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Outline
• Timescales for liquid relaxation and for 

crystal nucleation.

• Methods:  Evaluating crystal nucleation 
barriers and rates in simulations of 
supercooled liquids

• Biased sampling applied to nucleation
(Frenkel and coworkers)

• “Mean first passage time” analysis (Reguera 
and coworkers)

• Illustrations from the literature and simple 
2D Ising model demo.

• Role of structure and phase behaviour.
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Motivations

• Efforts to form interesting new glassy materials (e.g. metallic 
glasses) are essentially efforts to avoid crystallization.

• Better understanding of the glass transition will require better 
understanding of crystallization, especially in deeply supercooled 
liquids.  E.g. role of local order in both processes.

• Complex dynamics of glassy liquids can have a significant influence 
on the crystallization process.  E.g. Stokes-Einstein decoupling.
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Thermodynamic and dynamic 
contributions to the nucleation time
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• In CNT, the nucleation time is
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• K = ρnZf+
c is the kinetic

prefactor.

• ρn is the number density of the
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• Z is the Zeldovich factor:
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Times and temperatures for accessing the liquid state
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Phase behavior and glass-forming ability
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results in a sharp crystallization to bcc. Crystallization is
signaled by a sharp drop in potential energy and the
appearance of characteristic crystal peaks in the radial
distribution function.

The dc and bcc crystals that form contain defects and are
our starting point for the melting lines determination [12].
We repeat the melting study for the dc (bcc) crystal with
decreasing (increasing) ! until the crystal becomes so
metastable that it melts almost isoenthalpically to a glass.
We assemble these two melting lines into a new type of
phase diagram, Fig. 1, in which the potential parameter !
replaces pressure on the horizontal axis of the familiar one-
component T-p diagram. The triple point defined by the
crossing of bcc and dc melting lines occurs for a tetrahedral
parameter is !TP ! 18:75, very close to the ! ! 18:6 we
predict from the T ! 0 K lattice energies [13].

Cooling of the monatomic liquid around the triple point,
in the range 17:5< !< 20:25, does not result in crystal-
lization, but in a continuous transformation to a glass.
These glasses reversibly transform into liquids on heating,
confirming the absence of crystals or critical nuclei. In
classical nucleation theory the activation free energy to
form a nucleus is inversely proportional to the square of the
crystallization driving force [11], Gex ! Gliquid "Gcrystal,
that increases with supercooling. This quantity has been
considered crucial for the GFA of metal alloys, where
values as small as 1:5 kJ=mol for T=Tm ! 0:8 typify the
best glass forming mixtures [14]. We computed the excess
thermodynamic properties shown in Fig. 2 from the
(i) melting temperatures Tm, (ii) melting enthalpy !Hm
evaluated as the difference between H of liquid and perfect
crystal, at Tm, and (iii) heat capacities Cp (derived from the
enthalpies) of supercooled liquids and perfect crystals [13].
The excess entropies are computed as

 Sex#T$ ! !Hm

Tm
"

Z T

Tm

Cliquid
p " Ccrystal

p

T0 dT0; (1)

and the excess free energies by Gex#T$ ! Hex#T$ "
TSex#T$. Figure 2(c) shows Gex#T=Tm$ for the supercooled
liquids with potentials ! ! 16 to 20.25. The increase of
Gex with supercooling is minimal for the triple point
potential. For ! ! 18:5 Gex ! 1:9 kJ=mol at T=Tm ! 0:8
[Fig. 2(d)], comparable to Gex of metallic glass forming
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FIG. 1 (color online). Phase diagram of the mod-SW potential.
Melting lines for dc (down-pointing triangles) and bcc (squares)
crystals, in relation to the ‘‘tetrahedrality’’ parameter !, cross at
the bcc-dc-liquid triple point (TP) !TP ! 18:75 and TTP !
755 K. !TP is very close to the T ! 0 K dc-bcc coexistence
point, ! ! 18:6 (cross) obtained from equating the lattice en-
ergies. The dashed line between these two points separates the dc
and bcc domains. Lattice energies of several crystalline struc-
tures as a function of ! are shown in [13]. A "-tin phase,
marginally stable in the range ! ! 18:2–18:7 [13], is never
seen. The glass forming domain, ! ! 17:5 to 20.25, is indicated
by a bold line on the ! axis. The temperature of zero mobility T0

(blue triangles) and isoentropy Kauzmann temperature TK (red
circles) coincide, within their error bars (%35 K for T0 and
%12 K for TK [13]). The minimum in TK occurs at the ! value
where the isothermal diffusivity is the highest (Fig. 3). Our
melting lines end close to TK, beyond which liquid equilibration
is impossible. These end points have !Hm & 0 and !Sm & 0.
The liquid-liquid transition temperatures, TLL, are also shown in
the range where the transition is observed in the simulations. A
LL critical point is expected at high !, but fast crystallization
prevents the precise determination of TLL for !> 21:5. To lower
!, we predict the LL will drop almost vertically after crossing TK
(see text). The intersection of the LL and HDL glass line (&50 K
above T0, see text) frustrates dc crystallization that occurs
through the intermediate LDL phase.
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FIG. 2 (color online). Excess thermodynamic functions of the
liquid with respect to the stable perfect crystal (red: bcc, black:
dc) for systems beyond the liquid-liquid transition region of the
system. (a) Excess heat capacity Cex

p ! Cliquid
p " Ccrystal

p data for
!< 20:25, derived from fits of H vs T [13]. Symbols on curves
in (a) indicate the lowest temperature of equilibrated liquid in the
simulation. (b) Decrease of excess entropy, Sex ! Sliquid "
Scrystal [Eq. (1)], from its !Sm value (symbols) at defect crystal
fusion point Tm. The condition Sex ! 0 defines the Kauzmann
temperatures, TK . (c) Excess free energies Gex in the supercooled
regime from Tm to TK. (d) Gex#T=Tm ! 0:8$ rises asymmetri-
cally on the two sides of the phase diagram.
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Tuning of Tetrahedrality in a Silicon Potential Yields a Series of Monatomic (Metal-like)
Glass Formers of Very High Fragility
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We obtain monatomic glass formers in simulations by modifying the tetrahedral character in a silicon
potential to explore a triple point zone between potentials favoring diamond (dc) and bcc crystals. dc
crystallization is always preceded by a polyamorphic transformation of the liquid, and is frustrated when
the Kauzmann temperature of the high temperature liquid intersects the liquid-liquid coexistence line. The
glass forming liquids are extraordinarily fragile. Our results suggest that Si and Ge liquids may be vitrified
at a pressure close to the diamond-!-tin-liquid triple point.

DOI: 10.1103/PhysRevLett.97.075701 PACS numbers: 64.70.Pf, 61.20.Ja, 64.70.Dv, 64.70.Ja

Humans have made silicate glasses as glazes or in bulk
for at least 8000 years. But it was not until 1960 that the
first metallic glass was obtained by cooling a Au75Si25 melt
at a rate of q ! 106 K=s [1]. Metallic alloys that vitrify for
q as low as 0:005 K=s [2] have been developed since then,
fostering technological applications for bulk metallic
glasses. The successful glass formation with alloys not-
withstanding, no monatomic glass—metallic or other-
wise—has been obtained to date by cooling of a melt.
Glass formation in monatomic systems remains a chal-
lenge even in computer simulations, where the small sys-
tem sizes and high cooling rates disfavor crystal
nucleation. The monatomic model of Dzugutov [3] can
be supercooled considerably, but it ends up forming qua-
sicrystals in isochoric simulations [4] and fcc or bcc crys-
tals in isobaric simulations [5]. Given the lack of true
monatomic glass former models for simulations, the most
fundamental studies of the deep supercooled regime in
atomic liquids had to be conducted with a binary mixture
of Lennard-Jones particles (BMLJ) that mimics the mar-
ginal glassformer Ni80P20 [6].

In this Letter we develop a strategy for making mona-
tomic glass formers in simulations, and we apply it to the
design of a monatomic model that resists crystallization
and quasicrystal formation over hundreds of nanoseconds
of zero pressure molecular dynamics (MD). We address the
key question of why the model has slow crystallization
kinetics and finally generalize our strategy to propose a
way to make the elusive monatomic glass former in the lab.

Metallic alloys with high glass forming ability (GFA)
are multicomponent systems, and their main elements have
a negative enthalpy of mixing [7]. The latter produces deep
eutectics, around which the GFA is highest. We start with a
poor glass former, the Stillinger-Weber (SW) model for
silicon [8], and vary the interatomic potential—the inter-
actions instead of the composition—to find a deep low
temperature triple point between diamond cubic (dc), body
centered cubic (bcc) crystals, and the liquid. The results are
described by a novel temperature-potential phase diagram

with a glass forming domain around the low temperature
triple point.

In the SW model, tetrahedral coordination is favored by
adding to a basic pairwise potential, v2"r#, a three-body
term, v3"r;"#, which induces repulsion for angles that are
not tetrahedral, v ! v2"r# $ #v3"r; "#. The repulsion pa-
rameter, # ! 21, and the pair potential parameters were
adjusted in [8] to best reproduce the crystalline ground
state, density, and cohesive energy for the laboratory sub-
stance. We have kept the pair potential, defining an invari-
ant temperature scale, and varied # to tune the repulsive
potential in the range 21:5> #> 15. The results were
obtained from a series of isobaric-isothermic MD simula-
tions for 512 atoms (686 if starting from perfect bcc
crystals) at pressure p ! 0, using procedures given in
Ref. [9]. Run lengths ranged from 1 to 130 ns. The average
atomic displacement was at least 4 atomic diameters dur-
ing each of the equilibrium runs.

In what follows we discuss the T-# phase diagram and
analyze the interplay between the three factors that deter-
mine the rate at which crystals form during cooling
[10,11], and hence the GFA: crystallization driving force,
liquid diffusivity, and structural similarity between liquid
and crystal phases.

It is well known that the low density amorphous semi-
conductor phase of silicon a-Si is structurally unrelated to
the high density liquid (HDL) metallic phase and cannot be
obtained by direct cooling of the melt. Simulations of SW
Si have established that these two distinct amorphous
phases are related by a first order phase transition [9]. In
SW Si, the liquid-liquid (LL) transition occurs between
two metastable phases, 650 K below the melting tempera-
ture of the dc crystal. We confirm that the SW liquid (# !
21) does not crystallize at temperatures above the LL
transition, and that crystallization to dc occurs from the
low temperature (low density) liquid [9]. We observe the
same pattern of LL transition at TLL (Fig. 1) followed by dc
crystallization from the low density liquid (LDL) for all
systems with #> 20:25. For #< 17, cooling of the liquid
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Information. We conclude that our successful quenches have yielded
the first examples of vitrification of a monatomic metallic liquid.

However, just as the high-pressure crystals are known not to
survive decompression to ambient pressure unless first cooled
below 100K, so also a metallic glass does not survive our ambient-
temperature decompression. Rather, it transforms from a high-
density amorphous (HDA) glass to a low-density amorphous
(LDA) glass. We now verify that we have observed the LDA (in
Fig. 1). To aid our analysis we use additional simulations on a model
of Ge (V.M., manuscript in preparation) similar to one used to study
Ge surfaces (see Supplementary Information) for which no compar-
isons with experiments were made. We make comparisons in Fig. 2.

