf ′(xn + h/2, yn + k2/2)

k4 = hf ′(xn + h, yn + k3)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5) (14)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure). This will be superior to the midpoint
method if at least twice as large a step is possible with Eq. 14 for the same
accuracy. Is that so? The answer is: often, perhaps even usually, but surely
not always! This takes us back to a central theme, namely that high order
does not always mean high accuracy. The statement ”fourth-order Runge-
Kutta is generally superior to second-order” is a true one, but you should
recognize it as a statement about the contemporary practice of science rather
than as a statement about strict mathematics. That is, it reflects the nature
of the problems that contemporary scientists like to solve.

9 Direct coexistence method for liquid-crystal interfaces

To be done
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10 Free energy of solids: the Einstein Crystal Method

A very good review of the methodology to calculate crystal free energies is
provided in C Vega, E Sanz, J L F Abascal and E G Noya, J. Phys.: Condens.
Matter 20 (2008) 153101.

The idea is to start from the analytically known free energy of Einstein Crys-
tal, e.g. an harmonic oscillator of independent particles both in the particle
position and in the particle orientation and then progressively convert it into
the desired system. This is done by first turning on the system Hamiltonian
and then releasing the Einsteins spring constants. For numerical reasons, the
Einstein Crystal is defined at fixed center of mass and thus this constraint is
lifted at the very end.

I sketch here the evaluation of the free energy for a molecule with symmetry
C2v as water, discussing at the end the changes that should be considered for
different symmetries.

We define for each molecule two non-collinear versors: in the case of water,
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Figure 1: Sequence of steps in the evaluation of the free energy
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they could be the HH versor and the dipole versor, named respectively ~a and
~b. We define a Einstein crystal in which molecules interact according to this
Hamiltonian

HEins = Htrans +Hrot

with
Htrans = λtmax

∑
i

(ri − ri,0)2

and

Hrot = λrmax
∑
i

[
sin2 φa,i +

(
φb,i
π

)2
]

Note that the rotational part of the Hamiltonian is invariant for the symmetry
operation of the water molecule.

This system has a free energy that can be approximated analytically for
βλtmax >> 1 and βλrmax >> 1. Consider the rotational part. The rotational
free energy can be approximated for βλrmax >> 1 as (in this limit two of the
three Euler angles can be associated with φa and φb)

Qrot =
1

8π2

∫ π

0

e−βλmaxsin
2φa sinφadφa

∫ π

−π
e−βλmax(

φb
π )

2

dφb

∫ 2π

0

dγ

and by defining x = cosφ and y = φb
π

Qrot =

∫ 1

0

e−βλmax(1−x2)dx

∫ 1

0

e−βλmaxy
2

dy

=

√
πe−βλmaxErfi(

√
βλmax)

2
√
βλmax

√
πErf(

√
βλmax)

2
√
βλmax

≈ 1

2βλmax

√
π

2
√
βλmax

So that

βFrot = − lnQrot = − ln

√
π

4
+

3

2
ln βλmax
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Note that with the same approximation (large βλmax) the average value of
the potential energy associated with the rotational Hamiltionian (a value that
can be checked in the simulation) is (numerator

∫
HeβH , denumerator

∫
eβH)

< Hrot >=

λmax
2(βλmax)2

1
2βλmax

+

√
π
4

β3/2

√
π
2√

βλmax

= kBT +
1

2
kBT

(or simply using < Hrot >= −∂βFrot/∂β) Hence, if for the selected λrmax, the
average potential energy associated with the rotational Hamiltonian is not
1.5 kBT per molecule, then one needs to increase λrmax.

