
1 Introduction

This course aims at providing the student with the ability to write her/his own Monte
Carlo and/or Molecular Dynamics code, having mastered the fundamental ideas behind
the implemented algorithms. We will limit ourselves to describing the collective behaviour
of classical atoms and molecules (particles in general) which propagate in phase-space under
the laws of classical mechanics. From this basic knowledge, it is expected that the student
can start using the available packages for numerical simulations, even of more complicated
systems like polymers and macromolecules of biological interest.

We will assume that the motion of the nuclei can be described by Newton’s law. This
approximation breaks down clearly for very light atoms (Helium, Proton, Deuterium) and
for all vibrational motions whose characteristic frequency, translated in energy, is compa-
rable or larger than the thermal energy kBT .

Performing numerical simulations, we sample the system phase-space and hence we have
access to positions rN and momenta pN of all atoms in the system. From this information.
the microscopic value of all observables which are function of (rN ,pN) can be evaluated
and, eventually, averaged over time or phase-space.

Numerical simulations can be considered as a tool for performing numerical experi-
ments. In this respect, simulations can be used for different applications: (i) reproduce an
existing experimental result, to complement the macroscopic information with the atom-
istic level provided by the simulation (ii) to produce a numerical prediction of a gedanken
experiment or (iii) for checking theoretical approximations based on model systems.

2 An historical perspective (Tuckerman)

One of the earliest examples of such a numerical thought experiment was the Fermi-Pasta-
Ulam calculation (1955), in which the equations of motion for a one-dimensional chain of
nonlinear oscillators were integrated numerically in order to quantify the degree of ergod-
icity and energy equipartitioning in the system. Later, Alder and Wainwright carried out
the first condensed-phase molecular dynamics calculation on a hard-sphere system (Alder
and Wainwright, 1957; Alder and Wainwright, 1959), showing that a solid-liquid phase
transition exists. Following this, Rahman (1964) and Verlet (1967) carried out the first
simulations using a realistic continuous potential for systems of 864 argon atoms. The
next major milestone came when Berne and coworkers (Harp and Berne, 1968; Berne et
al., 1968; Harp and Berne, 1970; Berne, 1971) carried out molecular dynamics simulations
of diatomic liquids and characterized the time dependence of molecular reorientation in
these systems. Following these studies, Stillinger and Rahman (1971, 1972, 1974) carried
out the first molecular dynamics simulations of liquid water. Soon thereafter, Karplus and
coworkers reported the first molecular dynamics calculations of proteins (McCammon et
al., 1976; McCammon et al., 1977). Explicit treatment of molecular systems was enabled
by the introduction of techniques for maintaining specific bonding patterns either by stiff

1

intramolecular forces (Berne and Harp, 1970a) or by imposing holonomic constraints into
the simulation (Ryckaert et al., 1977). The evolution of the field of molecular dynam-
ics has benefitted substantially by advances in high-performance computing. The original
Alder and Wainwright calculations required the use of a ”supercomputer” at Lawrence
Livermore National Lab- oratory in California, namely, the UNIVAC system. Nowadays,
molecular dynamics calculations with force fields can be carried out on desktop computers.
Nevertheless, another major milestone in molecular dynamics, the technique now known
as ab initio or first-principles molecular dynamics (Car and Parrinello, 1985), currently
requires large-scale high-performance supercomputing resources. In an ab initio molecular
dynamics calculation, the interatomic interactions are computed directly from the elec-
tronic structure on the fly as the simulation proceeds, thereby allowing chemical bonding
breaking and forming events to be treated explicitly. The computational overhead of solv-
ing the electronic Schroedinger equation using widely employed ap- proximation schemes is
considerable, which is why such calculations demand the use of these resources. The field
of molecular dynamics is an exciting and rapidly evolving one, and the immediate avail-
ability of free software packages capable of performing many different types of molecular
dynamics calculations has dramatically increased the number of users of the methodology.

3 The potentials

Let’s start with reviewing the most common inter particle interaction potentials encoun-
tered in numerical simulation of simple systems.

The potential V (rN) describes the way particles interact among themselved. In general,
if we focus on the nuclei position, it should be calculated from the electronic density
distribution. In this respect it is a many body term. In quantum calculations, the electronic
density distribution is indeed what is considered. In classical simulations one assumes that
the effect of the electronic density can be condensed in a known functional dependence,
which is taken for granted. In addition, very rarely calculations extent beyond three-body
interactions. Indeed, the interction potential can be expanded as

V (rN) =
∑
i,j

V2(ri, rj) +
∑
i,j,k

V3(ri, rj , rk) +

where, defining the relative distance rij = ri − rj

V2(ri, rj) = V2(|rij |)

and
V3(ri, rj , rk) = V3(rij , rik, rjk)

Let’s take a look at the most commonly used functional forms. In the molecular physics
course you have already encountered the Morse potential

V (r) = V∞ +De

{
[1− e−α(r−r0)]2 − 1

}
2

where r0 indicates the equilibrium distance, V∞ the value of the potential energy at infinite
distance, V∞ − De the value at r = r0. α controls the curvature of the potential around
the minimum.

You have also encountered the mostly used Lennard-Jones (LJ) potential

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

commonly chosen to model noble gases. ε is the energy scale (the depth of the minimum)
and σ the lenght scale (the diameter of the particle). The position of the minimum coincides
with r = 21/6σ ≈ 1.122σ.

Sometime, to modify the range of interaction the exponents 6− 12 of the LJ potential
are changed in a generic m,n pair

V (r) = 4ε
[(σ
r

)m
−
(σ
r

)n]
Another well studied potential is the soft-sphere potential, e.g. the repulsive part of

the LJ potential for a generic exponent n

V (r) = ε
(σ
r

)n
In soft-spheres the (excess) thermodynamics of the model depend on the temperature T

and on the density ρ∗ = Nσ3

V only via the combination

Γ = ρσ3

(
ε

kBT

) 3
n

Indeed, the partition function of the system requires the integration of

Z ∼
∫
V
dr1dr2....drNexp[−βV (r1r2....rN)]

and by defining scaled quantities ξ ≡ rV −1/3

Z ∼ V N

∫
1
dξ1dξ2....dξNexp[−βε

σn

V n/3

∑
ij

V (ξij)]

that can be rewritten as

Z ∼ V N

∫
1
dξ1dξ2....dξNexp[−

(
Γ

N

)n/3∑
ij

V (ξij)]

In theory and in the colloidal field, very often step-wise potentials are chosen. The
most famous is the hard-sphere potential

3

V (r) =

{
∞, if r ≤ σ
0, otherwise

where only the repulsion due to the hard-core is included and the square well potential

V (r) =

∞, r ≤ σ
−ε, σ ≤ r ≤ σ + δ

0 otherwise

As an example of a three-body potential let’s consider the Stillinger-Weber potential
for network forming liquids. The functional form is

Vtriplet =
∑
i,j,k

g(rij)g(rik)

(
cos θjik +

1

3

)
and the torsianal potential in the typical polymer (or ammino acid) chains

V (r) = k(θ − θ0)2

In several cases, particles are charged. This adds to the hard-core repulsion and the van
der Walls attraction an additional term, modeling the electrostatic potential. In vacuum,
indicating with qi and qj the charges of the two particles it takes the form (with the proper
unit-dependent constant)

V (r) = A
qiqj
r

If the two charges are immersed in a salt-solution, the typical effective interaction
potential that model the screened electrostatic contribution is named Yukawa potential

V (r) = A
qiqje

−r/λ

r

where λ is the screening lenght.
For molecules, the interaction potential is usually expressed as a sum over all sites

compositing the molecule.