Figure 2b shows the excellent agreement of calculated and
observed19 structure factors of liquid Ge at normal pressure, and also
the effect of pressure increase to 7.5 GPa. The latter effect is con-
firmed by ab initio molecular dynamics studies15 analysed in terms
of increasing metallicity. A glass formed from this liquid should be
unambiguouslymetallic. However, the Fig. 2a structure factor for our
glass, derived from the Fig. 1d diffraction pattern, is strikingly dif-
ferent from that of the liquid19. As anticipated above, it closely resem-
bles that obtained from electron diffraction of vapour-deposited Ge20

(the LDA non-metallic form), and also from X-ray scattering for
vapour-deposited21 and electrodeposited Ge (see Supplementary
Information). The differences between the high- and low-density
forms are shared by water, Si and Ge22.

The identification of our glass with the previous LDAs seems un-
ambiguous. Our finding is consistent with that of ref. 13 in the only
parallel of our work—the high-pressure vitrification of liquid GaSb.
(GaSb at 1 atm is a zincblende phase with a low melting point of
970K, decreasing with increasing pressure to 670K at T3). Again,
the dense polyamorph does not survive decompression at room tem-
perature. Indeed, this is expected from the theoretical model23 which
first predicted the liquid–liquid transitions: Aptekar23 showed a spi-
nodal limit on the stability of both HDA Ge and Si at 2–4GPa (see
also Supplementary Information).

To identify the liquid–liquid transition, we turn to a composite
phase diagram (Fig. 3) that combines what we know from the earlier
simulation study5 withwhat we know from laboratory high-pressure24

and supercooling studies25. Figure 3 shows a temperature–pressure
phase diagram for Ge, whose vertical axis is projected from the tem-
perature–l phase diagram5 at l5 20 (versus l5 21 for Si), as shown
to be appropriate by the (S(Q) comparisons in Fig. 2b. (l is the
‘tetrahedrality parameter’ in the Stillinger–Weber potential5,11.) We
emphasize the projection of the liquid–liquid transition line of the
temperature–l phase diagram into the pressure plane of the temper-
ature–pressure diagram.

Pressure increases depress not only the melting point of Ge, but
also the liquid–liquid transition26, as predicted in refs 23 and 27 and
as observed by molecular dynamics for Stillinger–Weber Si (ref. 12;
V.M., S.S. and C.A.A.,unpublished work). We represent the glass
transition temperature Tg by a thick square-dotted line, using the
observation12 (for Stillinger–Weber Si) that isothermal diffusivity
passes though a maximum below the T3 pressure and that Tg must
be above 473 K at 8.1(8.9) GPa, because heating an in situ vitrified
sample up to 473K (the pressurized cell safety limit) for one hour did
not cause crystallization (according to Raman spectra). We represent
the quenches of this study on the phase diagramof Fig. 3 (see lines a, b
and c).

The lower-pressure, crystallizing, melt-quenches of our current
experiments are represented by the vertical dashed line ‘a’ that passes
through the liquid–liquid line while the liquid is still well above
the extension of the Tg line. Crystals form rapidly as they cross the
liquid–liquid line5,12,26 because the gap in configuration space
between LDA and crystal is so much smaller than that between
HDA and the crystal5.

The melt-quenches that produce amorphous Ge without globules
are represented by vertical line ‘c’. Above T3, the liquid–liquid line is
almost vertical (see caption and Supplementary Information). Thus,
above T3 there is no possibility that the liquid can transform to LDA
before it vitrifies. The homogeneous glass obtained at 10.6(10.1) GPa
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Figure 3 | Relation of temperature–pressure
phase diagram for Ge to the temperature–l
potential diagram for Stillinger–Weber systems.
The temperature–pressure phase diagram for
Ge24 is shown in relation to the temperature–l
phase diagramof ref. 5 bywhich the relation ofGe
to Si in the temperature–l diagram is
understood. The temperature scale changes for
Ge, and becomes that of the laboratory Ge phase
diagram, and the gap between Tm and the
liquid–liquid transition temperature TLL has
been set to the experimental supercooling limit
found by cooling small levitated samples25.
Projections of the temperature–l diagram at
l5 20 into the pressure plane show how the Tm

and TLL transition lines of Ge change with
pressure. The TLL line is shown approaching the
vertical at the T3 pressure, for thermodynamic
reasons given in ref. 5. Inwater polyamorphism32,
TLL, which goes vertical at the T3 pressure, tracks
the homogeneous crystal nucleation line Th. Th,
much studied in solution systems where
composition replaces the pressure axis, goes
almost vertical near the eutectic composition (the
equivalent of the T3 pressure), intersecting the
ideal glass and Kauzmann temperatures T0 and
TK at the eutectic temperature (see
Supplementary Information). Therefore, LDA
cannot form during cooling above the T3

pressure, for example, along line ‘c’. For a
description of the vertical dashed lines ‘a’, ‘b’ and
‘c’, see text. The numbers ‘4’ and ‘6’ indicate the
coordination numbers of crystal phases.

NATURE |Vol 448 | 16 August 2007 LETTERS

789
Nature   ©2007 Publishing Group

LETTERS

Vitrification of a monatomic metallic liquid
M. H. Bhat1, V. Molinero1,2, E. Soignard1, V. C. Solomon1, S. Sastry3, J. L. Yarger1 & C. A. Angell1

Although the majority of glasses in use in technology are complex
mixtures of oxides or chalcogenides, there are numerous examples
of pure substances—‘glassformers’—that also fail to crystallize
during cooling. Most glassformers are organic molecular systems,
but there are important inorganic examples too1,2, such as silicon
dioxide and elemental selenium (the latter being polymeric). Bulk
metallic glasses can now be made3; but, with the exception of
Zr50Cu50 (ref. 4), they require multiple components to avoid crys-
tallization during normal liquid cooling. Two-component ‘met-
glasses’ can often be achieved by hyperquenching, but this has not
hitherto been achieved with a single-component system. Glasses
form when crystal nucleation rates are slow, although the factors
that create the slownucleation conditions are not well understood.
Here we apply the insights gained in a recent molecular dynamics
simulation study5 to create conditions for successful vitrification
of metallic liquid germanium. Our results also provide micro-
graphic evidence for a rare polyamorphic transition preceding
crystallization of the diamond cubic phase.

It has been argued that any liquid can be vitrified if the cooling rate
is sufficiently high6, and even ideal gases can be vitrified if the mole-
cules are allowed complex shapes7. It seems that the crystal nucleation
time can be made long with respect to amorphous form assembly
times in a variety of ways, for instance by making sure that not more
than a few atoms are hot at any time. Thus amorphous forms of
metals like Bi and Pb have been made by deposition from the vapour
at very low temperatures8. However, these prove to have no kinetic
stability, and crystallize when the temperature is raised even 15K
above absolute zero. In spite of the conclusions of ref. 6, vitrification
of single-component metals by cooling from the liquid might there-
fore seem improbable.

On the other hand, we demonstrated recently5 by molecular
dynamics that an atomic liquid, Stillinger–Weber silicon, becomes
non-crystallizing in ‘slow’molecular dynamics cooling runswhen the
interaction potential is modified, without reducing the attractive
potential, so as to lower the melting point by,50% and put isoener-
getic crystals in competition with each other against increasingly
stabilized liquid. We found that ability to vitrify on the computa-
tional timescale was established when the diffusivity of the liquid at
the crystallization temperature was reduced to 1.03 1025 cm2 s21,
and the excess free energy, which provides the drive to crystallize
below the melting temperature Tm, rose most slowly during super-
cooling. These turn out to be the same conditions established9 in
experiments on binary alloys such as Ni-P (ref. 10) and Zr2Ni, which
are vitrifiable by melt spinning. (In these cases, the melting point of
Ni is lowered by 35%, andZr by 42%, as a result of chemicalmixing in
which an optimum negative deviation from ideal mixing is
exploited3,6. In Zr-Cu, a ‘bulk’ glassformer at 1:1, a metastable
eutectic4 lies lower still).

These results suggested to us that another variable, pressure, might
be used to achieve the same conditions for a single-component metal
of the right initial properties. Pressure can only lower the melting

point if the melting is accompanied by a volume decrease, so the
possibilities, starting at zero pressure, are limited to Bi, Ga, Ce, Si
and Ge. Having used liquid Si as the starting point in our ‘potential
tuning’ study5, it was natural to choose liquid Si for initial tests of the
new proposal, usingmolecular dynamics simulation of the Stillinger–
Weber silicon potential11.

At the solid–solid–liquid triple point T3 of Si, T3/Tm(1 atm) is
0.5 (see Methods and Supplementary Information), and simulations
with the Stillinger–Weber potential have found12 (see Methods and
Supplementary Information) that its diffusivity at T3 was 0.93
1025 cm2 s21, as in the Ni-P eutectic. Encouraged by these relations
and also by Brazhkin’s observations on In-Sb (ref. 13), and Tanaka’s
arguments14, but having failed to vitrify Si with multianvil cell
quenching at 9GPa (see Supplementary Information), we turned
our attention to experiments conducted in a high-pressure diamond
anvil cell (DAC).

In DACs, the transparency of the compressing diamonds permits
the use of pulsed-laser-beam melting methods. The high thermal
conductivity of the diamonds ensures rapid cooling of the samples.
The optimum melting conditions were determined by variation
of laser pulse duration, sample size, and thickness of the pressure-
transmitting (NaCl) medium.

As sample for the diamond cell study, we chose Ge for several
reasons. First, we thought Ge, which has a larger effective hard core
than Si but the same sp3-based tetrahedral bonding, might be closer in
character to the model monatomic glassformer of our earlier (zero-
pressure) study5, as indeedweverify below. Second,Ge, in thenormal-
pressure (1 atm) liquid state, has a higher first-shell coordination
number than liquid Si, and is considered to resemble a disordered
b-tin structure15. It has ametallic value and temperature coefficient of
electrical conductivity16, and should behave more obviously like a
metal under high-pressure conditions where the electron delocaliza-
tion must be higher still. Third, partial vitrification of Ge in belt-type
anvil press quenches has been reported17. Finally, Ge has little affinity
for carbon, and hence is less likely to chemically damage the DAC
windows during melting experiments. Subsequently, the molecular
dynamics of liquid Ge (discussed later) yields a diffusivity of only
0.763 1025 cm2 s21 at T3, even lower than for Si.

Using the sample mountings described in the Methods section, we
prepared 20-mm-diameter Ge samples, melt-quenched from pres-
sures in the range 5–11GPa (the upper limit for our diamond culets),
for in situ Raman, and ex situ transmission electron microscope
(TEM) examination. The Raman spectra for pressures above
7.9 GPa (by ruby fluorescence) showed the disappearance of the
sharp intense line at 326 cm21 (298 cm21 at 0GPa) and its replace-
ment by a featureless broad fluorescence band, from which no struc-
tural details could be obtained.

The pressures, after the quench, were found to differ from the
initial value by 60.8 GPa, so we report results as the initial pressure
with the final pressure in parentheses. In repeat experiments, glasses
are always obtained at 7.9 GPa and above, ,11GPa being our

1Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. 2Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-
0850, USA. 3J. Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560064, India.
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Supercooling limits:  a liquid spinodal?

Phase Transformation near the Classical Limit of Stability

Lutz Maibaum
Department of Chemistry, University of California, Berkeley, California 94720, USA

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 19 September 2008; published 18 December 2008)

Successful theories of phase transformation processes include classical nucleation theory, which

envisions a local equilibrium between coexisting phases, and nonequilibrium kinetic cluster theories.

Using computer simulations of the magnetization reversal of the Ising model in three different ensembles

we make quantitative connections between these physical pictures. We show that the critical nucleus size

of classical nucleation theory is strongly correlated with a dynamical measure of metastability, and that

the metastable phase persists to thermodynamic conditions previously thought of as unstable.

