
1 Numerical Integrators

We are now at the crucial step of the MD code, the integration of the equation of motion,
e.g. the build up of the system trajectory in phase-space. We need to find algorithms that
preserves time invariance and phase-space compressibility. These conditions are crucial to
generate algorithms that do not present significant drift in the total energy with time.

1.1 Verlet

The most common integrator (Verlet integrator) originates from the addition between the
future and past Taylor expansion of the trajectory (that requires information of position,
velocity and acceleration at time t)

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
1

2
∆t2ai(t)

and

ri(t−∆t) = ri(t)−∆tvi(t) +
1

2
∆t2ai(t)

Summing up the two equations to eliminate the velocity gives

ri(t+ ∆t) + ri(t−∆t) = 2ri(t) + ∆t2ai(t)

which can be rewritten as

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) + ∆t2
Fi(t)

m
(1)

Eq. 41 provides the trajectory of the particles building only on information of the
previous position. The velocity, if needed, can be calculated as

vi(t) =
ri(t+ ∆t)− ri(t−∆t)

2∆t

1.1.1 Time reversal of the Verlet algorithm

Let’s write the trajectory according to Verlet at time t+ ∆t and t+ 2∆t

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) + ∆t2
Fi(t)

m
(2)

ri(t+ 2∆t) = 2ri(t+ ∆t)− ri(t) + ∆t2
Fi(t+ ∆t)

m
(3)

If we are in ri(t + ∆t) and decide to go back in time (by −∆t) we should write [(t →
t+ ∆t) and ∆t→ −∆t)]
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rbacki (t+ ∆t−∆t) = 2ri(t+ ∆t)− ri(t+ ∆t− (−∆t)) + ∆t2
Fi(t+ ∆t)

m

Substituting the force at t+ ∆t from Eq. 3 one gets

rbacki (t) = 2ri(t+ ∆t)− ri(t+ 2∆t) + ri(t+ 2∆t)− 2ri(t+ ∆t) + ri(t) = ri(t)

proving the time reversal of the Verlet algorithm.

1.2 Leap-Frog

The Leap-Frog algorithm is equivalent to Verlet (i.e. it provides the same trajectory as
Verlet). It only differs in the definition of the velocities.

We start from the numerical definition of derivatives for v and a

vi(t+ ∆t/2) =
ri(t+ ∆t)− ri(t)

∆t

and

ai(t) =
vi(t+ ∆t/2)− vi(t−∆t/2)

∆t

These two equations define, once written in the form

ri(t+ ∆t) = ri(t) + v(t+ ∆t/2)∆t (4)

vi(t+ ∆t/2) = vi(t−∆t/2) + ∆tai(t) (5)

the Leap-Frog algorithm.
To verify that the Leap-Frog is equivalent to Verlet, let’s consider

vi(t−∆t/2) =
ri(t)− ri(t−∆t)

∆t

Substituting Eq. 5 in Eq. 4 and the previous expression for vi(t−∆t/2) one gets

ri(t+ ∆t) = ri(t) + ∆tvi(t−∆t/2) + ∆t2ai(t) = ri(t) + ∆t(
ri(t)− ri(t−∆t)

∆t
) + ∆t2ai(t)

= 2ri(t)− ri(t−∆t) + ∆t2ai(t)

that coincides with the Verlet trajectory.
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1.3 Velocity Verlet

A more accurate related algorithm is based on a equal treating of position and momenta.
Starting again from the Taylor expansions of ri(t+ ∆t) around ri(t) one get

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
1

2
∆t2ai(t) (6)

Similarly, expanding ri(t) this time around ri(t+ ∆t) (e.g. back in time) one obtains

ri(t) = ri(t+ ∆t)−∆tvi(t+ ∆t) +
1

2
∆t2ai(t+ ∆t)

These two expressions can be combined, eliminating all position informations, in

vi(t+ ∆t) = vi(t) +
∆t

2
[ai(t) + ai(t+ ∆t)] = vi(t) +

∆t

2m
[Fi(t+ ∆t) + Fi(t)] (7)

Eq. 7, together with the Taylor expansion of the positions (Eq. 6) evolves simultaneously
both position and velocities. First it evolves positions, then evaluate the forces at the new
position, then evolves the velocities. The iteration of this cycles generates the complete
trajectory in phase-space.

Both the Verlet and the velocity Verlet algorithms satisfy the two main requests of a
stable MD propagation algorithm. Both algorithms indeed satisfy time reversal (e.g. from
the position at time t+ ∆t one recovers exactly the original position at time t if a negative
∆t is chosen). Both algorithms are also simplectic, e.g. preserve the volume in phase space,
as we will discuss later on.

2 Brief background on Lagrangian, Hamiltonian, Compress-
ibility, Symplectic structure

2.1 Equation of motion in the Hamilton representation

The Hamilton equation of motion for q and p are

q̇α =
∂H
∂pα

and

ṗα = − ∂H
∂qα

where H(q,p) is the Hamiltonian of the system.
There are two important properties of the Hamilton equation that should be preserved

in a numerical description of the dynamics: (i) the conservation of energy and (ii) the
incompressibility of the phase space.
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2.2 (i) Energy Conservation

Hamilton’s equations conserve the total Hamiltonian:

dH
dt

= 0

Since H is the total energy, this equation is just the law of energy conservation. In
order to see that H is conserved, we simply compute the time derivative via the chain rule
in generalized coordinates

dH
dt

=
∑
α

[
∂H
∂qα

∂H
∂pα
− ∂H
∂pα

∂H
∂qα

]
The conservation of energy defines a 3N − 1 dimensional surface in the phase space on

which a trajectory must remain. This surface is known as the constant-energy hypersurface
or simply the constant-energy surface.