For the translational component, we will demonstrate later on that

QCMfixed
transl = PCM

(
π

βλtmax

) 3(N−1)
2

N 3/2

PCM , the integration over momenta, will cancel out when the constraint of
the fixed COM is lifted. With no fixed COM,

Qtrans ≡ P

∫
e−βλ

t
max

∑
k(rk−r0,k)2drN =

(
π

βλtmax

) 3N
2

βFtrans = − lnQtrans

10.1 The contribution of the interaction potential Vpot

For very large λ, the system behaves as an Einstein crystal, with an additional
contribution arising from the underlying potential Vpot. If λmax is very large
and molecules are essentially localized, than this contribution is equivalent
to the potential energy of Vpot. In this case Fpot,λmax ≡< Vpot >λmax

To be more precise, one can do two things:
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• integrate (at fixed λmax) over Vpot and calculate the average correction,
e.g. perform a series of simulations with Hamiltonian

H = HEins + γVpot

for several values of γ between zero and one and calculate

Fpot,λmax ≡
∫ 1

0

< Vpot >γ dγ

• evaluate in the simulation with HEins at λmax the value of

Fpot,λmax ≡ − ln < exp[−βVpot] >λmax

Indeed, calling 1 the system with H = HEins and 2 the system with
H = HEins + Vpot, the difference in free energy

F2 − F1 = −kBT lnQ2 + kBT lnQ1 = −kBT ln
Q2

Q1
=

−kBT ln

∫
drN exp[−β(HEins + Vpot)]∫

drN exp[−β(HEins)]

= −kBT ln < exp[−βVpot] >λmax

We have thus as free energy of the COM constrained system interacting with
the hamiltonian

H = HEins + Vpot

βFCM
Einstein = βFrot + βFCM

trans + βFpot,λmax

10.2 Thermodynamic integration in the Eistein method

The free energy change along a thermodynamic path (in λ) is (assuming
for simplicity λtmax = λrmax = λmax. If this is not possible, then one can
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defined the ratio r ≡ λtmax/λ
r
max and and use λrmax = λmax and λtmax = rλmax,

including r in the definition of the Hamiltonian)

βFCM
λmax

= βFλ=0 + β

∫ λmax

0

<
∂Hλ

∂λ
>λ dλ

where

Hλ = HCM
pot + λ

∑
i

(ri − ri,0)
2 +

∑
i

λ

[
sin2 φi,a +

(
φi,b
π

)2
]

so that (multiplying and dividing by λ)

βFCM
λmax

= βFCM
pot +β

∫ λmax

0

{
λ
∑
i

(ri − ri,0)
2 +

∑
i

λ

[
sin2 φi,a +

(
φi,b
π

)2
]}

dλ

λ

so one has to integrate the rotational and translational average potential
energy over lnλ. Usually one fix a λmin value below which the contribution
to the integral is negligible.

When performing the simulations ad different values of λ one need to re-
member that the MC step has to be consistent with a change in energy of
the order of kBT . Hence, for large λ, the step must be of the order of 1/

√
λ.

10.3 Releasing the COM

The difference in free energy between a system with frozen COM and free
COM can be computed by calculating

β∆FCM→NOCM = − ln
QCM

QNOCM
=
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This last ratio is given by (imposing a δ function on the momenta and on the
positions to enforce the COM conservation

1
N !~3N−1

∫
dpNe

−β
∑N
i=1

p2i
2mi δ(

∑N
i=1 pi)

∫
drNdωN exp[−βU(rN , ωN)]δ(

∑N
i=1mi(ri − ri,0))

1
N !~3N

∫
dpNe

−β
∑N
i=1

p2
i

2mi

∫
drNdωN exp[−βU(rN , ωN)]

In the ratio all constants simplify (remains a ~3 term only). The integration
over the momenta gives a factor PCM/P , where

P ≡
∫
dpN exp

[
−β

N∑
i=1

p2
i

2mi

]
The integration over the space of momenta of the unconstrained solid is
simply the integral of a product of Gaussian functions, whose solution is
(when all molecules have the same mass)

P =

(
2πmkBT

~2

) 3N
2

=

(
1

Λ

)3N

The integration over positions can be performed considering that the energy
of a system is not modified if the system is translated (while keeping the
relative orientation of the molecules). The mathematical consequence of this
is that U(rN , ωN) can be rewritten as U(r′N , ωN) where r′i = ri − r1. Let
us locate the origin of the coordinate system in the center of mass, so that
N−1