4 The Lennard-Jones potential

Undeniable, the most common potential for simulations is the Lennard-Jones (LJ) poten-
tial, a model devised to describe the interaction between the nuclei of noble glasses. It is

4

defined by two parameters, the interaction depth ε and the diameter of the atom σ. The
functional form is

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(1)

dVLJ(r)

dr
= 4ε

1

r

[
−12

(σ
r

)12
+ 6

(σ
r

)6
]

(2)

This functional form shows that atoms with different σ and ε behave in the same way
if the density is measured in units of σ and the temperature in units of ε, implementing at
the microscopic level the law of corresponding states.

The LJ potential exactly vanishes at r = ∞. Still, assuming that beyond a certain
distance rc the correlation between different atoms have vanished, it is reasonable to include
in the force direct sum only pairs of atoms with relative distance smaller than rc.

The cut-off at rc generates a discontinuity in the potential which is typically handled
with a shift of the entire functional form by VLJ(rc). In this way one obtains the so-called
cut-and-shifted Lennard Jones potential V CS

LJ (r)

V CS
LJ (r) = VLJ(r)− VLJ(rc) r < rc (3)

0 r > rc (4)

To compare the V CS
LJ (r) and the VLJ(r) potential one can add to the numerical results

obtained for the V CS
LJ (r) the theoretically estimated contribution arising from the presence

of the finite radial cut-off. Indeed, consistent with the hypothesis of absence of correlation
beyond rc, the energy contribution per particle associated to all interaction beyond rc can
be evaluated as

Ecorrection =
1

2

∫ ∞
rc

VLJ(r)ρ4πr2dr =

1

2
16πρε

∫ ∞
rc

r2

[(σ
r

)12
−
(σ
r

)6
]

=

8

3
πρεσ3

[
1

3

(
σ

rc

)9

−
(
σ

rc

)3
]

where ρ is the number density. and the factor 1/2 accounts for double counting. A similar
correction can be estimated for the pressure.

The V CS
LJ (r) potential still presents an inconvenience: the non continuity of the first

derivative at rc. If rc is rather large, this may not be a problem, being the force at rc
already vanishing. On the other hand, for the often used rc = 2.5σ value, the discontinuity
originates a non-conservation of the energy which may introduce a significant drift in the
total energy in long-lasting simulations.

5

To overcome this problem, often people prefer to add an additional linear contribution
to the LJ potential which preserves continuity of the potential and of its first derivative at
rc.

V LM
LJ (r) = VLJ(r) + ar + b (5)

a = −dV
dr
|rc (6)

b = −VLJ(rc)− arc (7)

Another possibility is offered by the use of switching functions. In this case the original
potential is multiplied by a switching function S(r), often defined as

S(r) =

{ 1 r < rc − λ
1 +R2(2R− 3) rc − λ < r < rc + λ

0 r > rc + λ
(8)

where R = [r − (rc − λ)]/2λ. R = 1 when r = rc + λ and R = 0 when r = rc − λ. The
derivative of this function is

dS(r)

dr
=

{ 0 r < rc − λ
6(R2 −R)dRdr rc − λ < r < rc + λ

0 r > rc + λ

(9)

The LJ potential, in all his forms, has been carefully studied and it is now a day a
benchmark for testing a new code as well as the reference system for numerically tackling
new open problems (glass transition, crystallisation, kinetic of phase separation, gelation).

One note of caution need to be given for people using simple truncation. In this case,
two different corrections need to be applied to the pressure. One is consistent with the
integrated tail correction to the energy discussed previously

∆P tail =
1

2
4πρ2

∫ ∞
rc

VLJ(r)r ·
(
−dV
dr

)
r2dr =

16

3
πρ2εσ3

[
2

3

(
σ

rc

)9

−
(
σ

rc

)3
]

On top of this contribution, one need to evaluate the contribution arising from the
discontinuity at rc. This additional contribution should be included even if the long-range
part of the energy and of the pressure (the tail) is not included. Indeed the simply cut
potential is equivalent to a SW potential of depth VLJ(rc), added on the cut and shifted
potential. To evaluate this contribution, let’s consider the definition of pressure

P =<
∂U

∂V
>

6

Let us assume we change the volume of a configuration by isotropically scaling all coordi-
nates by ξ. Similarly, all relative distances are scaled by a factor ξ. If ξ > 1 (expansion)
all pairs which where within a shell of width rc(1−1/ξ) will cross the cut off and will loose
the SW depth energy. The number of these particles will be (assuming a constant density
around rc)

M = 4πr2
c [rc(1− 1/ξ)]ρ

so that, summing over all particles and dividing by two to avoid over-counting

δE = −VLJ(rc)M
N

2

The corresponding δV is

δV = (ξL)3 − L3 = V (ξ3 − 1) = V (ξ − 1)(ξ2 + ξ + 1)

So that

PSW = lim
ξ→1

VLJ(rc)4πr
2
c [rc(1− 1/ξ)]ρ(rc)

N
2

V (ξ − 1)(ξ2 + ξ + 1)
=

lim
ξ→1

VLJ(rc)4πr
2
cρ(rc)

N

2V

ξ − 1

ξ

1

(ξ − 1)(ξ2 + ξ + 1)
= lim

ξ→1
VLJ(rc)4πr

3
cρ(rc)

N

2V

1

ξ

1

(ξ2 + ξ + 1)

PSW =
8

3
περ(r−c)ρr3

c

[(
σ

rc

)12

−
(
σ

rc

)6
]

=
8

3
περ(r−c)ρσ3

[(
σ

rc

)9

−
(
σ

rc

)3
]

and approximating ρ(r−c) (e.g. approaching rc from the left) with ρ

PSW ≈ 8

3
περ2σ3

[(
σ

rc

)9

−
(
σ

rc

)3
]

5 What do we need

Our goal is, generically, to calculate static (via Monte Carlo or Molecular Dynamics meth-
ods) and dynamic quantities (via Molecular Dynamics methods) of a system for which we
know the interaction potential V (rN).

To calculate static quantities we need to evaluate the probabilityN (rN) that the system
composed by N particles (atoms, not molecules, for the time being) explores the phase-
space volume centered around rN , e.g. in the canonical ensamble (constant N,V,T)

N (rN)drN =
1

N !λ3N

exp[−βV (rN)]drN

ZN (V, T)

where the configurational part of the partition function (where momenta have been inte-
grated out) is

ZN (V, T) =
1

N !λ3N

∫
drN exp[−βU(rN)]

7

6 The basic of Monte Carlo: The Metropolis Method (Frenkel-
Smit)

Monte Carlo is a generic method to evaluate integrals. In our case, we would like to use it
to evaluate the partition function. Unfortunately it is in general not possible to evaluate
an integral, such as

∫
exp[−βU(rN)]drN by direct Monte Carlo sampling. Very few points

with a large Boltzmann weight may control the integral value and it is rather difficult to
sample them.