2.3 (ii) Incompressibility of the phase space

Another fundamental property of Hamilton’s equations is known as the condition of phase
space incompressibility. To understand this condition, consider writing Hamilton’s equa-
tions directly in terms of the phase space vector as

ẋ = η(x)

where η(x) is a vector function of the phase space vector x. Since

x = (q1, q2...q3N , p1, ....p3N )

it follows that

ẋ =

(
∂H
∂p1

, .....,
∂H
∂p3N

,−∂H
∂q1

, .....,− ∂H
∂q3N

)
This equation illustrates the fact that the general phase space ”velocity” ẋ is a function

of x, suggesting that motion in phase space can be regarded as a kind of ”flow field” as
in hydrodynamics, where one has a physical velocity flow field, v(r). Thus, at each point
in phase space, there will be a velocity vector ẋ(x) equal to η(x). In hydrodynamics,
the condition for incompressible flow is that there be no sources or sinks in the flow,
expressible as ∇ · v = 0. In phase space flow, the analogous condition is ∇x · ẋ = 0, where
∇x = ∂/∂x is the phase space gradient operator. Hamilton’s equations of motion guarantee
that the incompressibility condition in phase space is satisfied. To see this, consider the
compressibility in generalized coordinates

∇x · ẋ =
3N∑
α=1

[
∂q̇α
∂qα

+
∂ṗα
∂pα

]
=

3N∑
α=1

[
∂

∂qα

∂H
∂pα
− ∂

∂pα

∂H
∂qα

]
= 0
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3 The classical time evolution operator (Tuckerman)

Thus far, we have discussed numerical integration in a somewhat simplistic way, relying on
Taylor series expansions to generate update procedures. However, because there are certain
formal properties of Hamiltonian systems that should be preserved by numerical integration
methods, it is important to develop a formal structure that allows numerical solvers to be
generated more rigorously. The framework we seek is based on the classical time evolution
operator approach, and we will return to this framework repeatedly throughout the book.

We begin by considering the time evolution of any function a(x) of the phase space
vector. If a(x) is evaluated along a trajectory xt, then in generalized coordinates, the time
derivative of a(xt) is given by the chain rule

da

dt
=
∑
i,α

(
∂a

∂ri,α
ṙi,α −

∂a

∂pi,α
ṗi,α)

Inserting the classical law of evolution provided by the Hamilton equations

dri,α
dt

=
∂H
∂pi,α

dpi,α
dt

= − ∂H
∂ri,α

one obtains

da

dt
=
∑
i,α

(
∂a

∂ri,α

∂H
∂pi,α

− ∂a

∂pi,α

∂H
∂ri,α

) = {a,H} = −{H, a}

By defining a Liouville operatore L as

iLa = {a,H}

(where the imaginary i is included to stress the analogy with the corresponding quantum
propagator) we can write the symbolic evolution of a as

da

dt
= iLa

and the formal solution
a(xt) = eiLta(x0) (8)

If we identify a(xt) with xt then

xt = eiLtx0 (9)

we see that eiLt is the operator that propagates the trajectory in phase-space.
Although elegant in its compactness, Eq. 9 amounts to little more than a formal device

since we cannot evaluate the action of the operator eiLt on x0 exactly. If we could, then
any and every problem in classical mechanics could be solved exactly analytically and we
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would not be in the business of developing numerical methods in the first place! What
Eq. 9 does do is it provides us with a very useful starting point for developing approximate
solutions to Hamilton’s equations. The Liouville operator can be written as a sum of two
contributions

iL = iL1 + iL2

iL1 =
∑
i,α

∂H
∂pi,α

∂...

∂ri,α

iL2 = −
∑
i,α

∂H
∂ri,α

∂....

∂pi,α

Unfortunately, L1 and L2 are examples of non-commuting operators and the order by
which the two operators are applied is important.

3.1 Test of the commuting properties for an harmonic oscillator

In the case of a one dimensional harmonic oscillator,

H(x, p) =
p2

2m
+ U(x)

iL1 =
p

m

∂

∂x

iL2 = F (x)
∂

∂p

To test for the commuting property, let’s apply L1L2 and L2L1 to a generic function φ(x, p).

(iL1)(iL2)φ(x, p) =

(
p

m

∂

∂x

)(
F (x)

∂

∂p

)
φ(x, p)

and working from the right

(iL1)(iL2)φ(x, p) =

(
p

m

∂

∂x

)(
F (x)

∂φ(x, p)

∂p

)
=

=
p

m

(
dF (x)

dx

∂φ(x, p)

∂p
+ F (x)

∂2φ(x, p)

∂x∂p

)
and

(iL2)(iL1)φ(x, p) =

(
F (x)

∂

∂p

)(
p

m

∂

∂x

)
φ(x, p) =
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(
F (x)

∂

∂p

)(
p

m

∂φ(x, p)

∂x

)
=

F (x)

m

(
∂φ(x, p)

∂x
+ p

∂2φ(x, p)

∂p∂x

)
Since φ(x, p) is a generic function

[iL1, iL2] =
p

m

dF (x)

dx

∂

∂p
− F (x)

m

∂

∂x

proving that the two operators do not commute.

3.2 General case: Trotter

Since L1 and L2 generally do not commute, the classical propagator exp(iLt) = exp[(iL1 +
iL2)t] cannot be separated into a simple product exp(iL1t) exp(iL2t). This is unfortunate
because in many instances, the action of the individual operators exp(iL1t) and exp(iL2t)
on the phase space vector can be evaluated exactly. Thus, it would be useful if the prop-
agator could be expressed in terms of these two factors. In fact, there is a way to do this
using an important theorem known as the Trotter theorem (Trotter, 1959). This theorem
states that for two operators A and B for which [A,B] 6= 0,

e(A+B) = lim
P→∞

[
eB/2P eA/P eB/2P

]P
(10)

where P is an integer. In fact, Eq. 10 is commonly referred to as the symmetric Trotter
theorem or Strang splitting formula (Strang, 1968). The proof of the Trotter theorem
is somewhat involved and can be found in the Appendix C of the Tuckerman book for
interested readers. Applying the symmetric Trotter theorem to the classical propagator
yields

eiLt = eiL1t+iL2t = lim
∆t→0

[
eiL2∆t/2eiL1∆teiL2∆t/2

](t/∆t)
(11)

Interestingly, we could apply this expression for t = ∆t (with the constraint of ∆t→ 0)
, obtaining

eiL∆t = eiL1t+iL2t ≈ eiL2∆t/2eiL1∆teiL2∆t/2 (12)

The utility of Eq. 12 is that if the contributions L1 and L2 to the Liouville operator
are chosen such the action of the operators exp(L1∆t) and exp(L2∆t) can be evaluated
analytically, then Eq. 12 can be used as a numerical propagation scheme for a single time
step.

Before progressing, let’s look how a generic exponential operator e
c ∂
∂y , where c is a

constant (independent on y) acts on a function g(y).
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e
c ∂
∂y g(y) =

∞∑
k=0

1

k!

(
c
∂

∂y

)k
g(y) =

∞∑
k=0

1

k!
ck
∂kg(y)

∂yk
= g(y + c) (13)

where in the last step we have exploited the Taylor expansion of the function g(y + c)
around y. Note that, if g(y) is a constant (e.g. is a function of x – e.g. h(x) – which does
not dependent on y) only the first term in the sum remains and

e
c ∂
∂y h(x) =

∞∑
k=0

1

k!