∑N
i=1 ri,0 = R0

CM = 0 and let us perform a change of variables from rN

to r′2....r
′
N ,RCM . We retains all coordinates from 2 to N and change the

coordinate of molecule 1 in favor of the center of mass variable, through the
relation dr1 = NdRCM (e.g. the Jacobian of this transformation is N). With
these changes one obtains

− ln
QCM

QNOCM
=
PCM

P

∫
drNdωN exp[−βU(rN , ωN)]δ(

∑N
i=1mi(ri − ri,0))

1
~3
∫
drNdωN exp[−βU(rN , ωN)]

=

=
PCM

P
~3N

∫
dr′2....dr

′
N , dRCMdω

N exp[−βU(r′N , ωN)]δ(RCM −RCM,0)

N
∫
dr′2....dr′N , dRCMdωN exp[−βU(r′N , ωN)]

44



The integration over dr′2....dr
′
Ndω

N is identical both in the numerator and in
the denominator and, as a result,

=
PCM

P
~3

∫
δ(RCM)dRCM∫

dRCM
=
PCM

P
~3 1

Vexplored

What is the volume Vexplored explored by the COM ? This is quite tricky. It
comes out that it is the volume per particle. Indeed if the COM is allowed
to explore larger volumes, then one generates one of the particle permutation
originally included in the N ! contribution. Hence Vexplored = V/N and

− ln
QCM

QNOCM
= − ln

[
PCM

P
~3N

V

]

Thus, releasing the COM costs a free energy change equal to

β∆FCM−>NOCM = ln
PCM~3

P
− ln

V

N
where P and PCM are the integration over moment space in the constrained
and in the unconstrained model. Summing β∆FCM−>NOCM to the free en-
ergy of the Einstein solid with frozen COM, the term lnPCM disappears and
one need only to calculate the unconstrained contribution from the momenta
lnP .

10.4 Partition function of the Einstein crystal with fixed center of mass

The translational contribution to the partition function of an Einstein crystal
with fixed center of mass is

QCM
Eins,t = PCM

∫
drN exp

[
−β

N∑
i=1

λmax(ri − ri,0)
2

]
δ(

N∑
i=1

µi(ri − ri,0))

where µi is the reduced mass (mi/
∑

jmj) and where we have located the
center of mass in the origin in the reference system, e.g. rCM = 0.
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The term PCM describes the integration over momenta with the constraint∑
pi = 0.

This integral can be expressed in a simpler way by defining a change of
variable, r′i = ri − ri,0. The Jacobian of this change of variable is unity, and
the configurational integral can be written as

QCM
Eins,t = PCM

∫
dr′

N
exp

[
−β

N∑
i=1

λmax(r
′
i)

2

]
δ(

N∑
i=1

mi(r
′
i))

Transforming the Dirac δ as

δ

(
N∑
i=1

mi(r
′
i)

)
=

1

(2π)3

∫
exp

[
ik

N∑
i=1

µir
′
i

]
dk

the configurational integral can be written as

QCM
Eins,t = PCM 1

(2π)3

∫
exp

[
−βλmax

N∑
i=1

(
(r′i)

2 − ik

βλmax
µir
′
i

)]
dkdr′

N

By completing the squares (remembering i ∗ i = −1)

(r′i)
2 − ik

βλmax
µir
′
i =

(
r′i −

ik

2βλmax
µi

)2

+
k2µ2

i

4β2λ2
max

and with another change of variable

r”
i = r′i −

ik

2βλmax
µi

the integral becomes

QCM
Eins,t = PCM 1

(2π)3

∫
exp

[
−βλmax

N∑
i=1

(
r”i)

2 +
k2µ2

i

4β2λ2
max

)]
dkdr”N

The Jacobian of the transformation is one and so we have changed from
dkdr′N to dkdr”N . Indeed, for just one coordinate
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r′ = r” +
ik”m

2β

k′ = k”

so that ∂r′/∂r” = 1, ∂r′/∂k” = im
2β , ∂k′/∂r” = 0 and ∂k′/∂k” = 1.