However, in many cases, we are not interested in the configurational part of the partition
function itself but in averages of the type

< A >=
1

N !λ3N

∫
drN exp[−βU(rN)]A(rN)

Z

Ideally one could partition space in minute hypercubes and transform the integration
in a sum over #P points as

< A >=

∑#P
i=1Ai exp[−βUi]∑#P
i=1 exp[−βUi]

This procedure, while feasible for systems with a very small number of degrees of free-
dom, it is not conceivable for realistic systems, even with a number of particles significantly
smaller than Avogadro’s number.

If it is possible to devise scheme for generating point which are distributed proportion-
ally to exp[−βU] (even if the proportionality constant is not known !), e.g.

N (rN) ∼ exp[−βU(rN)]

then one can rewrite the integral

< A >=

∫
drNN (rN)A(rN)∫

drNN (rN)

and discretize it as

< A >=

∑#P
i=1AiNi∑#P
i=1Ni

=
1

#P

#P∑
i=1

AiNi

Note that in the previous equation we know only exp[−βU(rN)] that is, we know only the
relative but not the absolute probability of visiting different points in configuration space.

Let us next consider how to generate points in configuration space with a relative prob-
ability proportional to the Boltzmann factor. The general approach is first to prepare the
system in a configuration rN , which we denote by o (old), that has a nonvanishing Boltz-
mann factor exp[−βU(o)]. This configuration, for example, may correspond to a regular

8

crystalline lattice with no hard-core overlaps. Next, we generate a new trial configuration
r′N which we denote by n (new), by adding a small random displacement ∆ to o. The
Boltzmann factor of this trial configuration is exp[−βU(n)] We must now decide whether
we will accept or reject the trial configuration. Many rules for making this decision satisfy
the constraint that on average the probability of finding the system in a configuration n
is proportional to N (n). Here we discuss only the Metropolis scheme, because it is simple
and generally applicable. Let us now ”derive” the Metropolis scheme to determine the
transition probability π(o → n) to go from configuration o to n. It is convenient to start
with a thought experiment (actually a thought simulation). We carry out a very large num-
ber (say M) Monte Carlo simulations in parallel, where M is much larger than the total
number of accessible configurations. We denote the number of points in any configuration
o by m(o). We wish that, on average m(o) is proportional to N (o). The matrix elements
π(o → n) must satisfy one obvious condition: they do not destroy such an equilibrium
distribution once it is reached. This means that, in equilibrium, the average number of
accepted trial moves that result in the system leaving state o must be exactly equal to the
number of accepted trial moves from all other states to state o (the balance condition). It
is convenient to impose a much stronger condition; namely, that in equilibrium the average
number of accepted moves from o to any other state n is exactly canceled by the number
of reverse moves. This detailed balance condition implies the following:

N (o)π(o→ n) = N (n)π(n→ o)

Many possible forms of the transition matrix π(o → n) satisfy the previous equation Let
us look how π(o → n) is constructed in practice. We recall that a Monte Carlo move
consists of two stages. First, we perform a trial move from state o to state n. We denote
the transition matrix that determines the probability of performing a trial move from o
to n by α(o → n), where α is usually referred to as the underlying matrix of the Markov
chain [47]. The next stage is the decision to either accept or reject this trial move. Let us
denote the probability of accepting a trial move from o to n by acc(o→ n). Clearly,

π(o→ n) = α(o→ n)× acc(o→ n)

In the original Metropolis scheme, α is chosen to be a symmetric matrix α(o→ n) = α(n→
o). However, in later sections we shall see several examples where α is not symmetric. If
α is symmetric, we can rewrite the previous equation in terms of the acc(o→ n)

N (o)× acc(o→ n) = N (n)× acc(n→ o)

such that
acc(o→ n)

acc(n→ o)
=
N (n)

N (o)
= exp(−β[U(n)− U(o)]) (10)

Again, many choices for acc(o → n) satisfy this condition (and the obvious condition
that the probability acc(o→ n) cannot exceed 1). The choice of Metropolis et al. is

9

acc(o→ n) = N (n)/N (o) if N (n) < N (o)

acc(o→ n) = 1 if N (n) ≥ N (o)

To prove that this choice satisfies Eq. 10 let’s consider that

acc(o→ n) =

{
1 En ≤ Eo
e−β(En−Eo) En > Eo

while

acc(n→ o) =

{
1 Eo ≤ En
e−β(Eo−En) Eo > En

Thus, if En ≤ Eo

acc(o→ n)

acc(n→ o)
=

1

e−β(Eo−En)

while if En > Eo

acc(o→ n)

acc(n→ o)
=
e−β(En−Eo)

1

In both cases
acc(o→ n)

acc(n→ o)
=
N (n)

N (o)

Other choices for acc(o → n) are possible but the original choice of Metropolis et
al. appears to result in a more efficient sampling of configuration space than most other
strategies that have been proposed. In summary, then, in the Metropolis scheme, the
transition probability for going from state o to state n is given by

π(o→ n) = α(o→ n) if N (n) ≥ N (o)

π(o→ n) = α(o→ n)N (n)/N (o) if N (n) < N (o)

and the probability from n to o is one minus the probability to go to any state different
from o

π(n→ o) = 1−
∑
n6=o

π(o→ n)

Note that we still have not specified the matrix acc, except for the fact that it must
be symmetric. This reflects considerable freedom in the choice of our trial moves. We will

10

come back to this point in subsequent sections. One thing that we have not yet explained
is how to decide whether a trial move is to be accepted or rejected. The usual procedure
is as follows. Suppose that we have generated a trial move from state o to state n, with
U(n) > U(o). This trial move should be accepted with a probability

acc(o→ n) = exp(−β[U(n)− U(o)] < 1

In order to decide whether to accept or reject the trial move, we generate a random number,
denoted by Ranf, from a uniform distribution in the interval [0, 1]. Clearly, the probability
that Ranf is less than acc(o → n) is equal to acc(o → n). We now accept the trial move
if Ranf < acc(o → n) and reject it otherwise. This rule guarantees that the probability
to accept a trial move from o to n is indeed equal to acc(o → n). Obviously, it is very
important that our random-number generator does indeed generate numbers uniformly
in the interval [0, 1]. Otherwise the Monte Carlo sampling will be biased. The quality
of random-number generators should never be taken for granted. A good discussion of
random-number generators can be found in Numerical Recipes and in Monte Carlo Methods
by Kalos and Whitlock. Thus far, we have not mentioned another condition that π(o→ n)
should satisfy, namely that it is ergodic (i.e., every accessible point in configuration space
can be reached in a finite number of Monte Carlo steps from any other point). Although
some simple MC schemes are guaranteed to be ergodic, these are often not the most efficient
schemes. Conversely, many efficient Monte Carlo schemes have either not been proven to
be ergodic or, worse, been proven to be nonergodic. The solution is usually to mix the
efficient, nonergodic scheme with an occasional trial move of the less-efficient but ergodic
scheme. The method as a whole will then be ergodic (at least, in principle). At this point,
we should stress that, in the present book, we focus on Monte Carlo methods to model
phenomena that do not depend on time. In the literature one can also find dynamic Monte
Carlo schemes. In such dynamic algorithms, Monte Carlo methods are used to generate a
numerical solution of the master equation that is supposed to describe the time evolution
of the system under study. These dynamic techniques fall outside the scope of this book.
The reader interested in dynamic MC schemes is referred to the relevant literature, for
example Ref. [48] and references therein.