(
c
∂

∂y

)k
h(x) = h(x) (14)

We are now in a position to apply the Trotter factorisation scheme to the classical
evolution of a system. Choosing an Hamiltonian as

H =
∑
i

p2
i

2m
+ U(r1, r2, ....rN )

iL1 =
∑
i,α

pi,α
m

∂...

∂ri,α
= iL1 =

N∑
i=1

pi
m
· ∂...
∂ri

iL2 =
∑
i,α

Fi,α
∂....

∂pi,α
=

N∑
i=1

Fi ·
∂....

∂pi

so that

[
ri(∆t)
pi(∆t)

]
= exp

[
∆t

2
Fi ·

∂

∂pi

]
exp

[
∆t

pi
m
· ∂
∂ri

]
exp

[
∆t

2
Fi ·

∂

∂pi

] [
ri
pi

]
(15)

operating one by one from right to left we obtain[
ri(∆t)
pi(∆t)

]
= exp

[
∆t

2
Fi ·

∂

∂pi

]
exp

[
∆t

pi
m
· ∂
∂ri

] [
ri

pi + ∆t
2 Fi(r

N )

]
= (16)

exp

[
∆t

2
Fi ·

∂

∂pi

] [
ri + ∆tpi

m

pi + ∆t
2 Fi(r

N + ∆tpi
m )

]
= (17)[

ri + ∆t
m (pi + ∆t

2 Fi(r
N ))

pi + ∆t
2 Fi(r

N ) + ∆t
2 Fi{rN + ∆t

m (pi + ∆t
2 Fi(r

N )}

]
(18)

The result is thus (by going from p to v, and stressing the previous time as t = 0)

ri(∆t) = ri(0) + ∆tvi(0) +
∆t2

2m
Fi(r

N (0))
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and

vi(∆t) = vi(0) +
∆t

2m

[
Fi(r

N (0)) + Fi(r
N (∆t))

]
which coincide with the velocity Verlet algorithm. It is also interesting to observe that the
factorisation implied by the Trotter approach matches with a sequential update of positions
and velocities. Indeed, we can see Eq. 15 as the sequential application of

p(∆t/2) = p(0) +
∆t

2
Fi(r

N (0))

r(∆t) = r(0) +
∆t

m
p(∆t/2)

and

p(∆t) = p(∆t/2) +
∆t

2
Fi(r

N (∆t))

that very nicely resemble lines of a computer code. The third line involves a call
to some function or subroutine that updates the force from the new positions generated
in the second line. When written this way, the specific instructions are: i) perform a
momentum translation; ii) follow this by a position translation; iii) recalculate the force
using the new position; iv) use the new force to perform a momentum translation. The fact
that instructions in computer code can be written directly from the operator factorization
scheme, bypassing the lengthy algebra needed to derive explicit finite-difference equations,
is an immensely powerful technique that we term the direct translation method (Martyna
et al., 1996). Because direct translation is possible, we can simply let a factorization of the
classical propagator denote a particular integration algorithm; we will employ the direct
translation technique in many of our subsequent discussions of numerical solvers.

4 Multiple time scales (from Tuckerman)

One of the most ubiquitous aspects of complex systems in classical mechanics is the presence
of forces that generate motion with different time scales. Examples include long biological
macromolecules such as proteins as well as other types of polymers. In fact, virtually
any chemical system will span a wide range of time scales from very fast bond and bend
vibrations to global conformational changes in macromolecules or slow diffusion/transport
molecular liquids, to illustrate just a few cases.

4.1 The FENE (finitely extensible nonlinear elastic) potential

One possible way to simulated a bonded pair is to include a interaction potential between
the two bonded atoms defined (for r < R0)

V FENE(r) = −1

2
kR2

0 ln

[
1−

(
r

R0

)2
]

9



where R0 is the maximum extension of the bond and k plays the role of elastic constant.
For r > R0 V

FENE = 0. For small r the standard repulsion confined the bond. Often the
FENE potential is used in combination with the cut and shifted LJ potential, cut at the
minimum (r = 21/6σ) and shifted by ε.

On the time scale over which the fast forces vary naturally, the slow forces change very
little. In the simple velocity Verlet scheme, one time step δt is employed whose magnitude
is limited by the fast forces, yet all force components must be computed at each step,
including those that change very little over a time δt. Ideally, it would be advantageous to
develop a numerical solver capable of exploiting this separation of time scales for a gain in
computational efficiency. Such an integrator should allow the slow forces to be recomputed
less frequently than the fast forces, thereby saving the computational overhead lost by
updating the slow forces every step. The Liouville operator formalism allows this to be
done in a rigorous manner, leading to a symplectic, time-reversible multiple time-scale
solver. We will show how the algorithm is developed using, once again, the example of a
single particle in one dimension. Suppose the particle is subject to a force, F (x), that has
two components, Ffast(x) and Fslow(x). The equations of motion are

ẋ =
p

m

ṗ = Ffast(x) + Fslow(x)

The associated Loiville operator is

iL =
p

m

∂

∂x
+ [Ffast(x) + Fslow(x)]

∂

∂p

that we can split as

iLfast =
p

m

∂

∂x
+ Ffast(x)

∂

∂p

and

iLslow = Fslop(x)
∂

∂p

and applying the Trotter scheme

eiL∆t = eiLslow∆t/2eiLfast∆teiLslow∆t/2 (19)

This factorization leads to the reference system propagator algorithm or RESPA for
short (Tuckerman et al., 1992). The idea behind the RESPA algorithm is that the step
∆t appearing in Eq. 19 is chosen according to the time scale of the slow forces. There are
two ways to achieve this: Either the propagator eiLfast∆t is applied exactly analytically, or
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eiLfast∆t is further factorized with a smaller time step δt that is appropriate for the fast
motion.

When the reference system cannot be solved analytically, the RESPA concept can still
be applied by introducing a second time step δt = ∆t/n and writing

eiLfast∆t ==

{
exp

[
δt

2
Ffast ·

∂

∂p

]
exp

[
δt

p

m
· ∂
∂ri

]
exp

[
δt

2
Ffast ·

∂

∂p

]}n
(20)

Substitution of Eq. 20 into Eq. 19 yields a purely numerical RESPA propagator given
by the following set of instructions:

p = p+ 0.5∆tFslow

for i = 1 to n

p = p+ 0.5δtFfast

x = x+ δt
p

m
Recalculate fast force

p = p+ 0.5δtFfast

end for

Recalculate slow force

p = p+ 0.5∆tFslow.