The integral can be split into two Gaussian integrals

QCM
Eins,t = PCM 1

(2π)3

∫
exp

[
−βλmax

N∑
i=1

r”2
i

]
dr”N

∫
exp

[
−βλmax

k2
∑N

i=1 µ
2
i

4β2λ2
max

]
dk

whose solution is

QCM
Eins,t = PCM 1

(2π)3

(
π

βλmax

)3N/2
(

4πβλmax∑N
i=1 µ

2
i

)3/2

Writing (2π)3 = (4π2)3/2 and simplifying some quantities

QCM
Eins,t = PCM

(
βλmax
π

)3/2(
π

βλmax

)3N/2
(

N∑
i=1

µ2
i

)−3/2

Summarizing, we have obtained that the partition function of an Einstein
crystal with fixed center of mass is given by

QCM
Eins,t = PCM

(
π

βλmax

)3(N−1)/2
(

N∑
i=1

µ2
i

)−3/2

When all molecules are identical
∑

j µ
2
j =

∑
j

m2

(Nm)2 which is simply N−1

Therefore, the previous equation can be simplified to

QCM
Eins,t = PCM

(
π

βλmax

)3(N−1)/2

(N)−3/2

which is the final expression for the free energy of an ideal Einstein crystal
with fixed center of mass. An explicit expression for PCM is not needed to
get the free energy of the solid since it cancels out with a similar term.
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10.5 ground state disorder

Sometime it is necessary also to add the degeneracy of the ground state. In
the case of water this correspond to the so-called proton-disorder, an entropic
contribution which was first estimated by Pauli as ln 3/2

10.6 Final Result

The free energy of the model (including the ideal gas part ) is thus given
by four contributions, where the translational Einstein free energy has been
summed up with the ∆FCM−>NOCM term to simplify the final result

βF pot

N
= − 1

N
ln

[(
1

Λ

)3N (
π

βλmax

) 3(N−1)
2

N
3
2

(
V

N

)]
(15)

+
βFrot
N

+β < Fpot >λmax

− β
N

∫ λmax

0

<
∂Hλ

∂λ
>λ dλ

10.7 Other symmetries

We have already given a convenient expression for the orientational field of
a molecule with point group C2v (for example water). Let us now give a
convenient expression for other symmetries. For a molecule with a point
group of type Cnv a convenient expression for Hrot is

HCnv
rot = λrmax

∑
i

[
sin2

(
nφa,i

2

)
+

(
φb,i
π

)2
]

For a molecule with a point group of type Dnh a convenient expression is
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HDnh
rot = λrmax

∑
i

[
sin2

(
nφa,i

2

)
+ sin2 (φb,i)

]

For a molecule with point group Oh, a convenient expression is

HOh
rot = λrmax

∑
i

[
sin2 (φa,i,min) + sin2 (φb,i,min)

]
where φb,i,min stands for the minimum angle between ~b0

i and the six vec-
tors connecting the reference point of the molecule with the six octahedral
atoms/sites and an analogous definition for φa,i,min

For a linear molecule only one vector (i.e. vector ~b0
i ) is needed and the

applied field should be of the form, for a D∞,h

H
D∞,h
rot = λrmax

∑
i

[
sin2 (φb,i)

]
For a C∞,ν molecule a convenient choice is

H
C∞,ν
rot = λrmax

∑
i

[(
φb,i
π

)2
]

The choice of an orientational field adapted to the symmetry of the molecule
such as the ones proposed here is highly recommended. When this is done the
energy with the external field is invariant to any of the symmetry operations
of the molecule. Thus, a standard MC or MD program will provide correct
values of the orientational contribution to the free energy. One interesting
question is whether it is possible to use an external orientational field that
does not reflect the symmetry of the molecule. The answer is, in principle,
yes, but a special MC or MD code should be written for this purpose. Special
moves should be added where the symmetry operations of the molecule are
implemented. For instance, for water one should incorporate the C2 operation
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that exchanges the positions of the two H atoms. Of course the energy of the
molecule with the rest of the system is not affected by this operation.