6.1 The code

In the approach introduced by Metropolis et al. [6], the following scheme is proposed:

• 1. Select a particle at random, and calculate its energy U(o)

• 2. Give the particle a random displacement, r′ = r + ∆ and calculate its new energy
U(n).

• 3. Accept the move from o to n with probability acc(o→ n) = min(1, exp[−β(U(n)−
U(o))]

11

We start our discussion with trial moves of the molecular centers of mass. A perfectly
acceptable method for creating a trial displacement is to add random numbers between
−∆/2 and ∆/2 to the x, y and z coordinates of the molecular center of mass:

x′i = xi + ∆(Ranf − 0.5)

y′i = yi + ∆(Ranf − 0.5)

z′i = zi + ∆(Ranf − 0.5) (11)

where Ranf are random numbers uniformly distributed between 0 and 1. Clearly, the
reverse trial move is equally probable (hence, α is symmetric).

We are now faced with two questions: how large should we choose ∆? and should we
attempt to move all particles simultaneously or one at a time? In the latter case we should
pick the molecule that is to be moved at random to ensure that the underlying Markov
chain remains symmetric.

All other things being equal, we should choose the most efficient sampling procedure.
But, to this end, we must first define what we mean by efficient sampling. In very vague
terms, sampling is efficient if it gives you good value for money. Good value in a simulation
corresponds to high statistical accuracy, and ”money” is simply money: the money that
buys your computer time and even your own time. For the sake of the argument, we assume
the average scientific programmer is poorly paid. In that case we have to worry only about
your computer budget. Then we could use the following definition of an optimal sampling
scheme: a Monte Carlo sampling scheme can be considered optimal if it yields the lowest
statistical error in the quantity to be computed for a given expenditure of computing
budget. Usually, computing budget is equivalent to CPU time. From this definition it
is clear that, in principle, a sampling scheme may be optimal for one quantity but not
for another. Actually, the preceding definition is all but useless in practice (as are most
definitions). For instance, it is just not worth the effort to measure the error estimate in
the pressure for a number of different Monte Carlo sampling schemes in a series of runs
of fixed length. However, it is reasonable to assume that the mean-square error in the
observables is inversely proportional to the number of uncorrelated configurations visited
in a given amount of CPU time. And the number of independent configurations visited is a
measure for the distance covered in configuration space. This suggests a more manageable,
albeit rather ad hoc, criterion to estimate the efficiency of a Monte Carlo sampling scheme:
the sum of the squares of all accepted trial displacements divided by computing time.
This quantity should be distinguished from the mean-squared displacement per unit of
computing time, because the latter quantity goes to 0 in the absence of diffusion (e.g., in a
solid or a glass), whereas the former does not. Using this criterion it is easy to show that for
simulations of condensed phases it is usually advisable to perform random displacements
of one particle at a time (as we shall see later, the situation is different for correlated
displacements). In brief, if you move all particles, there is a non negligible probablility
that one of the particles will contribute to an energy change significantly larger than kBT ,

12

determining a rejection of all displacements.
Next, consider the choice of the parameter ∆ which determines the size of the trial move.

How large should ∆ be? If it is very large, it is likely that the resulting configuration will
have a high energy and the trial move will probably be rejected. If it is very small, the
change in potential energy is probably small and most moves will be accepted. In the
literature, one often finds the mysterious statement that an acceptance of approximately
50% should be optimal. This statement is not necessarily true. The optimum acceptance
ratio is the one that leads to the most efficient sampling of configuration space. If we express
efficiency as mean-squared displacement per CPU time, it is easy to see that different Monte
Carlo codes will have different optimal acceptance ratios. The reason is that it makes a
crucial difference whether the amount of computing required to test whether a trial move
is accepted depends on the magnitude of the move (see Figure 3.4). In the conventional
Metropolis scheme, all continuous interactions have to be computed before a move can be
accepted or rejected. Hence, for continuous potentials, the amount of computation does
not depend on the size of a trial move. In contrast, for simulations of molecules with hard
repulsive cores, a move can be rejected as soon as overlap with any neighbor is detected.
In that case, a rejected move is cheaper than an accepted one, and hence the average
computing time per trial move goes down as the step size is increased. As a result, the
optimal acceptance ratio for hard-core systems is appreciably lower than for systems with
continuous interactions. Exactly how much depends on the nature of the program, in
particular on whether it is a scalar or a vector code (in the latter case, hard-core systems
are treated much like continuous systems), on how the information about neighbor lists is
stored, and even on the computational ”cost” of random numbers and exponentiation. The
consensus seems to be that for hard-core systems the optimum acceptance ratio is closer to
20 than to 50%, but this is just another rule of thumb that should be checked? A distinct
disadvantage of the efficiency criterion discussed previously is that it does not allow us to
detect whether the sampling of configuration space is ergodic. To take a specific example,
suppose that our system consists of a number of particles that are trapped in different
potential energy minima. Clearly, we can sample the vicinity of these minima quite well
and still have totally inadequate sampling of the whole of the configuration space.

If we are simulating molecules rather than atoms we must also generate trial moves that
change the molecular orientation. As we discussed already, it almost requires an effort for
generating translational trial moves with a distribution that does not satisfy the symmetry
requirement of the underlying Markov chain. For rotational moves, the situation is very
different. It is only too easy to introduce a systematic bias in the orientational distribution
function of the molecules by using a nonsymmetrical orientational sampling scheme. Several
different strategies to generate rotational displacements are discussed in [19].

13

7 Generating the starting configuration

There are several alternatives to generate the starting configuration. If the system is
disordered (fluid) one can generate N random position ri (inside the simulation box) (and
later on N random velocities vi,with some arbitrary average value). This is equivalent
to progressively fill the simulation box of particles. This simple method suffers from the
possibility to generate pairs of random coordinates which are so close to each other to give
rise to extremely large energies. In the case of hard-core potentials, this simple method
generates unphysical overlaps, that need to be resolved. An improvement of the method
requires a calculation of the energy every time a particle is added in the box, disregarding
all insertion that result in an increase of the system energy beyond a previously defined
threshold.