5 Molecular Dynamics of Hard Spheres (From Allen)

The molecular dynamics of molecules interacting via hard potentials (i.e. discontinuous
functions of distance) must be solved in a way which is qualitatively different from the
molecular dynamics of soft bodies. Whenever the distance between two particles becomes
equal to a point of discontinuity in the potential, then a ’collision’ (in a broad sense)
occurs: the particle velocities will change suddenly, in a specified manner, depending upon
the particular model under study. Thus, the primary aim of a simulation program here is to
locate the time, collision partners, and all impact parameters, for every collision occurring
in the system, in chronological order. Instead of a regular, step-by-step, approach, as for
soft potentials, hard potential programs evolve on a collision-by-collision basis, computing
the collision dynamics and then searching for the next collision. The general scheme may
be summarized as follows:

• (a) locate next collision;

• (b) move all particles forward until collision occurs;

• (c) implement collision dynamics for the colliding pair;
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• (d) calculate any properties of interest, ready for averaging, before returning to (a).

Because of the need to locate accurately future collision times, simulations have been
restricted mainly to systems in which force-free motion occurs between collisions, and in
which the molecular geometry is spherical. In these simple cases, which include hard
spheres [Alder and Wainwright 1959, 1960], rough, and otherwise-modified, hard spheres
[O’Dell and Berne 1975; Berne 1977], and square-well molecules [Alder and Wainwright
1959], location of the time of collision between any two particles requires the solution
of a quadratic equation. The computational problems become quite daunting when we
consider solving the highly non- linear equations that result from models in which the
hard cores are supplemented with long-range soft potentials. An example is the primitive
model of electrolytes, consisting of hard spheres plus Coulomb interactions. By contrast,
such systems may be handled easily using Monte Carlo simulation. Recent developments
suggest that it may be possible to treat these ’hybrid’ hard + soft systems by returning to
an approximate ’step-by- step’ approach [Stratt, Holmgren, and Chandler 1981; McNeill
and Madden 1982].

A program to solve hard-sphere molecular dynamics has two functions to perform: the
calculation of collision times and the implementation of collision dynamics. The collision
time calculation is the expensive part of the program, since, in principle, all possible
collisions between distinct pairs must be considered. Consider two spheres, i and j, of
diameter σ, whose positions at time t are ri and rj , and whose velocities are vi and vj . If
these particles are to collide at time t+ ∆t then the following equation will be satisfied:

|rij(t+ ∆t)| = |rij(t) + ∆tvij | = σ

Defining bij = rij · vij the previous equation (second equality) becomes

rij(t) · rij(t) + ∆t2vij · vij + 2∆tbij − σ2 = 0 (21)

This is a quadratic equation in ∆t If bij > 0, then the molecules are going away from
each other and they will not collide. If bij < 0 , it may still be true that the discriminant is
negative, in which case eqn 21 has complex roots and again no collision occurs. Otherwise
(assuming that the spheres are not already overlapping) two positive roots arise, the smaller
of which corresponds to impact.

∆t =
−bij −

√
b2ij − v2

ij(r
2
ij − σ2)

v2
ij

(22)

A list of all collision times, for all pairs in the system, allow us to evaluate the shortest
of them and propagate the system from t to the shorted found ∆t. All molecules are moved
forward by the time ∆t , the periodic boundary conditions are applied, and the table of
future collision times is adjusted accordingly.
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Note that in applying the minimum image convention for periodic boundaries one only
need to examine the nearest images of any two particles in order to pick out the collision
between them. This approximation breaks down a low densities.

Now we are ready to carry through the second part of the calculation, namely the
collision dynamics themselves. The changes in velocities of the colliding pair are completely
dictated by the requirements that energy and linear momentum be conserved and (for
smooth hard spheres) that the impulse acts along the line of centres.

For particles of equal masses, the collision generates only a variation of the component
of the velocity along the rij direction. Specifically

δvij = −rij · vij
|rij |

rij
|rij |

= −bij
σ2

rij

so that

vi(t+ ∆t) = vi(t) + δvij

and
vj(t+ ∆t) = vj(t)− δvij

The event-driven simulations can be implemented also in the case of the square-well
potential. Now, for each pair, there are two distances at which ’collisions’ occur, so the
algorithm for determining collision times is slightly more involved. Collisions at the inner
sphere obey normal hard-sphere dynamics; at the outer boundary, the change in momen-
tum is determined by the usual conservation laws. For molecules approaching each other,
the potential energy drops on crossing the boundary, and so the kinetic energy shows a
corresponding increase. If the molecules are separating, two possibilities arise. If the total
kinetic energy is sufficient, the molecules cross the boundary with a loss of kinetic energy to
compensate the rise in potential energy. Alternatively, if the kinetic energy is insufficient,
reflection at the outer boundary occurs and the particles remain ’bound’. More compli-
cated potentials involving several ’steps’ can be treated in the same way; a quite realistic
potential can be constructed from a large number of vertical and horizontal segments, but
of course the simulation becomes more expensive as more ’collisions’ have to be dealt with
per unit time [Chapela, Martinez-Casas, and Alejandre 1984].

6 Brownian Simulation - Elaborated from Allen

A straightforward method of conducting ’Brownian dynamics’ simulations based on

ṗ(t) = −ξp(t) + f(t) + R(t)

(where R(t) is a random force) has been developed by Ermak [Ermak 1976; Ermak and
Buckholtz 1980]. Somewhat different schemes have been employed elsewhere [Morf and
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Stoll 1977; Schneider and Stoll 1978; Turq, Lantelme, and Friedman 1977; Adelman 1979].
In Ermak’s approach, the equations of motion are integrated over a time interval δt under
the assumption that the systematic forces f(t) remain approximately constant. The result is
an algorithm based on stored positions, velocities, and accelerations. For a one-component
atomic system, the algorithm may be written

r(t+ δt) = r(t) + c1δtv(t) + +c2δt
2a(t) + δrG

v(t+ δt) = c0v(t) + c1δta(t) + δvG

with
c0 = e−ξδt

c1 =
(1− c0)

ξδt

c2 =
(1− c1)

ξδt

Here

δrG =

∫ t+δt

t
ξ−1(1− e−ξ(t+δt−t′))m−1R(t′)dt′

and

δvG =

∫ t+δt

t
e−ξ(t+δt−t

′)m−1R(t′)dt′

Indeed, a formal integration of the velocity equation gives

mv(t) = mv(0)exp(−ξt) + exp(−ξt)
∫ t

0
exp(ξs)(f(s) + R(s))ds (23)

and

mv(t+ δt) = mv(0) exp(−ξ(t+ δt)) + exp(−ξ(t+ δt)