DOI: 10.1103/PhysRevLett.101.256102 PACS numbers: 68.55.A!, 64.60.qe, 82.60.Nh

Introduction.—The mechanism by which a material
transforms from one stable phase to another after a change
of thermodynamic conditions is of great theoretical and
practical importance [1,2]. Despite the long-standing in-
terest in this fundamental process several key aspects
remain poorly understood, particularly the behavior close
to the classical limit of stability [3,4]. Our understanding of
the transformation mechanism is based on two seemingly
different physical pictures. Classical nucleation theory
(CNT) envisions droplets of the new stable phase that are
in local equilibrium with an environment similar to the
formerly stable phase. This picture leads to an expression
for the free energy !FðNÞ of a droplet as a function of its
size N, with corresponding droplet densities

!ceðNÞ / expð! "!FðNÞÞ; (1)

where " ¼ 1=kBT. Here we have added the subscript ‘‘ce’’
to emphasize that these densities can be computed only in a
constrained equilibrium in which the transformation pro-
cess cannot progress to completion.

Cluster dynamics theories, on the other hand, model the
time evolution of droplet populations through a set of
coupled kinetic equations that represent cluster processes
such as coagulation or dissociation. These equations are of
the form

@!tðNÞ
@t

¼
X

#

$Nð#ÞRð#Þ; (2)

where !tðNÞ is the density of N-mers at time t, the sum is
over all possible elementary processes #, Rð#Þ is the
reaction rate, and $Nð#Þ is the stoichiometric number of
N-mers in the reaction # [5]. These theories rely on the
assumption that the size N is sufficient to describe the
cluster growth dynamics, for which there is numerical
evidence [1,6,7]. To solve this set of equations the rates
Rð#Þ must be specified. In addition to several heuristic
arguments one generally requires these rates to obey de-
tailed balance with respect to the distribution (1) so that
!ceðNÞ is the time invariant solution of (2). The validity of

this assumption is not clear a priori. While the underlying
microscopic dynamics obeys detailed balance with respect
to the equilibrium distribution of microstates, it is not
obvious whether the transition rates between clusters of
different sizes obey any balance condition, let alone de-
tailed balance with respect to !ceðNÞ. We are not aware of
any explicit verification of this crucial assumption.
Solving the infinite set (2) of coupled equations is ex-

ceedingly complex. To compute experimentally relevant
quantities such as the nucleation rate it is common to
consider a hypothetical process in which clusters are re-
moved from the system when they reach a threshold size
Nmax; i.e., one introduces an absorbing boundary in N
space. Together with a corresponding source term for small
clusters one then solves for the time-independent steady-
state solution !ssðNÞ of (2). This steady state entails a net
flux towards larger droplets.
The relationship between the densities !ce, !t and !ss

and their respective ensembles is of fundamental impor-
tance to our understanding of phase transformation pro-
cesses. While some of these have been computed for
various model systems [7–13] we are not aware of any
study that measures all three densities for the same system
and thermodynamic conditions. In this Letter we report
such measurements for the change in magnetization of the
Ising model after reversal of the external field. These
measurements allow us to establish quantitative connec-
tions between the different physical pictures outlined
above. We focus on two questions that could not be ad-
dressed by considering only one of these ensembles. First
we investigate whether the nonequilibrium rates Rð#Þ obey
detailed balance with respect to the constrained equilib-
rium distribution (1). We find that this is indeed the case for
the dominant cluster growth process. Second we study
whether the key quantity of CNT, the critical nucleus
size Nc defined as the location of the maximum in
!FðNÞ, is relevant to the dynamics of clusters. We confirm
this assumption, and use a novel dynamical measure of
cluster growth to locate the limit of stability. Our findings
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suggest that droplets remain metastable even at thermody-
namic conditions that were previously believed to be
unstable.

Model and ensembles.—We consider the Ising model on
a cubic lattice of volume V, i.e., a set of spin variables si ¼
"1, 1 # i # V, with energy function E ¼ $h

P
isi $

J
P

<i;j>sisj, where the second sum includes all pairs of

nearest-neighbor lattice sites. Our calculations are per-
formed at J=kBT ¼ 0:369, or 0.6 times the critical tem-
perature. We propagate the system by flipping a randomly
selected spin with probability minf1; expð$!E=kBTÞg,
where !E is the change in energy due to the flip.

We are interested in the transformation of the ‘‘down’’
(si ¼ $1) phase to the ‘‘up’’ (si ¼ 1) phase after a quench
to positive values of the field h. We define a cluster as a
collection of nearest-neighbor up spins, other definitions
can be found in the literature [1,14]. For a given spin
configuration we define MN as the number of clusters of
size N.

We compute the mean cluster densities !XðNÞ ¼
hMNiX=V in three different ensembles, specified by the
subscript X, corresponding to the three physical pictures
outlined in the introduction. The first is the constrained
equilibrium ensemble envisioned in CNT. This ensemble
can be sampled in simulations by rejecting spin flips that
would create a cluster of a size larger than a chosen
threshold Nmax, which frustrates global phase transforma-
tion. The average cluster density !ceðNÞ computed in this
ensemble can be used to calculate the droplet free energy
[8]

FðNÞ ¼ $kBT ln!ceðNÞ; (3)

which implies (1) after setting !FðNÞ ¼ FðNÞ $ Fð1Þ.
Figure 1 shows these free energy profiles for a wide

range of quench depths. These results confirm the funda-
mental prediction of CNT. In particular, !FðNÞ has a
single maximum that defines the critical nucleus size Nc.
The regularity of these profiles establishes the validity of
CNT up to quench depths h=J ' 0:8, even though earlier

studies suggested a breakdown of CNT under these con-
ditions [4,15].
The range of thermodynamic conditions for which we

can compute !FðNÞ using this method is limited by the
magnitude of the energy barrier at small quench depths,
which necessitates the use of advanced sampling tech-
niques [7]. At large quench depths, on the other hand, the
average density of up spins

PNmax
N¼1 N!ceðNÞ becomes suffi-

ciently large so that the assumptions of independent cluster
populations, employed in the derivation of (3), no longer
holds. In this case the crowding of droplets induces addi-
tional many-body interactions, which lead to a Nmax de-
pendence of !FðNÞ. If this dependence becomes
significant for values of Nmax smaller than or comparable
to Nc, the free energy profile of an individual droplet can
no longer be computed by this method.
The second ensemble corresponds to the time-dependent

growth of domains following the reversal of the field.
Ensemble averages, denoted by h( ( (it, depend explicitly
on the time t since the process was initiated. Figure 2
shows the droplet densities !tðNÞ during the initial stages
of nucleation. These functions are monotonically decreas-
ing, and for fixedN the cluster densities converge to a time-
independent value. Importantly, this density is different
from the CNT prediction !ceðNÞ ¼ expð$"FðNÞÞ. These
densities coincide for small cluster sizes up to approxi-
mately Nc, where !ceðNÞ has a minimum while !tðNÞ
remains monotonic. This comparison shows explicitly
that droplets smaller than Nc are indeed in local equilib-
rium with their environment, as envisioned in CNT. These
clusters repeatedly grow and shrink and hence sample the
metastable equilibrium distribution. Clusters larger than
Nc, on the other hand, predominantly grow and are no
longer in equilibrium.
The densities shown in Fig. 2 are intensive quantities

and do not depend on the system volume. The probability
of observing a nucleation event in a single trajectory,
however, depends on how V compares to expð"FðNcÞÞ,
and thus changes qualitatively as one varies either the

FIG. 1. Droplet free energy for various quench depths h=J as
indicated in the figure. !FðNÞ has a single maximum at the
critical nucleus size Nc and a corresponding activation barrier
!FðNcÞ, which both decrease with increasing quench depth.

FIG. 2 (color online). Droplet densities computed in three
different ensembles for a quench to h=J ¼ 0:65. !ce is the
constrained equilibrium density (Nmax ¼ 120), !t the time-
dependent density for t ¼ 2, 10, 20, 30, 40, 50, 100 (left to
right), and !ss the steady-state density (Nmax ¼ 300).
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Freezing of a Lennard-Jones Fluid: From Nucleation to Spinodal Regime
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Using molecular dynamics, we investigate the crystal nucleation in a Lennard-Jones fluid as a function
of the degree of supercooling. At moderate supercooling, a nucleation picture applies, while for deeper
quenches, the phenomenon progressively acquires a spinodal character. We show that in the nucleation
regime, the freezing is a two-step process. The formation of the critical nucleus is indeed preceded by the
abrupt formation of a precritical crystallite from a density fluctuation in the fluid. In contrast, as the degree
of supercooling is increased, crystallization proceeds in a more continuous and collective fashion and
becomes more spatially diffuse, indicating that the liquid is unstable and crystallizes by a spinodal
mechanism.

DOI: 10.1103/PhysRevLett.97.105701 PACS numbers: 64.60.Qb, 07.05.Tp, 82.20.!w

In the absence of nucleation centers, moderately super-
cooled liquids are metastable, but after a finite time
undergo homogeneous nucleation. This is usually de-
scribed in terms of classical nucleation theory (CNT) in
which spontaneous fluctuations lead to the formation of
small crystallites [1,2]. When a crystallite exceeds a criti-
cal size, i.e. when it overcomes the nucleation free energy
barrier, the whole system crystallizes. In this picture, the
critical nucleus is assumed spherical, and the nucleation
barrier, which depends only on its size, is determined by a
balance between surface and volume free energy terms.
Several computer simulations have helped to elucidate the
microscopic aspects of crystal nucleation for moderate
supercooling and allowed free energy barriers and nuclea-
tion rates to be computed for model systems such as hard-
spheres [3,4] and Lennard-Jones (LJ) [5–8]. These models
are representative of real systems, e.g. colloids or globular
proteins, and the theoretical predictions can be verified
experimentally [9,10]. Nevertheless, calculations, as well
as experiments, have proven challenging, and a compre-
hensive picture of crystallization kinetics and thermody-
namics as a function of the degree of supercooling is still
lacking. At deep quenches, the nucleation process was
predicted to be affected by the proximity of a ‘‘pseudospi-
nodal’’ [11,12], and earlier simulations of the freezing of
LJ fluid supported this prediction [7,13], although the
existence of a spinodal singularity for crystallization has
not been proven yet.

In this Letter, we present a molecular dynamics (MD)
study of the crystallization of a LJ fluid as a function of the
degree of supercooling. The aim of this study is to ascertain
to what extent CNT applies and to investigate how the
degree of supercooling affects the crystallization process.
We simulate an Argon fluid as described by an LJ potential
[14] at temperature T=Tmelt " 0:8 and pressure P "
0:25 kbar. We study a system of 6912 particles with peri-
odic boundary condition (PBC). This system size is much
larger than the critical nucleus, hence PBC will not affect
its formation. Temperature and pressure are controlled by a

thermostat [15] and a barostat [16]. We checked that during
crystallization, pressure and temperature do not exhibit
anomalous fluctuations. At low supercooling, crystalliza-
tion takes place in a time scale much longer than present
day MD time scale. Much technical progress has recently
been made in this field, and using methods such as tran-
sition path sampling (TPS) [17], it is now possible to
generate real dynamical trajectories in a computationally
affordable time. In practice, we start from a crystallization
trajectory, and at selected points along the path, the ve-
locities are changed randomly while keeping the total
kinetic energy constant. The maximum allowed change
in velocity is 5%. By propagating forward and backward
in time from these altered points, new trajectories are
generated. The ones that lead to crystallization are ac-
cepted and are used as new starting points. By iterating
this procedure, we were able to harness ten statistically
independent crystallization trajectories.