In the cae of hard-core interactions, this improved method allows one to generate dis-
ordered configurations when the required density of the system is not particularly large.
If one is interested in liquid like densities, it becomes convenient to generate a (cubic)
crystalline starting configuration fixing the lattice distance to match the desired density.
The number of particles can be conveniently selected as the number of unit cells times
their occupancy. Again, depending on the required density, one can generate a cubic lat-
tice (lower density), body-centered-cubic (intermediate) or a face-centered-cubic (higher
density) lattice. In this case, the generation of the initial coordinates must be followed by
a simulation at high temperature such that all particles have lost memory of their ordered
state. This typically correspond to a mean-square displacement of the order of the nearest
neighbour distance (squared).

In the case of MD, we will see that it is also important to check, after all momenta have
been generated, that the total momentum of the system is strictly zero, to avoid artificial
drift of the coordinates and a systematic error in the evaluation of the temperature. When
building a crystal, the position of the atoms are given by

r = lv1 +mv2 + nv3

where l,m, n are integer numbers and v1, v2 and v3 are the primitive vectors defining the
unit cell. If the base contains more than one particle, for each l,m, n one need to generate
all the base particles.

7.1 SC

In the case of the simple cubic (SC), the three primitive vectors are v1 = (a, 0, 0), v2 =
(0, a, 0) and v3 = (0, 0, a). The particles can be inserted in the box of side L = na, where
a is the lattice distance and N = n3 according to the following algorithm

14

np=0

for i=1,n

for j=1,n

for k=1,n

np=np+1

x(np)=i*a

y(np)=j*a

z(np)=k*a

next k

next j

next i

The resulting number density is ρ = n3/L3 = a−3. The nearest neighbour closest distance
is a and hence the packing fraction of touching spheres (e.g. of diameter a) on the SC
lattice is

φ =
π

6
a3 1

a3
=
π

6
= 0.52

7.2 BCC

In the case of a body centred cubic (BCC) lattice, the three primitive vector of the lattice
are v1 = (a/2, a/2,−a/2), v2 = (−a/2, a/2, a/2) and v3 = (a/2,−a/2, a/2). The volume
of the unit cell is V = |v1 · v2 × v3| = a3/2 and hence the number density 2a−3. To
exploit the cubic symmetry it is easier to view the crystal as a simple cubic structure of
side a but with two atoms in the unit cell. The location of the two atoms is a1 = (0, 0, 0),
a2 = (a/2, a/2, a/2). The number density is, as before, 2/a3. The nearest neighbour closest
distance is

√
3a/2 (the distance between the corner and the centre of the cube) and hence

the packing fraction of touching spheres on the BCC lattice is

φ =
π

6

(√
3a

2

)3
2

a3
=

√
3

8
π = 0.68

15

np=0

for i=1,n

for j=1,n

for k=1,n

for l=1,2

np=np+1

x(np)=i*a + (a_l)_x

y(np)=j*a + (a_l)_y

z(np)=k*a + (a_l)_z

next l

next k

next j

next i

7.3 FCC

In the case of a FCC lattice, the three primitive vector of the lattice are v1 = (a/2, a/2, 0),
v2 = (0, a/2, a/2) and v3 = (a/2, 0, a/2). The volume of the unit cell is V = |v1 ·v2×v3| =
a3/4 and hence the number density 4a−3. To exploit the cubic symmetry it is easier to
view the crystal as a simple cubic structure of side a but with four atoms in the unit cell.
The location of the four atoms is a1 = (0, 0, 0), a2 = (a/2, a/2, 0), a3 = (0, a/2, a/2) and
a4 = (a/2, 0, a/2). The density is, as before, 4/a3.

np=0

for i=1,n

for j=1,n

for k=1,n

for l=1,4

np=np+1

x(np)=i*a + (a_l)_x

y(np)=j*a + (a_l)_y

z(np)=k*a + (a_l)_z

next l

next k

next j

16

next i

The number of particles N = 4n3, where n3 is the number of cubic cell composing the
simulation box. We note that, in the case of FCC, the closest distance between two lattice
points is the diagonal of the square of side a. Hence, if we would convert the number
density to a packing fraction, assuming the crystal is composed by touching spheres, we
would get

φ =
π

6

(
a√
2

)3 4

a3
=

√
2

6
π = 0.7404

8 Periodic Boundary Conditions (PBC)

Small systems suffer from size effects. In a spherical cluster, the number of surface parti-
cles indeed scales with N2/3 and hence the ratio surface to bulk particles goes as N−1/3.
For N ≈ 100, 22 per cent of the particles are surface particle. To ease the problem,
simulations implement the so-called periodic boundary conditions (PBC), by replicating
the simulation box in space along the three directions, generating an infinite system of
identical boxes. The shape of a periodic simulation cell must fill all space by transla-
tional operations of the central box in 3D and hence only a few geometries are possible:

The primary cell is thus replicated in all simulated direction as image cells. Primary
and image cells have the same number, position, momentum of atoms, same size and same
shape.

17

The periodic boundary conditions implies that a particle, crossing the box boundaries,
re-enters from the opposite side. When the interaction potential has a radial cut-off (e.g.
vanishes beyond a radius rc), PBC require the side L of the simulation box be at least twice
the interaction range, so that, within a sphere of radius rc no copies of the same particle
are present. Indeed, atom i (on the primary cell) can experience a force from atom j in
the primary cell as well as from atom j in any of the image cell (26 are the closest in the
cubic geometry) but only one image is a distance less than L/2. Thus if the pair potential
is truncated at rc < L/2 either atom j or only one of its images can exert force on atom
i. For this reason, with PBCs, interactions are truncated at least to this minimum image
distance.

The implementation of PBC depends if the code assumes that the position of the
particles follows the trajectory or if the trajectory of each particles is constantly folded
back in the simulation box (and if the box is defined between 0 and L or between −L/2
and L/2, being L the side of the simulation cube) In both cases, the evaluation of the
distance between two particles requires considering PBC.

In the following we assume that all coordinates are always within the original box
(0 < xi < L). Under this hypothesis, the minimum distance between two particles can be
calculated as

r_{ij}=r_i - r_j

d = L*int(r_{ij}/(L/2)) ~~~or‘~~~ d= L*nint(r_{ij}/L)

r_{ij}=r_{ij}-d

Inspection of the code shows that if the distance is less than L/2, d = 0 and the distance
is unmodified. If the distance is larger than L/2 then d = ±1 depending on the sign of rij .
In this case rij = rij ∓ L.

18

9 Calculating the energy

The basic MC code thus requires the evaluation of the system energy before and after the
displacement. In the case of pair-wise addititive interactions, it is sufficient to calculate the
interaction potential of the randomly selected particle i before and after the displacement.
In principle, the energy before is already know (if information are properly stored). To
calculate the energy of a particle i

Ei =
N∑
j=1

V2(rij)

e.g. N evaluation of distances.