∫ t+δt

0
exp(ξs)(f(s) + R(s))ds (24)

such that, substituting mv(0) exp(−ξt) = mv(t)− exp(−ξt)
∫ t

0 exp(ξs)(f(s) + R(s))ds

mv(t+ δt) = mv(t)exp(−ξδt) + exp(−ξ(t+ δt))

∫ t+δt

t
exp(ξs)(f(s) + R(s))ds (25)

Assuming that the force f(s) can be approximated as a constant between t and δt, the
contribution to the integral becomes

14



exp(−ξ(t+ δt))

∫ t+δt

t
exp(ξs)f(s)ds ≈ exp(−ξ(t+ δt))f(t)

∫ t+δt

t
exp(ξs)ds =

exp(−ξ(t+ δt))f(t)
1

ξ
[exp(ξ(t+ δt))− exp(ξt) =

f(t)

ξ
[1− exp(−ξδt) = δtc1f(t)

so that

v(t+ δt) = v(t)c0(δt) + δtc1(δt)f(t) + δvG (26)

Indicando δt con s, v(t+ s) = v(t)c0(s) + sc1(s)f(t) + δvG,
To find the associated evolution of r one integrates the previous solution for v as

r(t+ δt) = r(t) +

∫ δt

0
[(v(t)c0(s) + sc1(s)f(t))] ds+

∫ t+δt

t
δvGds =

r(t) +

∫ δt

0

[
(v(t)e−ξs + s

(1− e−ξs)
ξs

f(t))

]
ds+

∫ t+δt

t
δvGds =

r(t) + v(t)

∫ δt

0
e−ξsds+

f(t)

ξ

∫ δt

0
(1− e−ξs)ds+

∫ t+δt

t
δvGds =

r(t) + v(t)
(e−ξδt − 1)

ξ
+

f(t)

ξ

∫ t+δt

t
(1− e−ξs)ds+

∫ t+δt

t
δvGds =

Now consider (between 0 and δt for simplicity) the last integral∫ δt

0
δvG(s)ds =

∫ δt

0
dse−ξs

∫ s

0
eξs
′
m−1R(s′)ds′ =

by changing the integration limits in the surface integration (so that s′ < s < δt and
0 < s′ < δt)

∫ δt

0

[∫ δt

s′
dse−ξs

]
eξs
′
m−1R(s′)ds′ =

∫ δt

0
eξs
′
m−1R(s′)ds′(e−ξδt − e−ξs′)−1

ξ
=

∫ δt

0
m−1R(s′)ds′

1− e−ξ(δt−s′)

ξ

so that

r(t+ δt) = r(t) + c1δtv(t) + +c2δt
2a(t) + δrG
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The two equations (for r and for v) are stochastic in the sense that they equate the
statistical properties of δrG and δvG with those of the other terms in the equations. Thus,
unlike conventional dynamics, there is no ’unique’ trajectory: we can only generate a
representative trajectory i.e. produce a realization of the stochastic process. In simulation,
each pair of vectorial components of δrG and δvG is sampled from a bivariate Gaussian
distribution [Chandrasekhar 1943]

ρ(δrGα , δv
G
α ) =

1

2πσrσv(1− c2
rv)

1/2
exp

{
− 1

2(1− c2
rv)

[(
(δrGα )2

σ2
r

+
(δvGα )2

σ2
v

− 2crv
(δrGα )(δvGα )

σrσv

)]}
with zero mean and variances given by

σ2
r =< (δrGα )2 >=<

∫ t+δt

t
ξ−1(1−e−ξ(t+δt−t′))m−1Rα(t′)dt′

∫ t+δt

t
ξ−1(1−e−ξ(t+δt−t”))m−1Rα(t”)dt” >

2kBT

mξ

∫ t+δt

t
(1− e−ξ(t+δt−t′))2dt′ = (δt)2kBT

m
(ξδt)−1(2− (ξδt)−1(3− 4e−ξδt + e−2ξδt))

where we have made use of

< Rα(t′)Rα(t”) >= 2mξkBTδ(t
′ − t”)

and analogously

σ2
v =< (δvGα )2 >=<

∫ t+δt

t
e−ξ(t+δt−t

′)m−1Rα(t′)dt′
∫ t+δt

t
e−ξ(t+δt−t”)m−1Rα(t”)dt” >

2kBTξ

m

∫ t+δt

t
(e−ξ(t+δt−t

′))2dt′ =
kBT

m
(1− e−2ξδt)

and finally

crvσrσv =< (δrGα )(δvGα ) >=<

∫ t+δt

t
ξ−1(1−e−ξ(t+δt−t′))m−1Rα(t′)dt′

∫ t+δt

t
e−ξ(t+δt−t”)m−1Rα(t”)dt” =

2kBT

m

∫ t+δt

t
(1− e−ξ(t+δt−t′))e−ξ(t+δt−t′)dt′ = δt

kBT

m
(ξδt)−1(1− e−ξδt)2

At each stage it is essential that correlated values of δrG and δvG are sampled as de-
scribed above, since they are integrals involving the same random process over the same
time interval. Different particles, and different vectorial components, are sampled indepen-
dently.

Ermak’s algorithm is an attempt to treat properly both the systematic dynamic and
stochastic elements of the Langevin equation. At low values of the friction coefficient
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ξ, the dynamical aspects dominate, and Newtonian mechanics is recovered as ξ → 0.
Ermak equations then become a simple Taylor series predictor algorithm. As discussed
previously, this is not a particularly accurate method of conducting MD simulations, and
the same is true of Brownian dynamics at low friction: what is needed here is a stochastic
generalization, with friction, of a predictor-corrector or Verlet-like algorithm. A simple
algorithm of this type, which reduces to the velocity Verlet algorithm of Section (3.2.1), is
obtained if, on integrating the velocity equation, the systematic force is assumed to vary
linearly with time.

r(t+ δt) = r(t) + c1δtv(t) + c2δt
2a(t) + δrG

v(t+ δt) = c0v(t) + (c1 − c2)δta(t) + c2δta(t+ δt) + δvG

After the selection of the random components δrG and δvG for a given step, the algorithm
is implemented in the usual way. Other Verlet-like algorithms have been proposed [Allen
1980, 1982; van Gunsteren and Berendsen 1982] and, although there is no unique way of
generalizing the method, these are all closely reIated to each other and provide a similar
measure of improvement over the simple predictor of Ermak, at low friction. At high values
of ξ the dynamical aspects become less important, and there is little to choose between the
different methods.