Along these trajectories, we perform a commitment
probability analysis (CPA) [17], namely, we measure the
probability that the system returns to the liquid state or
proceeds toward crystallization when the particle velocities
are changed and randomly chosen from the appropriate
Maxwell distribution. The transition state ensemble con-
sists of the configurations, in which nuclei are equally
likely to promote crystallization or to dissolve. In transition
state theory, this condition coincides with the maximum of
the free energy along the proper reaction coordinate. We
define a particle as solid-like, computing the dot product
between its local q6 vector, i.e. the expansion in spherical
harmonics of the nearest neighbors bonding vectors (see
Ref. [7] for details), with the ones of the neighboring
atoms, normalized on the number of neighbors. We have
verified that the distributions of this quantity in the liquid
and in the solid are neatly separated. A broad distribution
of the size of critical nuclei is found: n# " 240$ 34
atoms, which is consistent with earlier studies [8]. We
can now examine whether CNT is able to describe this
phenomenon. In CNT, the free energy of formation of a
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system since the beginning. This evidence suggests that the
liquid becomes unstable, rather than metastable with re-
spect to the solid, and crystallization turns into a collective
process.

In summary, we have presented an analysis of the
temperature-dependent behavior of crystallization in a LJ
fluid. Our results demonstrate that for shallow supercool-
ing, CNT captures the essential thermodynamic features of
freezing, i.e. the height of the nucleation barrier and the
size range of the critical nucleus, provided that the ap-
proximation of spherical nucleus is abandoned. None-
theless, the kinetics of the initial stage of the growth of
crystalline embryos is characterized by the sudden forma-
tion of dense crystalline cluster of finite size. This feature
was not predicted by classical kinetic theories that describe
nucleation in terms of addition and removal of single
particles [29]. It is however consistent with nucleation
seen near spinodals in Ising models with long-range inter-
actions [30]. At lower temperatures, we observed a cross-
over from a classical nucleation regime to a more
collective mechanism of freezing, influenced by the exis-
tence of a spinodal singularity. The presence of a spinodal
effect in the crystallization from the liquid, as predicted by
a field theory approach [11], is here confirmed.

We thank R. Martonak, A. Laio, Y. Mantz, D. Moroni,
and V. Buch for useful discussions, and M. Valle for the
development of helpful visualization tools.
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FIG. 4 (color). For T=Tmelt ! 0:8, a snapshot of a critical nucleus is shown. For T=Tmelt ! 0:7 and 0.65, we have chosen a
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ment. Different colors indicate different aggregates with solid-like character. For clarity, the liquid-like particles are not shown.
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Supercooling limits:  a “kinetic spinodal”?

liquid

glass

crystal

τn

τequil

• τn = CD−1 exp(β∆G∗)

• What if D−1 does not scale with
τequil at low T , e.g. due to
breakdown of Stokes-Einstein
relation?

• Imposes a finite T limit for
observing the liquid state...a
”kinetic spinodal”.
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Recent work on stability limits of supercooled liquids...

• A. Cavagna and coworkers: “kinetic 
spinodal temperature” for supercooled 
liquids...
- EPL 61, 74 (2003)
- JCP 118, 6974 (2003) 
- PRL 95, 115702 (2005) 

• Spinodal-like crystal nucleation in 
deeply supercooled LJ liquid...
- Trudu, Donadio and Parrinello, PRL 

97, 105701 (2006)
- Wang, Gould and Klein, PRE 76, 

031604 (2007)

• Stability limits for crystal nucleation in 
supercooled gold nanoclusters...
- Mendez-Villuendas, Saika-Voivod 

and Bowles, JCP, 127, 154703 (2007) 
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Kauzmann’s 
Paradox

• A thermodynamic problem 
(the impending entropy 
catastrophe of supercooled 
liquids) is not resolved by 
appealing to a dynamic 
phenomenon (the glass 
transition).

• Kauzmann’s own solution:  
Crystallization becomes 
unavoidable on deep 
supercooling.

W. Kauzmann, 
Chem. Rev. 43, 219 (1948) 
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Classical nucleation theory (CNT) 

• In CNT the nucleation rate is
given by

J = K exp
�
−β∆G∗�

• ∆G(n) is the work to form
a nucleus of the stable phase
containing n particles.

• K is the kinetic prefactor.

• ∆G(n) = an2/3 − bn

• ∆G∗ is the height of the nu-
cleation barrier.

• n∗ is the number of particles
in the critical nucleus.

• β = 1/kT
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Classical nucleation theory (CNT) 

n = 0

n = 1

n = 2
n = n∗

• ∆G(n) is the work required
to form a nucleus containing
n particles.

• β∆G(n) = − log N(n)
N0

• N(n) is the number density
of clusters of size n.

• N0 is the number density of
the metastable phase.

...
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Classical nucleation theory (CNT) 

Two challenges for finding N(n)
in simulations of crystal
nucleation:

• Labelling particles as
liquid-like or crystal-like.
What’s n?

• Sampling the equilibrium
cluster distribution
associated with a rare and
irreversible process.

n = 0

n = 1

n = 2
n = n∗

...
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Identifying crystal-like particles in a supercooled liquid

• Frenkel and coworkers:  Define a local 
orientational order parameter, based on 
spherical harmonics (Steinhardt).

• See: Ten Wolde, Ruiz-Montero and 
Frenkel, JCP, 1996; Faraday Discuss., 
1996.

l=6, m=3 l=6, m=4

r̂ij
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crystal-
like 
bonds

liquid-like 
bonds

one-component 
Lennard-Jones system

Identifying crystal-like particles in a supercooled liquid

• A crystalline bond exists be-
tween particles i and j when
q6(i) · q6(j) > 0.5

ten Wolde, et al., Faraday Discuss., 1996
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Fig. 3 Distributions of the number of connections per particle in a Lennard-Jones system for a 
thermally equilibrated liquid, bcc and fcc structure at coexistence ( P  = 5.68, T = 1.15). The dis- 

tributions are based on averages over 50 independent atomic configurations. 

old value. To illustrate this technique, Fig. 3 shows the histograms of the number of 
connections per particle for the liquid, the bcc structure and the fcc structure of the 
Lennard-Jones system, all equilibrated at the fcc-liquid coexistence point. As is to be 
expected, the average number of connections per particle is less in the liquid than in 
either solid. More importantly, the histogram for the liquid phase exhibits very little 
overlap with the histograms of the two solid phases. We find that, with a threshold value 
of seven connections per particle, more than 99% of the particles in an fcc structure are 
identified as being solid-like. Even for the bcc structure, which is rather open and disor- 
dered, this method identifies more than 97% of the particles as solid-like. In contrast, for 
the liquid, less than 1% of the particles were identified as being solid-like. Thus, this 
analysis method gives an unambiguous, local criterion to identify solid-like particles. 
Once we have identified the individual solid-like particles, we can perform standard 
cluster analysis to recognize crystallites. We apply the criterion that any two solid-like 
particles that are neighbours belong to the same solid cluster. 

2.1 

Having identified the clusters, we now wish to characterize their crystalline structure. To 
this end, we again make use of the local orientational order parameters. In a perfect 
crystal, the local bond order is the same for every particle. However, in a crystal that is 
equilibrated at a finite temperature, the local structure varies from one particle to 
another. Hence, a crystal structure equilibrated at a finite temperature will be character- 
ized by a distribution of values of the local-order parameters, rather than by a single 
one. In fact, each phase has its own unique distribution. To illustrate this, we have 
shown in Fig. 1 the distribution functions of the local order parameters for the liquid, 
bcc and fcc structure. It is clear that, although the distributions are broad, there is still 
considerable difference between the distributions that correspond to the different phases. 
We therefore used these distributions as a ‘fingerprint’ to identify the crystal structure of 
the clusters. 

To make the identification of a solid cluster quantitative, we have adopted the fol- 
lowing procedure. We first determine the distribution functions of the local-order 
parameters in the cluster and, as reference, for the thermally equilibrated liquid, bcc and 
fcc structure (the local bond-order parameters, as well as the Voronoi analysis, indicated 
that these were the most common structures). We concatenate the distribution functions 

Identification of the crystalline structure 

crystal-like 
particles

liquid-like 
particles

one-component 
Lennard-Jones system

Identifying crystal-like particles in a supercooled liquid
A particle is defined to be a crystalline 
particle when it has 8 or more crystalline 
bonds with its nearest neighbours in the 
first coordination shell.

Liquid particles are those with 7 or fewer 
crystalline bonds with their nearest 
neighbours.

ten Wolde, et al., Faraday Discuss., 1996
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A. Crystallite structure
As mentioned in the previous section, only small crys-

tallites are observed on the liquid side of the barrier. The size
of the largest crystallites ranges from 16 particles in the
metastable liquid to 26 particles as the top of the barrier is
approached. Previous theoretical,43 experimental,44 and com-
puter simulation studies44–46 indicate that for small clusters
of Lennard-Jones atoms in vacuo the icosahedral structure is
more stable than any of the crystalline structures. Besides, it
has been suggested32 that long-ranged icosahedral order
would be favored in strongly supercooled liquids. When we
applied a conventional Voronoi analysis to our system in the
liquid state, we could identify on average 1% of the atoms as
being icosahedrally surrounded. However, the larger crystal-
lites that were present in the liquid never contained any atom
with the characteristic ~0 0 12 0! signature of an icosahedron.
Also an examination of the local bond order parameter
w�6 , which is most sensitive to icosahedral order ~see Table
I!, supported the conclusion that the largest crystallites do
not contain icosahedrally ordered atoms. In fact, the bond-
order analysis indicates that the larger solidlike clusters in
the metastable liquid have appreciable bcc character,
whereas at the top of the barrier and beyond, they are pre-
dominantly fcc-like. To make this analysis more quantitative,
we determined f liq , f bcc and f fcc as defined in Eq. ~17! for the
largest cluster in the system.

Figure 4 shows the structural ‘‘composition’’ of the larg-
est cluster in the system, as a function of the ‘‘reaction co-
ordinate,’’ Q6 . The figure shows that the precritical nuclei
are predominantly bcc- and liquidlike. However, near the top
of the barrier, at Q6�0.025, there is a clear change in the
nature of the solid nuclei from bcc- and liquidlike to mainly
fcc-like. The fact that the precritical nuclei are rather liquid-
like is not surprising as they are quite small and almost all
interface. The important point to note is that these nuclei
have clearly more bcc than fcc character. This suggests that,
at least for small crystallites, we find the behavior predicted
by Landau theory.10 Yet, as the critical and postcritical clus-

ters are predominantly fcc-like, the present results are also
compatible with the findings of Swope and Andersen,23 who
observed that nucleation proceeded through fcc crystallites.
In fact, the nucleation process as observed in the present
simulations might be interpreted as a manifestation of the
Ostwald step rule.8 First, a metastable, bcc, phase is nucle-
ated, which is then transformed into a more stable, fcc,
phase. What is remarkable is that we find that the transfor-
mation from bcc to fcc takes place before the critical nucleus
is reached.

B. Critical nucleus
Visual inspection of the critical and postcritical nuclei

showed that the nuclei at this moderate degree of undercool-
ing are fairly compact, more or less spherical objects ~see
Fig. 5!. This finding appears to be in contrast to what is
found in simulations of crystal nuclei at large
supercooling33,35 where ramified structures were observed.
Although we find the critical nucleus to be fairly spherical,
rudimentary facets can be distinguished. Facetting of crystal
nuclei was also observed by Báez and Clancy,47 who studied
the growth and dissolution of critical fcc nuclei implanted in
a liquid at 26% undercooling. Báez and Clancy found that
during the earliest stages of growth the nuclei are distinctly
octahedral, with facets corresponding to the ~111! planes of
the fcc crystal.