10 Neighbour list

The energy or force calculation is the most time-consuming part of almost all Molecular
Dynamics and Monte Carlo simulations. If we consider a model system with pairwise
additive interactions (as is done in many molecular simulations), we have to consider the
contribution to the force on particle i by all its neighbors. If we do not truncate the
interactions, this implies that, for a system of N particles, we must evaluate N(N-1)/2 pair
interactions. And even if we do truncate the potential, we still would have to compute all
N(N-1)/2 pair distances to describe which pairs can interact. This implies that, if we use
no tricks, the time needed for the evaluation of the energy scales as N2. There exist efficient
techniques for speeding up the evaluation of both short-range and long-range interactions
in such a way that the computing time scales as N3/2, rather than N2. The techniques
for the long-range interactions will be discussed in due time. Here, we discuss some of the
techniques used for the short-range interactions. These techniques are:

• 1. Verlet list

19

• 2. Cell (or linked) list

• 3. Combination of Verlet and cell lists

10.1 Verlet List

If we simulate a large system and use a cutoff that is smaller than the simulation box,
many particles do not contribute to the energy of a particle i. It is advantageous therefore
to exclude the particles that do not interact from the expensive energy calculation. Verlet
[13] developed a bookkeeping technique, commonly referred to as the Verlet list or neighbor
list. In this method a second cutoff radius rν > rc is introduced.

Before we calculate the interactions, a list is made (the Verlet list) of all particles within
a radius rν of particle i and the position of all particles at the time of the calculation of
the list are saved. In the subsequent calculation of the interactions, only those particles in
this list have to be considered.

An efficient way to handle the list of the interactions without having to create a large
matrix is to prepare a list of all interactions and keep track of the initial and final position
in this list of the neightbour of particle i, as shown in the figure.

20

Until now we have not saved any CPU time. We gain such time when we next calculate
the interactions; if the maximum displacement of the particles is less than r − rc, then we
have to consider only the particles in the Verlet list of particle i. This is a calculation of
order N. As soon as any of the particles is displaced more than (rν − rc)/2, we have to
update the Verlet list. The latter operation is of order N2, and although this step is not
performed each time an interaction is calculated, it will dominate for a very large number
of particles.

The Verlet list can be used for both Molecular Dynamics and Monte Carlo simulations.
However, there are some small differences in the implementation. For example, in a Molec-
ular Dynamics simulation, the force on all particles is calculated at the same time. It is
sufficient therefore to have a Verlet list with half the number of particles for each particle
as long as the interaction i-j is accounted for in either the list of particle i, or that of j. In
a Monte Carlo simulation each particle is considered separately, therefore it is convenient
to have for each particle the complete list. To calculate the force or potential energy of
particle i, one has to locate the nearest image of the particles in the Verlet list of particle
j.

In summary, in the MC code we will need

select the particle to move

calculate its energy

move the particle

calculate its energy

accept/reject the move

21

if accept check if Verlet list need to be updated (if so, update it).

10.2 Linked Cell

An algorithm that scales with N is the cell list or linked-list method [24]. The idea of the
cell list is illustrated in Figure.

The simulation box is divided into cells with a size equal to or slightly larger than the
cutoff radius rc; each particle in a given cell interacts with only those particles in the same
or neighboring cells. Since the allocation of a particle to a cell is an operation that scales
with N and the total number of cells that needs to be considered for the calculation of the
interaction is independent of the system size, the cell list method scales as N.

In the MC code we will need

select the particle to move

calculate its energy

move the particle

calculate its energy

accept/reject the move

if accept verify if the particle has changed cell, if so update cell list

At the beginning, one need to define the cells (for a cubic box, the optimal number
of cells is [int(L/rc)]

3) and for each cell make a list of all particles included in the cell.
During the energy calculation of i , one need to evaluate all the interactions with particles
in the same cella as i as well as with the 26 connected cells (a ”topology” list which needs
to be prepared at the beginning and that does not change during the simulation) One also

22

need to write a subroutine to eliminate a particle from a cell list and a subroutine to add
a particle in a cell list.

10.3 Combining Verlet and linked cells

It is instructive to compare the efficiency of the Verlet list and cell list in more detail. In
the Verlet list the number of particles for which the distance needs to be calculated is in
three dimensions, given by

nν =
4

3
πρr3

ν

for the cell list the corresponding number is

nl = 27ρr3
c

If we use typical values for the parameters in these equations (Lennard-Jones potential
with rc = 2.5σ and rν = 2.7σ), we find that nl is five times larger than nν .

As a consequence, in the Verlet scheme, the number of pair distances that needs to be
calculated is 16 times less than in the cell list. The observation that the Verlet scheme
is more efficient in evaluating the interactions motivated Auerbach et al. [531] to use a
combination of the two lists: use a cell list to construct a Verlet list. The use of the cell
list removes the main disadvantage of the Verlet list for a large number of particles scales
as N2–but keeps the advantage of an efficient energy calculation.

23

11 mixtures of particles with different interaction ranges

In this case, optimization can be favoured by combining different verlet lists for the different
type of interactions.

12 E before

Computer time can be saved in a MC step if the energy of the selected particle i is calculated
ONLY after the random displacement. For this to be possible one need to keep track of
all interactions of each particles. In this way, when particle i is randomly selected, Ei can
be simply calculated by summing all interactions of i. When a move is accepted, then
one need not only to re-generate the list of interaction of i but also to update all previous
interactions of particle j with i, for all j. Naturally, this list of interaction need to be
created at the beginning of the simulation.

12.1 Linear Molecules

Consider a system consisting of N linear molecules. We specify the orientation of the i-th
molecule by a unit vector ui One possible procedure to change ui by a small, random
amount is the following. First, we generate a unit vector v with a random orientation.
This is quite easy to achieve

12.1.1 Random vectors on the surface of a sphere

There are a number of suitable methods for generating a vector on the surface of a unit
sphere. Marsaglia [1972] has suggested an interesting method:

• (a) Generate two uniform random numbers ξ1 and ξ2 between zero and one.

• (b) Trasform ξ1 = 1− 2ξ1 and ξ2 = 1− 2ξ2

• (c) Form the sum ξ2 = ξ2
1 + ξ2

2

• (d) If ξ < 1 than calculate the vector ~ξ = (2ξ1

√
1− ξ2, 2ξ2

√
1− ξ2, 1− 2ξ2)

• (e) If ξ > 1 reject and return to step (a).

This method requires on average 2.55 uniform variates and a square root. The method can
be readily extended to choosing points on a four-sphere and Marsaglia gives an appropriate
algorithm. To obtain random vectors in a plane normal to a given unit vector ~e, simply
subtract that part of ~ξ parallel to ~e, ~ξ − ~ξ · ~e and renormalize.

24

12.2 ... cont...

Next we multiply this random unit vector v by a scale factor γ.
The magnitude of γ determines the magnitude of the trial rotation. We now add γv

to ui. Let us denote the resulting sum vector by t: t = γv + ui. Note that t is not
a unit vector. Finally, we normalize t, and the result is our trial orientation vector fit.
We still have to fix γ, which determines the acceptance probability for the orientational
trial move. The optimum value of γ is determined by essentially the same criteria as for
translational moves. In summary, for linear molecule, calling û the original direction of
the linear molecule and ûROT the rotated direction of û we can implement the following
algorithm

ûROT =
û+ γv̂

|û+ γv̂|
where γ is a fixed number that plays the role of ∆ in the translational moves and v̂ is a
random verson on the unit sphere.

We have not yet indicated whether the translational and orientational trial moves should
be performed simultaneously. Both procedures are acceptable. However, if rotation and
translation correspond to separate moves, then the selection of the type of move should be
probabilistic rather than deterministic.