If long-time configurational dynamics are of interest, then the momentum variables may
be dropped from the equations of motion, in the spirit of time- scale separation implicit in
the projection-operator method. The ’position Langevin equation’ is a simplified version
of equations given by Lax [1966] and by Zwanzig [1969]:

An algorithm for the overdamped case [Ermak and Yeh 1974; Ermak 1975] is

r(t+ δt) = r(t) +
D

kBT
f(t)δt+ δrG

where each component δrG is chosen independently from a Gaussian distribution with
zero mean and variance < (δrGα )2 >= 2Dδt. As usual, these equations apply to each
component of r. The short-time dynamics generated by these equations are even more
unrealistic than those resulting from the Langevin equation. In fact, the method is very
much more closely related to the force-bias and smart MC methods than to MD.

6.1 Generate gaussian random variable

P (x) =
1√

2πσ2
e−

(x−<x>)2

2σ2

A random number ξ generated from this distribution is related to a number [ generated
from the normal distribution with zero mean and unit variance by

ξ′ =< x > +σξ
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The problem is reduced to sampling from a normal distribution with zero mean and
unit variance. One possible method involves two steps and the generation of two uniform
random variates [Box and Muller 1958]:

• (a) generate uniform random variables ξ̃1 and ξ̃2 between zero and one.

• (b) calculate ξ1 = −
√
−2 ln ξ̃1 cos(2πξ̃2) and ξ2 = −

√
−2 ln ξ̃1 sin(2πξ̃2)

The numbers ξ1 and ξ2 are the desired (independent) normally distributed random num-
bers.

6.2 Generation of correlated random variable

To generate a brownian motion we need to generate correlated pairs of numbers that are
normally distributed. Given two independent normal random a1 and a2 with zero means
and unit variances, the variables

a′1 = σ1a1

a′2 = σ2[c12a1 + (1− c2
12)1/2a2]

are sampled from the bivariate Gaussian distribution with zero means, variances σ1 and
σ2 and correlation coefficient c12.

6.3 General rule

To move from a uniform distribution p(x)dx = dx between zero and one and a desired p(y)
one need to find an appropriate transformation y(x) and make use of the conservation of
probability

|p(y)dy| = |p(x)dx|

so that

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣

For example, if y = −ln(x) then y is distributed between 0 and ∞. In this case
|dy/dx| = | − 1/x| = exp(−y) so that the random numbers y = − ln(x) are distributed
according to an exponential distribution

p(y) = exp(−y)

The relation can be extended also to multiple variables and in this case the determinant
of the Jacobian of the transformation controls the conservation of probability.
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6.4 Check for the gaussian variables

Let us show that the transformation

x = −
√
−2 ln ξ̃1 cos(2πξ̃2)

y = −
√
−2 ln ξ̃1 sin(2πξ̃2)

generates two random variable x and y with gaussian distribution.
First we note that

x2 + y2 = −2 ln ξ̃1

such that

ξ̃1 = e−
x2+y2

2

Conservation of probability states

P (ξ̃1, ξ̃2) = |detJ|P (x, y)

where the element of J are J12 = ∂x
∂ξ̃1

and so on such that

detJ =
∂x

∂ξ̃1

∂y

∂ξ̃2

− ∂x

∂ξ̃2

∂y

∂ξ̃1

We find with some algebra

∂x

∂ξ̃1

= −1

2
(−2 ln ξ̃1)−1/2 (−2)

ξ̃1

cos(2πξ̃2)

and
∂x

∂ξ̃2

= 2π

√
−2 ln ξ̃1 sin(2πξ̃2)

and analogous relations for y so that

detJ = −1

2
(−2 ln ξ̃1)−1/2 (−2)

ξ̃1

cos(2πξ̃2)2π

√
−2 ln ξ̃1 cos(2πξ̃2)+

−1

2
(−2 ln ξ̃1)−1/2 (−2)

ξ̃1

sin(2πξ̃2)2π

√
−2 ln ξ̃1 sin(2πξ̃2) = −2π

ξ̃1

Thus |detJ| = 2π

e−
x2+y2

2

. Since P (ξ̃1, ξ̃2) = 1, being ξ̃1 and ξ̃2 uniformly distributed between

0 and 1,

P (x, y) =
1

|detJ|
=
e−

x2+y2

2

2π
=
e−

x2

2

√
2π

e−
y2

2

√
2π
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7 Constraints - Tuckerman

In mechanics, it is often necessary to treat a system that is subject to a set of externally
imposed constraints. These constraints can be imposed as a matter of convenience, e.g.
constraining high-frequency chemical bonds in a molecule at fixed bond lengths, or as
true constraints that might be due, for example, to the physical boundaries of a system
or the presence of thermal or barostatic control mechanisms. Constraints are expressible
as mathematical relations among the phase space variables. Thus, a system with Nc

constraints will have 3N−Nc degrees of freedom and a set of Nc functions of the coordinates
and velocities that must be satisfied by the motion of the system. Constraints are divided
into two types. If the relationships that must be satisfied along a trajectory are functions of
only the particle positions rN and possibly time, then the constraints are called holonomic
and can be expressed as Nc conditions of the form

σk(q1....qN , t) = 0 k = 1, ....Nc

In general, it would seem that the imposition of constraints no longer allows the equa-
tions of motion to be obtained from the stationarity of the action, since the coordinates
(and/or velocities) are no longer independent. More specifically, the path displacements δq
are no longer independent. In fact, the constraints can be built into the action formalism
using the method of Lagrange undetermined multipliers. However, in order to apply this
method, the constraint conditions must be expressible in a differential form as:

N∑
α=1

ak,αdqα + ak,tdt = 0 k = 1, ....Nc

where ak,α is a set of coefficients for the displacements δqα. For a holonomic constraint it
is clear that the coefficients can be obtained by differentiating the constraint condition

∂σk(q1....qN , t)

∂qα
dqα +

∂σk(q1....qN , t)

∂t
dt = 0 k = 1, ....Nc

Assuming that the constraints can be expressed in the differential form we must also
be able to express them in terms of path displacement δqα in order to incorporate them
into the action principle. Unfortunately, doing so requires a further restriction, since it is
not possible to guarantee that a perturbed path Q(t) + δQ(t) satisfies the constraints. The
latter will hold if the constraints are integrable, in which case they are expressible in terms
of path displacements as (e.g. if the constraint does not explicitly changes with time)

N∑
α=1

ak,αdqα = 0 k = 1, ....Nc

The equations of motion can then be obtained by adding a set of Lagrange undetermined
multipliers, λk, where there is one multiplier for each constraint, in the action integral:
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δA =