In order to quantify the degree of nonsphericity of the
critical nucleus, we expand the mass distribution of the crys-
tallite in rank four spherical harmonics (Y 4m) and con-
structed quadratic invariants, denoted by S4~cl!. For a spheri-
cal cluster S4~cl! is, of course, zero. But for an octahedral
cluster it has a value of 0.11. We find that, both for the
critical and postcritical nuclei, S4~cl! is much smaller than is
compatible with an octahedral shape. Hence the critical and
postcritical nuclei in our simulations are indeed quite spheri-
cal, which supports the assumption of classical nucleation
theory. However, this finding seems hard to reconcile with

FIG. 4. Structural composition of the largest cluster in a Lennard-Jones
system, indicated by f liq , f bcc , f fcc , and D 2, as a function of Q6 ~the
reaction coordinate! at 20% undercooling (P�5.68, T�0.92). This figure is
based on averages over 50 independent atomic configurations. FIG. 5. Snapshot of the critical nucleus at 20% undercooling (P�5.68,

T�0.92) in a Lennard-Jones system.

9940 ten Wolde, Ruiz-Montero, and Frenkel: Rate of crystal nucleation
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Classical nucleation theory (CNT) 

Two challenges for finding N(n)
in simulations of crystal
nucleation:

• Labelling particles as
liquid-like or crystal-like.
What’s n?

• Sampling the equilibrium
cluster distribution
associated with a rare and
irreversible process.

n = 0

n = 1

n = 2
n = n∗

...
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Case study:  nucleation in the the 2D Ising model
• 2D Ising model:

H = −J

�

�ij�

sisj + H

�

i

si

• Ferromagnetic: set J = +1

• L = 64

• T = 1.72, T/Tc = 0.76

• Initially all spins down, with
H = +0.2

• red = down spins

• blue = up spins
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Finding N(n) in simulations of steady state nucleation

n = 0

n = 1

n = 2
n = n∗

...

• Conduct many runs starting from all
down spins.

• Under these conditions, the process
is“steady state” nucleation in the sense
that a well-defined metastable
equilibrium is established prior to
nucleation, and the rate at which
nucleation occurs is independent of time.

• Absorbing boundary condition: runs are
stopped when nmax = b = 200.
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Finding N(n) in simulations of steady state nucleation

n = 0

n = 1

n = 2
n = n∗

...

clusters near and beyond n* 
are under-sampled because 

of absorbing boundary 
condition at nmax=200 

so Nst(n) does not give 
a barrier profile that 
exhibits a maximum

β∆G(n) = − log N(n)
N0
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Frenkel and Co.: Apply a constraint to find equilibrium N(n)

no
max = 100

Review:  Auer and Frenkel, Annual Reviews of Physical 
Chemistry, 2004

Based on “blue moon” ensemble first developed by 
Ciccotti and coworkers.  See...
- E.A. Carter, et al., Chem. Phys. Lett, 156, 472 (1989).
- Sprik and Ciccotti, JCP, 109, 7737 (1998).

• Biased sampling applied to nucleation

• Constraint should be a property of the

system. Let’s choose nmax.

• Apply constraint via the Hamiltonian:

H = −J

�

�ij�

sisj + H

�

i

si + φ(nmax, n
o
max)

where,

φ(nmax, n
o
max) = k(nmax − n

o
max)

2

• n
o
max is a desired value of nmax around which

we wish to sample.

• In simulation: Generate new states as before

(MD or MC), but periodically accept/reject

states with probability exp[−βφ(nmax, n
o
max)]

• Gives NC(n), the cluster distribution in the

constrained equilibrium.
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Apply a constraint to sample equilibrium N(n)

no
max = 100

Guarantees that clusters sampled near n=n0max are in 
equilibrium with both smaller and larger clusters.
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Reweight constrained NC(n) to obtain equilibrium N(n)
• Equilibrium N(n) found from

reweighted NC(n):

N(n) = K�NC(n) exp[βφ(nmax, n
o
max)]�C

• �· · · �C is an average in the
constrained ensemble.
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Find KN(n) for n near several values of n0max
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Set N(n)=N0 and splice KN(n) curves together by shifting

n*~127
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-log [Nst(n)/N0]
-log [N(n)/N0] single nmax window, hard walls
-log [N(n)/N0] = βΔG(n)

For low barriers, one sampling window may be enough

• System constrained by a reflecting boundary condition at nmax=150.
• No reweighting necessary:  N(n)=NC(n)
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Reguera and Co.: “Mean first passage time” approach

• Uses data from unconstrained,

steady-state nucleation runs

• Allows evaluation of barrier profiles

as well as kinetic info from a single

set of runs.

• τ(nmax) is the average time at which

the largest cluster in the system first

reaches a size nmax.

• Predicts for τ(nmax):

τ(nmax) =
1 + erf[c(nmax − n∗)]

2JV

• Here, fit gives n∗ = 121. Umbrella

sampling gave n∗ = 127.

J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103, 2007.
J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060, 2008.
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Reguera and Co.: “Mean first passage time” approach

• Also need Pst(nmax), the
steady-state probability that
the largest cluster in the
system is of size nmax.

• When clusters of size nmax

are rare,

Pst(nmax) = Nst(n)/N0

• Note the maximum in
Pst(nmax) at small nmax.
It’s unlikely that the largest
cluster is extremely small.
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Reguera and Co.: “Mean first passage time” approachcostly to evaluate in a simulation. However, an even more useful
result can be proven that allows us to evaluate D(x) and ∆G(x)
accurately and at the same time.

The steady-state rate is also related to another important
quantity: the mean first-passage time (MFPT). In our case, the
MFPT is defined as the average time that the system, starting
out at x0 needs to reach the state x for the first time, given by

τ(x;x0, a))∫x0

x 1
D(y)

dy e"∆G(y)∫a

y
dz e-"∆G(z) (5)

when the boundary conditions are reflecting at a, and absorbing
at x ) b.9,10 By derivating twice and rearranging the result
conveniently, one gets to

∂ln(A(x) D(x))
∂x

) 1
D(x) A(x)

+ ∂("∆G(x))
∂x

(6)

where A(x) ≡ ∂τ(x)/∂x. By integrating this equation, we obtain
the main result of this paper that allows for the reconstruction
of the free energy landscape:

"∆G(x)) ln(B(x))-∫ dx!
B(x ! )

+C (7)

which depends on the product B(x) ≡ A(x)D(x) that we are going
to evaluate now. By combining eq 6 with eq 3 and after some
straightforward algebra one gets

∂(B(x) Pst(x))

∂x
)Pst(x)- JA(x) (8)

Finally, the integration of this equation yields the desired
result, namely

B(x))- 1
Pst(x)[∫x

b
Pst(x ! ) dx !-τ(b)- τ(x)

τ(b) ] (9a)

) 1
Pst(x)[∫a

x
Pst(x ! ) dx !- τ(x)

τ(b)] (9b)

where we have used that J ) 1/τ(b), a general result that has
also been proven in ref 11. It is important to highlight that the
previous equations are still valid even if the activation barrier
is not very high, provided that steady-state conditions are
reached. Therefore, it is possible to reconstruct the free-energy
landscape from the knowledge of Pst(x) and τ(x) alone. Another
obvious but useful expression is

D(x))B(x)/(∂τ(x)
∂x ) (10)

showing that it is also possible to reconstruct the effective
diffusion coefficient for a given reaction coordinate using just
the same ingredients. We point out that while eq 9b above is
the more elegant solution, it is often numerically favorable to
evaluate B(x) using the equivalent eq 9a. In addition, we note
that when the data on hand is discrete, we can simply replace
the integral by its equivalent sum in eqs 9. It is also worth
pointing out that the same derivation and result can be obtained
starting from a discrete master equation instead of a Fokker-
Planck equation.

3. Application to Nucleation

In order to demonstrate the power of this new method, we
will focus on perhaps the simplest example of an activated
process: the nucleation of a vapor. Nucleation is the mechanism
that initiates the condensation of, e.g., a supersaturated vapor.
This process starts with the formation of the first embryos of
the liquid phase, which have to overcome a free-energy barrier.

The formation of a sufficiently large droplet that triggers the
appearance of the new phase intrinsically is a nonequilibrium
process since these droplets are unstable and thus cannot be
sampled in an equilibrium simulation or experiment unless
addiditional constraints are enforced.

We will first validate the method by using an analytical
model, the classical nucleation theory (CNT). For clarity, we
stress that neither the derivation in the previous section nor the
application of our method are making any use of classical
nucleation theory whatsoever. In section 3.2, we illustrate its
application to MD simulations.

3.1. Proof of Concept: Application to Classical Nucleation
Theory. In CNT, the free energy of formation of a liquid droplet
in a supersaturated vapor is given by ∆GCNT(n) ) -n∆µ +
γA(n), where ∆µ is the difference in chemical potentials of the
liquid and the vapor phase, γ is the surface tension and A(n) is
the area of a spherical cluster of n molecules. This expression
can be conveniently rescaled to

∆GCNT(x)) 2∆GCNT
/ (-x+ 3

2
x2/3) (11)

where x ) n/n*, n* is the size of the critical cluster, and ∆GCNT
/

is the height of the nucleation barrier.12 This representation has
the advantage that the location of the barrier is easily identified
at x ) 1 independently of the barrier height. The nucleation
kinetics can then be described by the FP equation (1), where
now the effective diffusion D(x) is the rate of attachment of
molecules to a cluster of size n, given by kinetic theory as
DCNT(x) ) A(n*)px2/3/"(2πmkT) ≡ D0x2/3, where p is the vapor
pressure and A(n*) the surface area of the critical cluster.

In order to verify the validity of eqs 7 and 9, we have
numerically solved the FP equation, eq 1, for the case in which
both the free-energy ∆G(x) and the attachment rate D(x) are
given by the classical expressions above. We have analyzed
two different situations, corresponding to a very low (∆GCNT

/

) 1 kBT) and a medium/high (∆GCNT
/ ) 10 kBT) nucleation

barrier. Figure 1b shows the resulting steady-state probability
distribution for each case. The corresponding MFPTs (in units
of time scaled by n/2/D0) as a function of the rescaled cluster
size calculated numerically from eq 5 (starting from x0 ) 0
and using a reflecting boundary condition at x ) 0) are shown
in Figure 1a. For the high barrier, the MFPT curve has a
sigmoidal shape that reaches a well-defined plateau at larger
values of x. For the low barrier case, however, the MFPT shows
an almost linear increase at large sizes without reaching a clear
plateau, indicating that the growth of the cluster is not hindered
by any significant activation barrier. Recently, we have shown
how to extract accurately and efficiently all the relevant kinetic
information, such as the activation rate, the location of the
transition state, and the local curvature of the barrier around it,
by fitting the MFPT to an error function.10 As discussed in ref
10 this procedure is very accurate when the activation barrier
is sufficiently high. The results of the present work allow us to
go one significant step further and be able to reconstruct the
underlying free-energy landscape, thus obtaining also the
relevant thermodynamic information. We have reconstructed
the free-energy landscape for both the high and the low barrier
cases, using eq 7 and the steady-state probabiliy and the MFPT
of Figure 1, a and b. Figure 1c compares the result of the
reconstruction with the real barrier, showing a perfect agreement
in both cases. It is remarkable that the formula still works for
the low barrier of 1 kBT. In this case, standard approximations
used to evaluate rates based on a steepest-descent approximation
will fail and the assumption that the MFPT can be fitted to an
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costly to evaluate in a simulation. However, an even more useful
result can be proven that allows us to evaluate D(x) and ∆G(x)
accurately and at the same time.