10.8 General Implementation Issues

If all particles are coupled to the Einstein lattice, the crystal as a whole
does not move. However, in the limit λ → 0 there is no penalty for moving
the particles away from their ”Einstein” lattice position. As a consequence,
the crystal as a whole may start to drift and the mean-squared particle dis-
placement becomes on the order L2. If this happens, the integrand in λ
becomes sharply peaked around λ = 0. This would seem to imply that the
numerical integration requires many simulations for low values of λ. This
problem can be avoided if we perform the simulation under the constraint
that the center of mass of the solid remains fixed. In this case, the mean
square displacement tends to < r2 >0, the mean-squared displacement of
a particle from its lattice site in the normal (i.e., interacting) crystal. To
perform a Monte Carlo simulation under the constraint of a fixed center of
mass we have to ensure that, if a particle is given a random displace- ment,
all particles are subsequently shifted in the opposite direction such that the
center of mass remains fixed. In practice, it is not very convenient to keep the
center of mass in place by moving all particles every time a single- particle
trial move is carried out. Rather, we update the center-of-mass position
every time a single-particle trial move is accepted. We need to correct for the
shift of the center of mass only when computing the potential energy of the
harmonic springs connecting the particles to their lattice sites. In contrast,
the calculation of the intermolecular potential can be carried out without
knowledge of the position of the center of mass, as a shift of the center of
mass does not change the distance between particles. It is convenient to
distinguish between the coordinates r) of a particle in the frozen center-of-
mass reference system and the uncorrected coordinates ru. When computing
the potential energy of the harmonic springs, we need to know

∑N
i=1(ri−r0,i)

2

To compute the distance of a particle i , to its lattice site, (ri−r0,i), we must
keep track of the shift of the center of mass:

∆ri ≡ ri − r0,i = rui − ru0,i −∆RCM
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where ∆RCM denotes the accumulated shift of the center of mass of the
system. Every time a particle is moved from rui → rui + ∆r, ∆RCM changes
to ∆RCM + ∆r/N .

The computation of the change in energy of the harmonic interaction between
all particles and their lattice site is quite trivial. Suppose that we attempt
to move particle i , that is at a distance ∆ri from its lattice site r0,i) by an
amount ∆i. This causes a shift ∆i/N in the center of mass. The change in
the harmonic potential energy λ

∑
k ∆r2

i is

∆UHarm(λ) = λ
∑
i 6=j

[(∆rj −∆i/N)2 −∆r2
j ] + λ[(∆ri + (1− 1/N)∆i)

2 −∆r2
i ]

= λ

(
2∆ri ·∆i +

N − 1

N
∆2
i

)
= λ

(
2
[
rui − ru0,i −∆RCM

]
·∆i +

N − 1

N
∆2
i

)
where, in the last line, we used the fact that

∑
i ∆ri = 0. One more caveat

should be considered: normally, when a particle moves out of the periodic
box, the particle is put back at the other side of the box. However, when
simulating a system with a fixed center of mass, moving a particle back into
the original simulation box creates a discontinuous change in the position of
the center of mass and hence a sudden change of the energy of the Einstein
lattice. Therefore, in a simulation with a fixed center of mass, particles that
move out of the original simulation box should not be put back in. In any
event, the excursion that a harmonically bound particle can make is small
and therefore there is no real need to put the particles back in the simulation
box.

11 A recently proposed method to locate the coexistence point -
The interface pinning method by U. Pedersen, J. Chem. Phys.
139 104102 (2013).

Let assume we have a system in which two phases coexist, close to coexis-
tence. The system is prepared by splicing together two simulations each of
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them created with its own phase. In the case of a liquid-crystal coexistence,
one could first equilibrate the crystal and then melt the right half of the
parallelepiped simulation box, to create a liquid coexisting with a solid.

Let us assume we are able to define an order parameter Q which has rather
different values in the liquid Ql and in the crystal Qx phases. One possibility
is offered by

S(~qo) ≡
1

N
|
∑
i

exp[i~q · ~ri]|2

where ~qo is one of the reciprocal vector of the crystal. In the fluid S(~qo) ∼
O(1), while in the crystal S(~qo) ∼ O(N). Other order parameters, based on
rotational invariant, are equally good.