∫ t2

ti

N∑
α=1

[
− d

dt

(
∂L
∂q̇α

)
+
∂L
∂qα

+

Nc∑
k=1

λkakα

]
δqα(t)dt

The equations of motion obtained by requiring that δA = 0 are then

d

dt

(
∂L
∂q̇α

)
− ∂L
∂qα

=

Nc∑
k=1

λkakα (27)

It may seem that we are still relying on the independence of the displacements δqα,
but this is actually not the case. Suppose we choose the first 3N − Nc coordinates to be
independent. Then, these coordinates can be evolved using eqns. 27. However, we can
choose λk such that eqns. 27 apply to the remaining Nc coordinates as well. In this case,
eqns. 27 hold for all 3N coordinates provided they are solved subject to the constraint
conditions. The latter can be expressed as a set of Nc differential equations of the form

3N∑
α=1

akαq̇α = 0 (28)

Eqns. 27 together with eqns. 28 constitute a set of 3N −Nc equations for the 3N +Nc

unknowns, q1, ..., q3N , λ1, ..., λNc . This is the most common approach used in numerical
solutions of classical-mechanical problems. Note that, even if a system is subject to a set
of time-independent holonomic constraints, the Hamiltonian is still conserved. In order to
see this, note that eqns. 27 and 28 can be cast in Hamiltonian form as

q̇α =
∂H
∂pα

(remember H(p, q) = pq̇ − L(q, q̇) so that ∂H/∂p = q̇)

dpα
dt

= − ∂H
∂qα

+

Nc∑
k=1

λkakα

(remember L = pq̇+H(p, q) and ∂L
∂q̇ = p and ∂L

∂q = ∂H
∂q , so that Eq. 27 transform in the

previous equation)
These two relations are associated with the constraints (substituting q̇)

3N∑
α=1

akα
∂H
∂pα

= 0

Computing the time-derivative of the Hamiltonian, we obtain

dH
dt

=
∑
α

[
∂H
∂qα

q̇α +
∂H
∂pα

ṗα

]
=
∑
α

[
∂H
∂qα

∂H
∂pα

+
∂H
∂pα

(
− ∂H
∂qα

+

Nc∑
k=1

λkakα

)]
=
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∑
α

∂H
∂pα

Nc∑
k=1

λkakα =

Nc∑
k=1

λk
∑
α

∂H
∂pα

akα = 0

From this, it is clear that no work is done on a system by the imposition of holonomic
constraints.

7.1 one particle case

The constrained equations of motion Eqns. 27 together with eqns. 28 constitute a complete
set of equations for the motion subject to the Nc constraint conditions. Let us study these
equations in more detail. For the purposes of this discussion, consider a single particle in
three dimensions described by a single Cartesian position vector r(t) subject to a single
constraint σ(r) = 0. According to eqns. 27 and eqns. 28, the constrained equations of
motion take the form

mr̈ = F(r) + λ∇σ

∇σ · ṙ = 0 (29)

These equations will generate classical trajectories of the system for different initial
conditions r(0), ṙ(0) provided the condition σ(r(0)) = 0 is satisfied. If this condition is
true, then the trajectory will obey σ(r(t)) = 0. Conversely, for each r visited along the
trajectory, the condition σ(r) = 0 will be satisfied. The latter condition defines a surface
on which the motion described by eqns. (29 must remain. This surface is called the surface
of constraint. The quantity ∇σ(r) is a vector that is orthogonal to the surface at each
point r. Thus, the second equation 29 expresses the fact that the velocity must also lie in
the surface of constraint, hence it must be perpendicular to ∇σ(r). Of the two force terms
appearing in eqns. 29, the first is an ”unconstrained” force which, alone, would allow the
particle to drift off of the surface of constraint. The second term must, then, correct for this
tendency. If the particle starts from rest, this second term exactly removes the component
of the force perpendicular to the surface of constraint. This minimal projection of the
force, first conceived by Karl Friedrich Gauss (1777-1855), is known as Gauss’s principle of
least constraint (Gauss, 1829). The component of the force perpendicular to the surface is

F⊥ = [n(r) · F(r)]n(r)

where n(r) is a unit vector perpendicular to the surface at r ; n(r) is given by

n(r) =
∇σ(r)

|∇σ(r)|
Thus, the component of the force parallel to the surface is

F|| = F(r)− F⊥ = F(r)− [n(r) · F(r)]n(r)
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If the particle is not at rest, the projection of the force cannot lie entirely in the surface
of constraint. Rather, there must be an additional component of the projection which can
project any free motion of the particle directed off the surface of constraint. This additional
term must sense the curvature of the surface in order to affect the required projection; it
must also be a minimal projection perpendicular to the surface.

8 Shake and Rattle in theory (Tuckermann)

For time-independent holonomic constraints σk, the Lagrangian formulation of the equa-
tions of motion in Cartesian coordinates are

d

dt

(
∂L
∂ṙi

)
−
(
∂L
∂ri

)
=

Nc∑
1

λkaki (30)

and (the derivative of the constraint equal to zero, so that the constraint if true at time 0
is always true)

N∑
i=1

aki · ṙi = 0

where
aki = ∇iσk(r1....rN )

Note that these equations are equivalent to (remember L(r, ṙ) = T − V , ∂L/∂vi,α =
mvi,α and ∂L/∂ri,α = −∂V/∂ri,α = Fi,α)

mir̈i = Fi +

Nc∑
k=1

λk∇iσk

and
d

dt
σk(r1....rN ) = 0

The constraint problem amounts to integrating eqn. 30 subject to the conditions
σk(r1....rN ) = 0 and σ̇k(r1....rN ) =

∑N
i=1∇iσk(r1....rN ) · ṙi = 0.

We wish to develop a numerical scheme in which the constraint conditions are satisfied
exactly as part of the integration algorithm. Starting from the velocity Verlet approach,
for example, we begin with the position update, which, when holonomic constraints are
imposed, reads

ri(∆t) = ri(0) + ∆tvi(0) +
∆t2

2m
Fi(0) +

∆t2

2m

∑
k

λk∇iσk(0) (31)

where σk(0) = σk(r1(0)....rN (0)). In order to ensure that the constraint is satisfied
exactly at time ∆t , we impose the constraint condition directly on the numerically obtained
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positions ri(∆t) and determine, on the fly, the multipliers needed to enforce the constraint.
Let us define

r
′
i = ri(0) + ∆tvi(0) +

∆t2

2m
Fi(0) (32)

so that

ri(∆t) = r
′
i +
∑
k

λ̃k∇iσk(0) (33)

where λ̃k = ∆t2

2m λk. Then, for each constraint condition we impose

σl

(
r
′
1 +

∑
k

λ̃k∇1σk(0), ....., r
′
N +

∑
k

λ̃k∇Nσk(0)