The steady-state rate is also related to another important
quantity: the mean first-passage time (MFPT). In our case, the
MFPT is defined as the average time that the system, starting
out at x0 needs to reach the state x for the first time, given by

τ(x;x0, a))∫x0

x 1
D(y)

dy e"∆G(y)∫a

y
dz e-"∆G(z) (5)

when the boundary conditions are reflecting at a, and absorbing
at x ) b.9,10 By derivating twice and rearranging the result
conveniently, one gets to

∂ln(A(x) D(x))
∂x

) 1
D(x) A(x)

+ ∂("∆G(x))
∂x

(6)

where A(x) ≡ ∂τ(x)/∂x. By integrating this equation, we obtain
the main result of this paper that allows for the reconstruction
of the free energy landscape:

"∆G(x)) ln(B(x))-∫ dx!
B(x ! )

+C (7)

which depends on the product B(x) ≡ A(x)D(x) that we are going
to evaluate now. By combining eq 6 with eq 3 and after some
straightforward algebra one gets

∂(B(x) Pst(x))

∂x
)Pst(x)- JA(x) (8)

Finally, the integration of this equation yields the desired
result, namely

B(x))- 1
Pst(x)[∫x

b
Pst(x ! ) dx !-τ(b)- τ(x)

τ(b) ] (9a)

) 1
Pst(x)[∫a

x
Pst(x ! ) dx !- τ(x)

τ(b)] (9b)

where we have used that J ) 1/τ(b), a general result that has
also been proven in ref 11. It is important to highlight that the
previous equations are still valid even if the activation barrier
is not very high, provided that steady-state conditions are
reached. Therefore, it is possible to reconstruct the free-energy
landscape from the knowledge of Pst(x) and τ(x) alone. Another
obvious but useful expression is

D(x))B(x)/(∂τ(x)
∂x ) (10)

showing that it is also possible to reconstruct the effective
diffusion coefficient for a given reaction coordinate using just
the same ingredients. We point out that while eq 9b above is
the more elegant solution, it is often numerically favorable to
evaluate B(x) using the equivalent eq 9a. In addition, we note
that when the data on hand is discrete, we can simply replace
the integral by its equivalent sum in eqs 9. It is also worth
pointing out that the same derivation and result can be obtained
starting from a discrete master equation instead of a Fokker-
Planck equation.

3. Application to Nucleation

In order to demonstrate the power of this new method, we
will focus on perhaps the simplest example of an activated
process: the nucleation of a vapor. Nucleation is the mechanism
that initiates the condensation of, e.g., a supersaturated vapor.
This process starts with the formation of the first embryos of
the liquid phase, which have to overcome a free-energy barrier.

The formation of a sufficiently large droplet that triggers the
appearance of the new phase intrinsically is a nonequilibrium
process since these droplets are unstable and thus cannot be
sampled in an equilibrium simulation or experiment unless
addiditional constraints are enforced.

We will first validate the method by using an analytical
model, the classical nucleation theory (CNT). For clarity, we
stress that neither the derivation in the previous section nor the
application of our method are making any use of classical
nucleation theory whatsoever. In section 3.2, we illustrate its
application to MD simulations.

3.1. Proof of Concept: Application to Classical Nucleation
Theory. In CNT, the free energy of formation of a liquid droplet
in a supersaturated vapor is given by ∆GCNT(n) ) -n∆µ +
γA(n), where ∆µ is the difference in chemical potentials of the
liquid and the vapor phase, γ is the surface tension and A(n) is
the area of a spherical cluster of n molecules. This expression
can be conveniently rescaled to

∆GCNT(x)) 2∆GCNT
/ (-x+ 3

2
x2/3) (11)

where x ) n/n*, n* is the size of the critical cluster, and ∆GCNT
/

is the height of the nucleation barrier.12 This representation has
the advantage that the location of the barrier is easily identified
at x ) 1 independently of the barrier height. The nucleation
kinetics can then be described by the FP equation (1), where
now the effective diffusion D(x) is the rate of attachment of
molecules to a cluster of size n, given by kinetic theory as
DCNT(x) ) A(n*)px2/3/"(2πmkT) ≡ D0x2/3, where p is the vapor
pressure and A(n*) the surface area of the critical cluster.

In order to verify the validity of eqs 7 and 9, we have
numerically solved the FP equation, eq 1, for the case in which
both the free-energy ∆G(x) and the attachment rate D(x) are
given by the classical expressions above. We have analyzed
two different situations, corresponding to a very low (∆GCNT

/

) 1 kBT) and a medium/high (∆GCNT
/ ) 10 kBT) nucleation

barrier. Figure 1b shows the resulting steady-state probability
distribution for each case. The corresponding MFPTs (in units
of time scaled by n/2/D0) as a function of the rescaled cluster
size calculated numerically from eq 5 (starting from x0 ) 0
and using a reflecting boundary condition at x ) 0) are shown
in Figure 1a. For the high barrier, the MFPT curve has a
sigmoidal shape that reaches a well-defined plateau at larger
values of x. For the low barrier case, however, the MFPT shows
an almost linear increase at large sizes without reaching a clear
plateau, indicating that the growth of the cluster is not hindered
by any significant activation barrier. Recently, we have shown
how to extract accurately and efficiently all the relevant kinetic
information, such as the activation rate, the location of the
transition state, and the local curvature of the barrier around it,
by fitting the MFPT to an error function.10 As discussed in ref
10 this procedure is very accurate when the activation barrier
is sufficiently high. The results of the present work allow us to
go one significant step further and be able to reconstruct the
underlying free-energy landscape, thus obtaining also the
relevant thermodynamic information. We have reconstructed
the free-energy landscape for both the high and the low barrier
cases, using eq 7 and the steady-state probabiliy and the MFPT
of Figure 1, a and b. Figure 1c compares the result of the
reconstruction with the real barrier, showing a perfect agreement
in both cases. It is remarkable that the formula still works for
the low barrier of 1 kBT. In this case, standard approximations
used to evaluate rates based on a steepest-descent approximation
will fail and the assumption that the MFPT can be fitted to an
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• Method corrects Pst(nmax)
using τ(nmax) to give
β∆GMFPT(nmax)
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Comparison of MFPT and biased sampling
• MFPT and biased sampling agree

at large n.

• Caution: When barriers become
low (< 10kT ), the assumption
that larger clusters are rare
begins to break down. See...

• P. Bhimalapuram, S.
Chakrabarty, and B. Bagchi,
Phys. Rev. Lett. 98, 206104,
2007.

• L. Maibaum, Phys. Rev. Lett.
101, 256102, 2008.

• J. Wedekind, et al., J. Chem.
Phys. 11, 114506, 2009.
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Homework!  Do L=16 Ising model on your laptops
(~30 cpu min)

L=16, 
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Test of classical nucleation theory and mean first-passage time formalism
on crystallization in the Lennard-Jones liquid

Sarah E. M. Lundrigan and Ivan Saika-Voivoda!

Department of Physics and Physical Oceanography, Memorial University of Newfoundland,
St. John’s, Newfoundland and Labrador A1B 3X7, Canada
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We perform molecular dynamics !MD" and Monte Carlo computer simulations to test the ability of
the recently developed formalism of mean first-passage time !MFPT" #J. Wedekind, R. Strey, and D.
Reguera, J. Chem. Phys. 126, 134103 !2007"; J. Wedekind and D. Reguera, J. Phys. Chem. B 112,
11060 !2008"$ to characterize crystal nucleation in the Lennard-Jones liquid. We find that the
nucleation rate, critical embryo size, Zeldovich factor, attachment rate, and the nucleation barrier
profile obtained from MFPT all compare very well to the same quantities calculated using other
methods. Furthermore, we find that the nucleation rate obtained directly through MD closely
matches the prediction of classical nucleation theory. © 2009 American Institute of Physics.
#doi:10.1063/1.3216867$

I. INTRODUCTION

Molecular dynamics !MD" and Monte Carlo !MC" com-
puter simulations play an increasingly important role in
studying nucleation and testing classical nucleation theory
!CNT".1–6 While straightforward atomistic simulations can
provide a great deal of microscopic detail of a system and are
used when achieving equilibrium is not problematic, large
free energy and kinetic barriers often encountered in study-
ing nucleation necessitate the use of special computational
methods to more efficiently sample phase space. To this end,
various techniques such as metadynamics,7 aggregation-
volume-bias MC,8 and transition path sampling9 can be em-
ployed.

Particularly notable in the computational study of nucle-
ation is the work of Frenkel and co-workers,10–15 who devel-
oped techniques to calculate quantities pertinent to nucle-
ation, such as the size of a crystal-like embryo, the work
required to form a critical embryo !the nucleation barrier
height", embryo composition, and the rate of particle attach-
ment to the critical embryo. The techniques, in part and with
variations, have been applied to several cases, including
nucleation of globular proteins near a metastable critical
point,16 liquids near a wall,17 hard spheres,13,14 sodium
chloride,15 a system near an isostructural phase transition,18

and silica.19

A subset of Frenkel’s techniques used in concert forms
what can be regarded as a standard approach in making a
CNT-based prediction of the rate. A suitable set of criteria is
used to define crystal-like embryos, after which biased sam-
pling MC is used to find the equilibrium number distribution
N!n" of embryos of size n, using the largest embryo size in
the system nmax as the biasing order parameter in order to
sample rare states. To more efficiently establish equilibrium,
parallel tempering, both in temperature T and cluster size, is
often employed. This procedure yields the size of the critical

embryo n!, the work required to form an embryo of size n,
!F!n", and the Zeldovich factor Z. The attachment rate of
particles to the critical embryo fn!

+ is calculated separately
with MD simulations of systems containing a critically sized
embryo.

Recently, Wedekind et al.20–22 developed a formalism
useful in the regime where nucleation can be observed di-
rectly in MD simulations, namely, the mean first-passage
time !MFPT" method. From an ensemble of nucleating runs,
the MFPT method yields a clear determination of the rate,
the size of the critical embryo, and the Zeldovich factor.
Additionally, the same steady-state MD simulation data can
be used to determine free energy barrier profiles as well as
attachment rates. Thus, in the regime of applicability, i.e.,
where nucleation occurs on simulation time scales, the
MFPT method provides a straightforward way of determin-
ing all the quantities necessary for characterizing the nucle-
ation process.

In developing the MFPT method and applying it to liq-
uid nucleation from the vapor,23 Reguera and co-workers
made use of the probability P!n" of observing the largest
embryo in the system to be of size n. P!n" is not the distri-
bution directly pertinent to CNT, N!n" is. P!n" is extensive,
in that in a larger system, larger embryos are less rare, and
hence the most common size for the largest embryo in the
system increases with increasing system size, eventually
leading to an apparent loss of liquid metastability at suffi-
ciently large system size.24–26 Despite this extensivity, P!n"
is related to N!n"; for sufficiently high barrier, for a given
system size, the two distributions become approximately
equal beyond a sufficiently large embryo size. This enables
us to determine !F!n" from P!n" and other steady-state data.

In this work, we compare the rate of nucleation deter-
mined from the MFPT method to a more conventional
method employing MD simulations. The MFPT method then
allows us to use this same set of data to determine n!, Z,
!F!n", and fn

+, the attachment rate as a function of embryoa"Electronic mail: saika@mun.ca.
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librium liquid can only be obtained if the system is formally
prevented from nucleating, e.g., by some constraint on the
largest embryo.

In equilibrium, !"F!!n"=−ln P!n"+#, and it is essen-
tially the goal of the MFPT formalism to obtain P!n" from
Pst!n" available from dynamic simulations without placing
constraints on the system as is done with, e.g., umbrella sam-
pling MC. "F!!n2"−"F!!n1" can be interpreted as the work
required to change the system from having nmax=n1 to hav-
ing nmax=n2.