Another possibility is to select a random versor an a sphere v̂ and then perform a
rotation of all atoms composing the molecule arount the center of mass by a random angle
θ between −γ and γ around the random direction v̂ In both cases, the optimum value of
γ is determined by essentially the same criteria as for translational moves. The rotational
formula is

r′i = ri cos(θ) + v̂(v̂ · ri)(1− cos(θ) + r× v̂ sin(θ)

One should always verify that the selected algorithm generates with equal probability
all directions on the surface of a sphere.

25

We have not yet indicated whether the translational and orientational trial moves should
be performed simultaneously. Both procedures are acceptable. However, if rotation and
translation correspond to separate moves, then the selection of the type of move should be
probabilistic rather than deterministic.

13 In the case of non-linear rigid molecules

The situation for non-linear molecules is more complex. There one need to make sure that
the Euler angle defining the orientation of the molecule are all properly sampled. Instead
of using the Euler angle, it is convenient to encode the orientation of the molecule in a four
dimensional versor Q ≡ (q0, q1, q2, q3) (with q2

0 + q2
1 + q2

2 + q2
3 = 1) whose relation with the

Euler angle is given by

q0 = cos

(
θ

2

)
cos

(
φ+ ψ

2

)
q1 = sin

(
θ

2

)
cos

(
φ− ψ

2

)
q2 = sin

(
θ

2

)
sin

(
φ− ψ

2

)
q3 = cos

(
θ

2

)
sin

(
φ+ ψ

2

)
When the molecule is in the ”fixed” frame of reference, Q = (1, 0, 0, 0), since all Euler

angles are zero. The rotated position of the atom (xR, yR, zR) composing the molecule can
be calculated, knowing it position in the ”fixed” frame (x, y, z) and Q via the following
relation xRyR

zR

 =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

xy
z

 (12)

The molecule rotation can be achieved, as done for the linear molecule, by rotating Q

QROT =
Q + γV̂

|Q + γV̂ |

where now V̂ is a random vector in a four-dimensional unit sphere.

26

13.1 Generate uniform random number of a four-dimensional unit sphere

One possibility is offered by Marsaglia, annals of mathematical statistics, 43, 645 (1972).
Choose V1 and V2 independent uniform on (-1,1) until S1 = V 2

1 + V 2
2 < 1. Chose V3

and V4 independent uniform on (-1,1) until S2 = V 2
3 + V 2

4 < 1. Then

(V1, V2, V3[(1− S1)/S2]1/2, V4[(1− S1)/S2]1/2)

is uniform on the surface of the unit 4-dimensional sphere

14 Equilibrazione

Once the starting configuration has been selected (fixing in this way the density), the MC
code can be put in production. It is highly recommended to save configurations periodically
during the MC simulation, to be able or to perform a succesfull data analysis or to restart a
simulation from the saved configuration at the same or at a different T (which should thus
be written in the same format as the starting configuration). It is also recommended to
save the total potential energy during the course of the simulation, to be able to monitor in
real time the evolution of the system. Starting from a random configuration, the potential
energy typically behaves as in the figure.

0 500 1000 1500 2000 2500 3000 3500 4000
MC steps

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Po
te

nt
ia

l E
ne

rg
y

LJ ρ=1.0 T=1
N=1000

When the system is considered equilibrated (e.g. when the energy fluctuates around a
non-drifting average) the equilibration phase can be considered completed and the following
configurations can be considered as a proper canonical representation of the system.

27

15 From a set of equilibrium configurations:MSD

The configurations can then be used to evaluate statistical properties of the system at the
selected T and density. It is always recommended to further test if equilibration is indeed
achieved. To this aim one can calculate the mean square-displacement (in MC steps),
averaged over all different particles and all different initial time 0 (time is in unit of MC
steps)

MSD(t) =
1

N
<
∑
i

|ri(t)− ri(0)|2 >t=0

to make sure the particles have diffuse a reasonable distance (of the order of their
diameter) during the entire simulation. An example for the same system as before is
reported in the following figure.

0 1000 2000 3000 4000 5000 6000
MC steps

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t
 (σ

2)

LJ ρ=1.0 T=1
N=1000

16 From a set of equilibrium configurations: The structure
of the system in real space

The most important function in the theory of simple liquids is the the so-called radial
distribution function g(r). The radial distribution function is of interest for two reasons:
first of all, neutron and X-ray scattering experiments on simple fluids, and light-scattering
experiments on colloidal suspensions, yield information about g(r). Second, g(r) plays a
central role in theories of the liquid state. Numerical results for g(r) can be compared
with theoretical predictions and thus serve as a criterion to test a particular theory. In a

28

simulation, it is straightforward to measure g(r): it is simply the ratio between the average
number density n(r) at a distancer from any given atom (for sim- plicity we assume that
all atoms are identical) and the density at a distance r from an atom in an ideal gas at the
same overall density. By construction, g(r) = 1 in an ideal gas. Any deviation of g(r) from
unity reflects correlations between the particles due to the intermolecular interactions.

To calculate g(r) one need to build the histogram of the relative distances between all
pairs of particles. A typical bin mesh δ is of the order of 1/20 of the nearest neighbour
distance. To avoid spurious effect due to the PBC, the histogram is calculated (at most)
between 0 and half of the box length. Each bin of the histogram then need to be normalized
to the expected ideal gas case. If the j bin includes all found particle pairs between rj−δ/2
and rj + δ/2, then the expected pairs for an ideal gas of density (N/− 1)L3 (N − 1 enters
instead of N since it is the density of an ideal gas excluded the particle in the origin) is

Nj =
N − 1

L3

4π

3
[(rj + δ/2)3 − (rj − δ/2)3]

The histogram thus need to be normalized by N (to account for the number of particles
assumed to be in the origin), by Nj and by the number of configurations analized to
calculate g(r). Note that if distances are calculated with the i > j condition, then each
found relative distance must increase the histogram by two (ij and ji).

17 From a set of equilibrium configurations: The structure
of the system in Fourier space

The structure factor S(q) is related to the Fourier transform in wavevector space of the
radial distribution function. It is the quantity that is measured in all static scattering
experiments. If the quality of the g(r) is very high and the box is so large that g(r) has
endeed reached the asintothic value for r < L/2, then S(q) can be calculated by Fourier
transform of the g(r). If this is not the case, then it is convenient to calculate S(q) directly
in q space according to the definition

S(q =
1

N
< ρqρ

∗
q >

where < > indicates a thermodynamic average (e.g. and average over all different
configurations). The complex quantity ρq is the Fourier transform of the density, e.g.

ρq =

N∑
i=1

eiq·ri

being ρ(r) =
∑N

i=1 δ(r− ri) For isotropic systems it is possible to average over all different
wavevectors with identical (within a pre-fixed bin width) modulus |q|.