To a first approximation, the order parameter in the system will be about
(writing N = Nl +Nx +Ni)

Q ≈ NlQl +NxQx +NiQi

N
=
Nl(Ql −Qx) +NQx +Ni(Qi −Qx)

N
(16)

where Qi is the order parameter of interfacial particles and Ni is their number

Now... let’s suppose we run a simulation with a Hamiltonian that is

H = Hpotential +
1

2
κ(Q−Q0)

2

where Hpotential is the Hamiltonian of the system we are interested in and
1
2κ(Q−Q0)

2 is a biasing term that attempt to locate the order parameter of
the system close to Q0.

What is the distribution probability for Q resulting from this H ? Let’s go
by steps

The partition function is

Z =

∫
exp[−βH]dRN =

∫
exp[−βHpotential] exp[−β1

2
κ(Q(RN)−Q0)

2]dRN
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The probability of finding a fluctuation with order parameter Q can be cal-
culated introducing the Dirac delta function

P (Q) ∼
∫

exp[−βHpotential] exp[−β1

2
κ(Q(RN)−Q0)

2]dRNδ(Q−Q(RN))

= exp[−β1

2
κ(Q−Q0)

2]

∫
exp[−βHpotential]dR

Nδ(Q−Q(RN)

where we can define

Ppotential(Q) =

∫
exp[−βHpotential]dR

Nδ(Q−Q(RN)

as the probability of observing the order parameter Q in the absence of per-
turbation.

Formally we can associate to Ppotential(Q) a Q dependent free energy F via

Ppotential(Q) = exp[−βGpotential(Q)]

If Q0 is not very far from the equilibrium Q, by expanding Gpotential(Q) around
Q0 at the second order

Gpotential(Q) ≈ Gpotential(Q0)+G
′
potential(Q)(Q−Q0)+

1

2
Gpotential”(Q0)(Q−Q0)

2

one obtains

P (Q) ∼ exp[−β1

2
κ(Q−Q0)

2] exp[−β(Gpotential(Q0)+G
′
potential(Q)(Q−Q0)+

1

2
G”potential(Q0)(Q−Q0)

2)]

or, neglecting the constant which goes in the normalization

P (Q) ∼ exp[−β1

2
κ(Q−Q0)

2] exp[−βG′potential(Q0)(Q−Q0)+
1

2
G”potential(Q0)(Q−Q0)

2)]
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By making use of the relation ax + bx2 = b[(x + a/2b)2 − a2/4b2], one can
complete the square and predict that the fluctuations in Q are gaussians with
an average

Q̄ = Q0 −
G′potential(Q0)

κ+G”potential(Q0)

The interesting thing is that if one pick Q0 ≈ Ql+Qx
2 and runs several simula-

tions at different T or P and plot the resulting P (Q), he/she will find that
in some cases Q̄ is larger that Q0 and others is smaller than Q0. The T or P
value at which Q̄ = Q0 indicates the coexistence point, e.g. the system is in
thermodynamic equilibrium in the absence of the perturbation.

To prove this let’s consider the behavior of Gpotential. Defining Gl the free
energy per particle of the liquid, Gx the free energy of the crystal and Gi the
interface contribution to the free energy.

G = GlNl+GxNx+Gi = (Gl−Gx)Nl+Gx(N −Ni)+Gi ≈ ∆µNl+ constant

where we have assumed that there is only a week dependence of Ni e Gi on
P and T . With a similar assumption one can invert Eq. 16 and find

NQ

Ql −Qx
= Nl + constant

so that

G =
NQ∆µ

Ql −Qx
+ constant

In this approximation

G′ =
N∆µ

Ql −Qx
G” = 0
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and

Q̄ = Q0 −
N∆µ

κ(Ql −Qx)

That shows that at coexistence, where ∆µ = 0, Q̄ = Q0. In principle, one can
also estimate ∆µ at the simulated T and P by inverting the previous equation.
Close to coexistence (and far from critical points), where the approximations
are ok,

∆µ =
(Q0 − Q̄)κ(Ql −Qx)

N
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