Recently, Wedekind and Reguera22 carried out their pro-
cedure in the case of liquid nucleation from the vapor. Here,
we are working with crystal nucleation and there appears to
be an additional subtlety. The central thermodynamic quan-
tity relevant to predicting the rate via CNT is N!n" !again,
the equilibrium number of crystal-like embryos of size n in
the system". For rare embryo sizes N!n"# P!n" $provided
both N!n" and P!n" are defined on the same range of n,
otherwise they differ by a normalization constant%. As men-
tioned above, at small n they are different in general. De-
pending on system size !and perhaps to some extent on the
definition of a crystal-like embryo", it is not surprising to find
it rare for the system to be devoid of crystal-like particles. In
this case P!n" should have a maximum at nmin corresponding
to a most likely largest embryo size for the system $or a
minimum in −ln P!n"%.

Despite the differences at small cluster sizes between
P!n" and N!n", the MFPT formalism recovers the CNT ex-
pression for the rate, in the case that N!n!"= P!n!" and
"F!!n!" is a pronounced local maximum !so that
exp$!"F!!n"% dominates near n!". In this case, n! is now
also consistent with being defined as the size at which the
work required to form an n-sized embryo from liquid par-
ticles !"F!n"=−ln N!n"+# has its maximum. The constant
#=ln N!0" is a constant chosen so that "F!0"=0 $N!0" is the
number of liquidlike particles%. In this case, we can use Eq.
A4 from Ref. 20, which we rewrite here as

JMFPTV = fn!
+ exp$− !"F!!n!"%

&a=0
n!

dz exp$− !"F!!z"%
'"F!!!n"

2$kBT
, !4"

and note that the last factor is the Zeldovich factor. The
numerator of the middle factor, given the definition of
"F!!n", is N!n!" /N!0" and the denominator, given the nor-
malization of P!n" and a choice of h to be near n!, equals

(
a=0

n!

dze−!"F!!z" =
1

N!0")1 − (
n!

h

dzP!z"* #
1

N!0"
, !5"

since near n!, P!n" is very small. We briefly discuss the h
dependence of this result in Sec. VI. Thus, we recover the
CNT result,

JMFPT = JCNT = fn!
+ Z

N!n!"
V

, !6"

#%fn!
+ Z exp)−

"F!n!"
kBT

* . !7"

Thus, we see that "F!!n" can be used to determine the
rate in so far as it can be used to determine N!n!". Although
tempting, it does not appear to be the case that the free en-
ergy barrier "F!!n!"−"F!!nmin" is of immediate value in
determining rates, at least for bulk systems when barriers are
high. For low barriers or small systems the scenario might be
different.24,32

In Fig. 4!a" we show the results of using Eqs. !2" and !3"
to determine "FMFPT

! !n" and compare the results against
those obtained through constrained, parallel tempered MC
simulations for the equilibrium quantity "F!!n" !see Sec.
IV". We find very good agreement notwithstanding some
noise in the MD data.

Consistent with large clusters being rare, we find that
Pst!n" and Nst!n" are practically the same for n&25. More-
over, the n dependence of "FMFPT

! !n" is not appreciably dif-
ferent from that of −kBT ln Pst!n" for nmax'30, i.e., the
steady-state distribution equals the equilibrium one for this
lower range of embryo sizes.
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FIG. 4. Steady-state distributions and free energies at T=0.58. !a" Shown
are negative logarithms of steady-state distributions Pst!n" !thin red line with
diamonds" and Nst!n" !thick black line", and "FMFPT

! !n" !blue line with
circles", the free energy obtained from Pst!n" and (!n" through Eqs. !2" and
!3". Inset to !a": comparison of "FMFPT

! !n" and "F!!n", obtained through
MC simulations. !b" Shown are "F!!n" !red curve with diamonds" and
"F!n" !black curve", both obtained through MC simulations, as well as
"FMFPT!n" !blue line with circles", obtained by splicing the portion of
−ln Nst below n=26 and the portion of !"FMFPT

! !n" for n)26. Inset to !b":
"F!n" !circles" and fitting functions −a1n+a2n2/3 and −b1n+b2n2/3+b3n1/3,
with best fit parameters a1=0.558, a2=3.242, b1=0.123, b2=0.0275, and
b3=5.733.
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What about kinetics?

the rate agrees quite well with those obtained by direct simu-
lation. The largest source of uncertainty stems from our de-
termination of !F!n!".

Another quantity of interest is the atomic jump distance
" that enters into the expression for the attachment rate,

fn!
+ = 24Dn!2/3/"2,

where D=0.0317 is the diffusion coefficient, evaluated from
the slope of the mean squared displacement in the metastable
liquid at T=0.58 shown in the inset of Fig. 5. We find that
"=0.55#0.03, a physically reasonable value and compa-
rable to that obtained for hard spheres.14

According to Ref. 22, the attachment rates as a function
of n can also be obtained from MFPT and Pst via

fn
+ = B!n"/# !$!n"

!n
$ . !9"

Using the fit to $!n" to calculate the derivative, we plot fn
+ so

obtained in Fig. 6, along with the single point for fn!
+ ob-

tained from Eq. !8". Although there is some noise stemming
from Pst, the agreement near n! between the two methods is
quite good.

VI. DISCUSSION AND CONCLUSIONS

Our aims in this work are to test the method of mean
first-passage times and to compare the CNT rate prediction
to a direct determination of the rate in fairly deeply super-
cooled Lennard-Jones liquid. We are working in a regime
where the barrier to nucleation is high enough so that meta-
stable equilibrium is readily achieved, but low enough so
that nucleation is readily observable through unbiased MD.
The diffusivity of the liquid is also fairly high, reducing con-
cerns about kinetic barriers to equilibration, although the dy-
namics of the crystal-like embryos are likely much slower
than that of the liquid.

Our main results are that there is generally very good
agreement between quantities calculated through MFPT and
other methods, and that the CNT rate prediction holds very
well for the system studied in the sense that putting in values
for the barrier height, Zeldovich factor, and attachment rate
yields a rate equal to the directly determined one within er-
ror.

Table I gives a summary of some of the quantities cal-
culated. The uncertainty estimates on n! and nMFPT

! come
from using different subsets of data to perform the fits. How-
ever, we also see that the barrier curve is quite flat near the
top, and so it is difficult to attribute a significance to the
difference in critical sizes obtained through MC and MFPT.

The barrier obtained from MFPT is based on P!n",
whereas the CNT barrier comes from the embryo size distri-
bution N!n". As Nst!n"%N!n" for small n and !F!!n"
%!F!n" for large !rare" clusters, it is possible to reconstruct
the CNT barrier using Nst!n" and !FMFPT

! !n". The result
agrees very well with the constrained MC result. If we fit the
top of !FMFPT with a quadratic, even though there is some
noise, we obtain a critical size of 72#2, Zeldovich factor of
0.020#0.006, and barrier height of 15.90#0.05 !for a rate
of 9.9%10−8". These estimates are all in line with MC re-
sults. It seems, then, that MFPT based on 200 nucleating
runs gives quite good estimates on the properties related to
the barrier, as well as the barrier profile itself. We note that
the determination of !FMFPT!n" does not hinge upon ap-
proximations relating to the height of the barrier, in contrast
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FIG. 5. Determination of fn!
+ at T=0.58 from the time dependence of size

fluctuations of near-critical embryos. Shown is a line of best fit obtained by
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FIG. 6. Attachment rates from the MFPT formalism, Eq. !9", as well as the
attachment rate at critical size obtained from fluctuations of the critical
embryos, Eq. !8" !filled square".

TABLE I. Summary of calculated quantities for T=0.58.

Quantity Value

Np 4000
& 0.95
nMFPT

! 65#1
n! 71#1
'!F!n!" 15.74#0.25
fn!

+ 43#3
D 0.0317
ZMFPT 0.0158#0.0006
ZMC 0.0175#0.0011
" 0.55#0.03
J !9.0#0.7"%10−8

JMFPT !9.4#0.3"%10−8

JCNT !10#3"%10−8
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Separately run a MD simulations starting from a 
configuration containing a cluster of near-critical size. 
(S. Auer and D. Frenkel, J. Chem. Phys. 120, 3015, 2004)

LJ crystallization

• In CNT, the nucleation rate is

J = K exp(−β∆G∗)

• K = ρnZf+
c

• ρn is the number density of the
particles.

• Z is the Zeldovich factor:

Z =

�
β|∆µ|
6πn∗ =

�
β|G��(n∗)|

2π

• f+
c is the attachment rate of

particles to the critical nucleus,
given by,

f+
c =

24D(n∗)2/3

λ2
=

�[n∗(t) − n∗(0)]2�
2t
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J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103, 2007.
J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060, 2008.

costly to evaluate in a simulation. However, an even more useful
result can be proven that allows us to evaluate D(x) and ∆G(x)
accurately and at the same time.

The steady-state rate is also related to another important
quantity: the mean first-passage time (MFPT). In our case, the
MFPT is defined as the average time that the system, starting
out at x0 needs to reach the state x for the first time, given by

τ(x;x0, a))∫x0

x 1
D(y)

dy e"∆G(y)∫a

y
dz e-"∆G(z) (5)

when the boundary conditions are reflecting at a, and absorbing
at x ) b.9,10 By derivating twice and rearranging the result
conveniently, one gets to

∂ln(A(x) D(x))
∂x

) 1
D(x) A(x)

+ ∂("∆G(x))
∂x

(6)

where A(x) ≡ ∂τ(x)/∂x. By integrating this equation, we obtain
the main result of this paper that allows for the reconstruction
of the free energy landscape:

"∆G(x)) ln(B(x))-∫ dx!
B(x ! )

+C (7)

which depends on the product B(x) ≡ A(x)D(x) that we are going
to evaluate now. By combining eq 6 with eq 3 and after some
straightforward algebra one gets

∂(B(x) Pst(x))

∂x
)Pst(x)- JA(x) (8)

Finally, the integration of this equation yields the desired
result, namely

B(x))- 1
Pst(x)[∫x

b
Pst(x ! ) dx !-τ(b)- τ(x)

τ(b) ] (9a)

) 1
Pst(x)[∫a

x
Pst(x ! ) dx !- τ(x)

τ(b)] (9b)

where we have used that J ) 1/τ(b), a general result that has
also been proven in ref 11. It is important to highlight that the
previous equations are still valid even if the activation barrier
is not very high, provided that steady-state conditions are
reached. Therefore, it is possible to reconstruct the free-energy
landscape from the knowledge of Pst(x) and τ(x) alone. Another
obvious but useful expression is

D(x))B(x)/(∂τ(x)
∂x ) (10)

showing that it is also possible to reconstruct the effective
diffusion coefficient for a given reaction coordinate using just
the same ingredients. We point out that while eq 9b above is
the more elegant solution, it is often numerically favorable to
evaluate B(x) using the equivalent eq 9a. In addition, we note
that when the data on hand is discrete, we can simply replace
the integral by its equivalent sum in eqs 9. It is also worth
pointing out that the same derivation and result can be obtained
starting from a discrete master equation instead of a Fokker-
Planck equation.

3. Application to Nucleation

In order to demonstrate the power of this new method, we
will focus on perhaps the simplest example of an activated
process: the nucleation of a vapor. Nucleation is the mechanism
that initiates the condensation of, e.g., a supersaturated vapor.
This process starts with the formation of the first embryos of
the liquid phase, which have to overcome a free-energy barrier.

The formation of a sufficiently large droplet that triggers the
appearance of the new phase intrinsically is a nonequilibrium
process since these droplets are unstable and thus cannot be
sampled in an equilibrium simulation or experiment unless
addiditional constraints are enforced.

We will first validate the method by using an analytical
model, the classical nucleation theory (CNT). For clarity, we
stress that neither the derivation in the previous section nor the
application of our method are making any use of classical
nucleation theory whatsoever. In section 3.2, we illustrate its
application to MD simulations.