29

Due to PBC, the accessible wavevectors can be written as

q =
2π

L
(nx, ny, nz)

where nx, ny, nz are integer numbers. Note that −nx,−ny,−nz and nx, ny, nz are identical
and thus the averaging in q should involve only the upper semi-space. Thus the smallest
accessible wavevector is q = 2π

L and it can be averaged over three independent directions
(1, 0, 0),(0, 1, 0) and (0, 0, 1). A typical bin width is 1

2
2π
L .

18 From a set of equilibrium configurations: The pressure
(atoms and molecules)

The thermodynamic definition of pressure is

P = −∂A
∂V T

= kT
∂lnQ

∂V T
(13)

To highlight the V dependence it is convenient to write the partition function in term
of scaled variables ~r = ~ξL, where L3 = V .

QN =
V N

N !Λ3N

∫ 1

0
....

∫ 1

0
exp

[
−βU(~ξN , V)

]
d~ξN (14)

so that

P = kT
1

QN

∂QN
∂V T

=
NkT

V
− < ∂U

∂V
> (15)

In addition to the ideal gas contribution, one thus find a term that, configuration by
configuration, express the energetic cost associated to an isotropic volume scaling. Hence
each configuration ~rN can be associated to a microscopic pressure P ≡ ∂U

∂V whose thermo-
dynamic average is the excess pressure For pair-wise potentials (U = 1

2

∑
ij v(|rij |))

P = −∂U
∂V

=
1

3L2

∂U

∂L
=

1

3L2

1

2

∑
ij

[
∂v(|rij |)
∂xij

∂xij
∂L

+
∂v(|rij |)
∂yij

∂yij
∂L

+
∂v(|rij |)
∂zij

∂zij
∂L

]
=

1

3L2

∑
i<j

~Fij · ~ξij =
1

3L3

∑
i<j

~Fij · ~rij

such that

P ex =
1

3V
<
∑
i<j

~Fij · ~rij > (16)

This expression is commonly implemented in the numerical codes to evaluate the pressure.

30

We note on passing that the excess pressure is related to g(r)

P ex = − 1

3V

N

2

∫
4πr2ρ

dv(r)

dr
rg(r)dr (17)

P =
NkT

V

[
1− ρ

6kT

∫
rg(r)

dv(r)

dr
4πr2dr

]
(18)

18.0.1 Viral

An alternative derivation of the microscopic pressure is based on the temporal average of
a quantity named ”virial”.

V ≡
N∑
1

~ri · ~Fi

The time average is

< V >t= lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

~ri(t) · ~Fi(t) = lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

m~ri(t) · ~̈ ir(t)

Integrating by parts

lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

m~ri(t) · ~̈ ir(t) = lim
τ→∞

1

τ

[
N∑
1

m~ri(t) · ~̇ ir(t)|τ0 −
∫ τ

0
dτ

N∑
1

m|~̇ ir(t)|2
]

The first term vanishes since positions and velocities are uncorrelated. Hence

< V >t= − lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

m|~̇ ir(t)|2 = −3NkBT

Considering that ~Fi = ~F inti + ~F exti , and that external forces are applied on the sample
holder, and assuming that the holder is a cube of size L

< V >t= −3NkBT = lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

~ri(t) · ~F inti (t) + lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

~ri(t) · ~F exti (t) =

The second integral is zero on the three sides with coordinates x = 0, y = 0 and z = 0 and
it is L times −PL2 on the three sides located in L,

< V >t= −3NkBT = lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
1

~ri(t) · ~F inti (t)− 3PV

31

so that

PV = NkBT +
1

3
<

N∑
1

~ri(t) · ~F inti (t) >t

or, remembering the minus sign connecting the force to the potential

PV = NkBT −
1

3
<

N∑
1

~ri(t) · ~∇iVN [~ri(t)] >t

18.1 Molecular Virial

Although mathematically correct and physically sensible for purely atomic systems, the
atomic virial might seem to be an overkill for molecular systems. In a collection of
molecules, assuming no constraints, the force Fi appearing in the atomic virial contains
both intramolecular and intermolecular components. If the size of the molecule is small
compared to its container, it is more intuitive to think of the coordinate scaling as acting
only on the centers of mass of the molecules rather than on each atom individually. That
is, the scaling should only affect the relative positions of the molecules rather than the
bond lengths and angles within each molecule. In fact, an alternative pressure estimator
can be derived by scaling only the positions of the molecular centers of mass rather than
individual atomic positions. Consider a system of N molecules with centers of mass at posi-
tions R1, ...,RN . For isotropic volume fluctuations, we would define the scaled coordinates
S1, ...,SN of the centers of mass by

Si = V −1/dRi

If each molecule has n atoms with masses mi,1, ...,mi,n and atomic positions ri,1....ri,N
then the center-of-mass position is

Ri =

∑N
α=1mi,αri,α∑N
α=1mi,α

Repeating the same type of calculations done for the atomic virial, (at fixed molecular
orientations !) one get again

P = kT
1

QN

∂QN
∂V T

=
NkT

V
− < ∂U(rN ,ΩN)

∂V
> (19)

This time

P = −∂U(rN ,ΩN)

∂V
=

1

3L2

∂U(rN ,ΩN)

∂L
|ΩN

=
1

3L2

1

2

∑
ij

[
∂v(|Rij |)
∂Xij

∂Xij

∂L
+
∂v(|Rij |)
∂Yij

∂Yij
∂L

+
∂v(|Rij |)
∂Zij

∂Zij
∂L

]
=

32

where ~Fij is the force between the com of molecule i and j (the sum over all pair of
interaction sites of i and j)

1

3L2

∑
i<j

~Fij · ~ξij =
1

3L3

∑
i<j

~Fij · ~Rij

such that

P ex =
1

3V
<
∑
i<j

~Fij · ~Rij > (20)

The virial term

N∑
i=1

Ri · Fi

where, calling α all sites composing molecule i

Fi =
∑
α

Fi,α

is known as the molecular virial.

18.2 Proof of Equivalence between atomic and molecular virial for a
polymer

Let’s define the coordinates of the sites {~ri} with respect to the first one

H = H({~ri})

Since∑
i

∑
j>i

~Fij · (~ri − ~rj) =
1

2

∑
i

∑
j

(
~Fij · ~ri + ~Fji · ~rj

)
=

1

2
2
∑
i

∑
j

~Fij · ~ri =
∑
i

~Fi · ~ri

the pressure P is

P = − 1

3V

1

ZN

∑
i

∫
d~r1...d~rN ~Fi · ~rie−βH(~ri)

Let’s examine one element of the previous sum, for example the x component of particle 2
(including the minus sign)

− 1

ZN

∫
d~r1...d~rN

∂H

∂x2
x2e
−βH(~ri) =

1

ZN

∫
d~r1...d~rNx2

∂

∂x2
e−βH(~ri)

1

−β
=

=
1

−β
1

ZN

[
x2e
−βH(~ri)|∞∞ −

∫
e−βH(~ri)

]
33

and since H(±∞) = ±∞, being the polymer of finite length,

=
1

−β
[− 1

Z
Z] = kBT

There are 3N−3 of these contributions (the first monomer is fixed in the origin) and hence

Pvirial = 3(N − 1)
kBT

3V
Pig = N

kBT

V

such that

PTOT =
kBT

V

34