)
= 0 (34)

Unless the constraints are of a particularly simple form will need to be solved iteratively.
A simple procedure for doing this is, known as the SHAKE algorithm (Ryckaert et al.,

1977), proceeds as follows. First, if a good initial guess of the solution, λ
(1)
k , is available

(for example, the multipliers from the previous molecular dynamics time step), then the
coordinates can be updated according to

r
(1)
i = r

′
i +
∑
k

λ̃
(1)
k ∇iσk(0) (35)

The exact solution for the multipliers is now written as λ̃
(1)
k + δλ̃

(1)
k and

ri(∆t) = r
(1)
i +

∑
k

δλ̃
(1)
k ∇iσk(0) (36)

so that eqn. 34 becomes

σl

(
r

(1)
1 +

∑
k

δλ̃
(1)
k ∇1σk(0), ....., r

(1)
N +

∑
k

δλ̃k∇Nσk(0)

)
= 0 (37)

Next, eqn. 37 is expanded to first order in a Taylor series about λ̃
(1)
k = 0.

σl

(
r

(1)
i , ....., r

(1)
N

)
+

N∑
i=1

Nc∑
k=1

∇iσl(r
(1)
1 , ....., r

(1)
N )∇iσk(r1(0), .....rN (0))δλ̃

(1)
k ≈ 0 (38)

Eqn. 38 is a matrix equation for the changes δλ̃
(1)
k If the dimensionality of this equation

is not too large, then it can be inverted directly to yield the full set of δλ̃
(1)
k simultane-

ously. This procedure is known as matrix-SHAKE or M-SHAKE (Kraeutler et al., 2001).
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Because eqn. Eqn. 38 was approximated by linearization, however, adding the correction∑
k δλ̃

(1)
k ∇iσk(0) to r

(1)
i does not yield a fully converged ri(∆t).

We, therefore, define

r
(2)
i = r

(1)
i +

∑
k

δ̃λ
(1)
k ∇iσk(0) (39)

and
ri(∆t) = r

(2)
i +

∑
k

δλ̃
(2)
k ∇iσk(0) (40)

The procedure is repeated until the constraint conditions are satisfied to a given small
tolerance.

Once the multipliers are obtained, and the coordinates fully updated, the velocities
must be updated as well to make sure that the constraints σ̇k(r1, ...rN ) = 0 (for all k) are
satisfied. The velocities can be evaluated in two steps (an equivalent formulation of the
velocity Verlet algorithm)

First one calculate the terms depending on the positions at time 0 (for which the
constraints have been already calculated)

vi(∆t/2) = vi(0) +
∆t/2

m
Fi(0) +

1

∆t

∑
k

λ̃k∇iσk(0)

and once the new forces are calculated from the updated positions then one evaluates the
constraints at time ∆t (note indeed that the ∇ of the constraints is now evaluated at ∆t)
this time requiring

vi(∆t) = vi(∆t/2) +
∆t/2

m
Fi(∆t) +

∆t

2m

∑
k

µk∇iσk(∆t) = v′i +
1

m

∑
k

µ̃k∇iσk(∆t)

where µk has been used to denote the multiplier for the velocity step to indicate that they
are different from those used for the position step and µ̃k = (∆t/2)µk. The multiplier µk
are now obtained enforcing the condition∑

i

∇iσ(∆t) · vi(∆t) = 0

on the velocities. Substituting in these equationd vi(∆t) we obtain a set of Nc linear
equations for the multiplier µ̃k

∑
i

∇iσ(∆t) ·

(
v′i +

∆t

2m

∑
k

µ̃k∇iσk(∆t)

)
= 0

If these equations are solved iteratively, similarly to what done for the spatial con-
straints, the dynamic of a system with holonomic constraints can be generated in the
velocity Verlet scheme. This algorithm is called RATTLE.
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8.1 Evolution of a dimer in the absence of an external force - example

Let us assume we have a dimer defined by coordinated r1 and r2 and that the relative
distance between the two particles is d, e.g.

σ ≡ (r1 − r2)2 − d2 = 0

We have thus a system with two particles and one constraint only. In the Lagrangian
formalism, we have to solve

mr̈i = Fi + λ∇i
[
(r1 − r2)2 − d2

]
and

d

dt
σ =

d

dt

[
(r1 − r2)2 − d2

]
=

2∑
i=1

∇i
[
(r1 − r2)2 − d2

]
· ṙi = 0

The velocity Verlet, for F = 0 gives

ri(∆t) = ri(0) + ∆tvi(0) +
∆t2

2m
λ∇i

[
(r1 − r2)2 − d2

]
= r

′
i −

∆t2

2m
λ2(−1)i(r1 − r2) (41)

Substituting in the constraint equation one obtains ( defining r′ ≡ ri(0) + ∆tvi(0))[
r
′
1 + 2

∆t2

2m
λ(r1 − r2)− r

′
2 + 2

∆t2

2m
λ(r1 − r2)

]2

= d2

that provides a quadratic expression for λ that can be solved and the position step of
velocity Verlet (Eq. 41) can be properly calculated.

The velocities need to be evaluated in two steps
First,

vi(∆t/2) = vi(0) +
∆t/2

m
Fi(0) +

∆t/2

m
λ∇i

[
(r1(0)− r2(0))2 − d2

]
= v

′
i −

∆t/2

m
λ2(−1)i(r1(0)− r2(0))

and once the new forces are calculated from the updated positions (note that the ∇ of
the constraints are now evaluated at ∆t)

vi(∆t) = vi(∆t/2) +
∆t/2

m
Fi(∆t) +

∆t/2

m
µ∇i

[
(r1(∆t)− r2(∆t))2 − d2

]
= v

′
i −

∆t/2

m
µ2(−1)i(r1(∆t)− r2(∆t))

and this time the multiplier µ are calculated from
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∑
i

∇iσ(∆t) · vi(∆t) = 0

which in the present case gives

2(r1(∆t)− r2(∆t)) · [v′1(∆t) +
∆t/2

m
µ2(r1(∆t)− r2(∆t))]+

−2(r1(∆t)− r2(∆t)) · [v′2(∆t)− ∆t/2

m
µ2(r1(∆t)− r2(∆t))] = 0

or

µ =
2(r1(∆t)− r2(∆t)) · [v′1(∆t)− v

′
2(∆t)]

∆t/2
m 4(r1(∆t)− r2(∆t)) · [2(r1(∆t)− r2(∆t))]

This value of µ can be used to update the velocity according to the velocity Verlet.
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