3.1. Proof of Concept: Application to Classical Nucleation
Theory. In CNT, the free energy of formation of a liquid droplet
in a supersaturated vapor is given by ∆GCNT(n) ) -n∆µ +
γA(n), where ∆µ is the difference in chemical potentials of the
liquid and the vapor phase, γ is the surface tension and A(n) is
the area of a spherical cluster of n molecules. This expression
can be conveniently rescaled to

∆GCNT(x)) 2∆GCNT
/ (-x+ 3

2
x2/3) (11)

where x ) n/n*, n* is the size of the critical cluster, and ∆GCNT
/

is the height of the nucleation barrier.12 This representation has
the advantage that the location of the barrier is easily identified
at x ) 1 independently of the barrier height. The nucleation
kinetics can then be described by the FP equation (1), where
now the effective diffusion D(x) is the rate of attachment of
molecules to a cluster of size n, given by kinetic theory as
DCNT(x) ) A(n*)px2/3/"(2πmkT) ≡ D0x2/3, where p is the vapor
pressure and A(n*) the surface area of the critical cluster.

In order to verify the validity of eqs 7 and 9, we have
numerically solved the FP equation, eq 1, for the case in which
both the free-energy ∆G(x) and the attachment rate D(x) are
given by the classical expressions above. We have analyzed
two different situations, corresponding to a very low (∆GCNT

/

) 1 kBT) and a medium/high (∆GCNT
/ ) 10 kBT) nucleation

barrier. Figure 1b shows the resulting steady-state probability
distribution for each case. The corresponding MFPTs (in units
of time scaled by n/2/D0) as a function of the rescaled cluster
size calculated numerically from eq 5 (starting from x0 ) 0
and using a reflecting boundary condition at x ) 0) are shown
in Figure 1a. For the high barrier, the MFPT curve has a
sigmoidal shape that reaches a well-defined plateau at larger
values of x. For the low barrier case, however, the MFPT shows
an almost linear increase at large sizes without reaching a clear
plateau, indicating that the growth of the cluster is not hindered
by any significant activation barrier. Recently, we have shown
how to extract accurately and efficiently all the relevant kinetic
information, such as the activation rate, the location of the
transition state, and the local curvature of the barrier around it,
by fitting the MFPT to an error function.10 As discussed in ref
10 this procedure is very accurate when the activation barrier
is sufficiently high. The results of the present work allow us to
go one significant step further and be able to reconstruct the
underlying free-energy landscape, thus obtaining also the
relevant thermodynamic information. We have reconstructed
the free-energy landscape for both the high and the low barrier
cases, using eq 7 and the steady-state probabiliy and the MFPT
of Figure 1, a and b. Figure 1c compares the result of the
reconstruction with the real barrier, showing a perfect agreement
in both cases. It is remarkable that the formula still works for
the low barrier of 1 kBT. In this case, standard approximations
used to evaluate rates based on a steepest-descent approximation
will fail and the assumption that the MFPT can be fitted to an

Reconstruction of Free-Energy Landscape J. Phys. Chem. B, Vol. 112, No. 35, 2008 11061

• Prediction for τ(nmax):

τ(nmax) =
1 + erf[c(nmax − n∗)]

2JV

• The rate J is immediately available
from the fit.

• Z = c/
√

π

• f+
c = B(x)/τ �(x), where

2D Ising
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MFPT analysis of LJ crystallization

the rate agrees quite well with those obtained by direct simu-
lation. The largest source of uncertainty stems from our de-
termination of !F!n!".

Another quantity of interest is the atomic jump distance
" that enters into the expression for the attachment rate,

fn!
+ = 24Dn!2/3/"2,

where D=0.0317 is the diffusion coefficient, evaluated from
the slope of the mean squared displacement in the metastable
liquid at T=0.58 shown in the inset of Fig. 5. We find that
"=0.55#0.03, a physically reasonable value and compa-
rable to that obtained for hard spheres.14

According to Ref. 22, the attachment rates as a function
of n can also be obtained from MFPT and Pst via

fn
+ = B!n"/# !$!n"

!n
$ . !9"

Using the fit to $!n" to calculate the derivative, we plot fn
+ so

obtained in Fig. 6, along with the single point for fn!
+ ob-

tained from Eq. !8". Although there is some noise stemming
from Pst, the agreement near n! between the two methods is
quite good.

VI. DISCUSSION AND CONCLUSIONS

Our aims in this work are to test the method of mean
first-passage times and to compare the CNT rate prediction
to a direct determination of the rate in fairly deeply super-
cooled Lennard-Jones liquid. We are working in a regime
where the barrier to nucleation is high enough so that meta-
stable equilibrium is readily achieved, but low enough so
that nucleation is readily observable through unbiased MD.
The diffusivity of the liquid is also fairly high, reducing con-
cerns about kinetic barriers to equilibration, although the dy-
namics of the crystal-like embryos are likely much slower
than that of the liquid.

Our main results are that there is generally very good
agreement between quantities calculated through MFPT and
other methods, and that the CNT rate prediction holds very
well for the system studied in the sense that putting in values
for the barrier height, Zeldovich factor, and attachment rate
yields a rate equal to the directly determined one within er-
ror.

Table I gives a summary of some of the quantities cal-
culated. The uncertainty estimates on n! and nMFPT

! come
from using different subsets of data to perform the fits. How-
ever, we also see that the barrier curve is quite flat near the
top, and so it is difficult to attribute a significance to the
difference in critical sizes obtained through MC and MFPT.

The barrier obtained from MFPT is based on P!n",
whereas the CNT barrier comes from the embryo size distri-
bution N!n". As Nst!n"%N!n" for small n and !F!!n"
%!F!n" for large !rare" clusters, it is possible to reconstruct
the CNT barrier using Nst!n" and !FMFPT

! !n". The result
agrees very well with the constrained MC result. If we fit the
top of !FMFPT with a quadratic, even though there is some
noise, we obtain a critical size of 72#2, Zeldovich factor of
0.020#0.006, and barrier height of 15.90#0.05 !for a rate
of 9.9%10−8". These estimates are all in line with MC re-
sults. It seems, then, that MFPT based on 200 nucleating
runs gives quite good estimates on the properties related to
the barrier, as well as the barrier profile itself. We note that
the determination of !FMFPT!n" does not hinge upon ap-
proximations relating to the height of the barrier, in contrast
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FIG. 5. Determination of fn!
+ at T=0.58 from the time dependence of size

fluctuations of near-critical embryos. Shown is a line of best fit obtained by
fitting the data !circles" starting from t=4. Inset: mean squared displacement
as a function of t for the metastable liquid, also at T=0.58.
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FIG. 6. Attachment rates from the MFPT formalism, Eq. !9", as well as the
attachment rate at critical size obtained from fluctuations of the critical
embryos, Eq. !8" !filled square".

TABLE I. Summary of calculated quantities for T=0.58.

Quantity Value

Np 4000
& 0.95
nMFPT

! 65#1
n! 71#1
'!F!n!" 15.74#0.25
fn!

+ 43#3
D 0.0317
ZMFPT 0.0158#0.0006
ZMC 0.0175#0.0011
" 0.55#0.03
J !9.0#0.7"%10−8

JMFPT !9.4#0.3"%10−8

JCNT !10#3"%10−8
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!!n" =
1

2JV
#1 + erf$c!n − n!"%& , !1"

where n! is the size of the critical embryo, erf!x" is the error
function, and c='"F!!!n!" /kBT=Z'# characterizes the
curvature at the top of the nucleation barrier profile
$"F!!n"=−ln$P!n"%+%, where $= !kBT"−1 and kB is
Boltzmann’s constant. We will clarify the meaning of "F!!n"
in Sec. III.

For each crystallization run, we determine !!n" by sav-
ing configurations every 1000 time steps and finding the
largest crystal-like embryo in each saved configuration. Be-
cause of the discrete sampling of configurations, the nature
of embryo growth and decay, and possible amalgamation of
embryos of size greater than one, the time series nmax!t" need
not be monotonic, and often decreases or increases by more
than one.

For example, let us assume that the values of nmax!t" for
the first four sampling times for a particular nucleation run
are nmax!t=1"=0, nmax!2"=2, nmax!3"=4, and nmax!4"=1.
The resulting first-passage times are !!nmax=0"=1, !!1"=2,
!!2"=2, !!3"=3, and !!4"=3, where we filled in entries for
skipped embryo sizes, i.e., when an embryo of a given size is
first observed at a given time, that same time is assigned to
all smaller sizes that have not yet been assigned a time. Sam-
pling more frequently than once every 1000 time steps could
minimize the effects of this “filling in” procedure.

We plot !!n" averaged over all 200 crystallization runs in
Fig. 3, along with a fit of !!n" to Eq. !1". From the fit to !!n",
we obtain JMFPTV=4.0&0.1'10−4, or JMFPT=9.4&0.3
'10−8, cMFPT=0.028&0.001 or ZMFPT=0.0158&0.0006,
and nMFPT

! =65&1. The uncertainties in the rate appear to be
larger than what may arise from the bias of at most 1 in !
introduced by the filling in procedure used in getting !. To
confirm the criticality of n!-sized embryos, we choose 27
configurations containing such embryos, randomize veloci-
ties, and find that 13 of the configurations continue to crys-
tallize, while the other half decays.

III. BARRIER RECONSTRUCTION

In this work, and particularly in this section, we make
use of two distributions, N!n" and P!n", upon which free
energies "F!n" and "F!!n" are based. For clarity, we reiter-

ate their meanings and differences. N!n" is the average num-
ber of embryos of size n in the equilibrium liquid. Generally,
N!0" !the number of liquidlike particles" is only slightly less
than the total number of particles and N!n" decreases mono-
tonically for 0(n(n!. P!n" is the probability that the larg-
est embryo in a configuration taken from the equilibrium
liquid is of size n. When there is a large free energy barrier to
nucleation, larger embryos are rare !when a rare embryo is
present, there is approximately no other embryo of that size
or larger in the system" and for rare embryos sizes N!n" and
P!n" are approximately equal. For not-so-rare smaller clus-
ters, the two distributions are quite different. For example,
we find for our system that most of the time there are some
crystal-like particles present, and so it is rare to find all the
particles in the system to be liquidlike, i.e., P!0" is smaller
than P!1". In our case we find that P!4" is a maximum, i.e.,
the most common largest embryo size in the system is 4.
Whereas N!n" decreases monotonically from n=0, P!n" need
not do so. For a discussion on how the two distributions are
formally related, see Ref. 26.

Wedekind and Reguera outline their procedure in Refs.
21 and 22 for determining the barrier to nucleation as a func-
tion of an order parameter that characterizes the system. In
particular, they choose the largest embryo in the system as
the appropriate order parameter to track the nucleation pro-
cess and obtain

$"FMFPT
! !nmax" = ln$B!nmax"% − (

a"

nmax dx"
B!x""

+ C , !2"

where a" is a formal lower limit of integration the explicit
choice of which is absorbed into C, which is fixed by choos-
ing an appropriate reference state. The function B!x" is given
by

B!x" =
1

Pst!x")(a

x

Pst!x""dx" − JV!!x"* , !3"

where a is the left !reflecting" boundary of the order param-
eter domain, which in our case we take to equal zero, and
Pst!nmax" is the steady-state probability of finding a configu-
ration in the ensemble of crystallization runs with largest
crystal-like embryo size equal to nmax. We obtain Pst!nmax"
by constructing a histogram in nmax, considering configura-
tions from all 200 runs with nmax(h and t)10, and then
dividing by the number of configurations considered. h
=100 is the upper limit on nmax for the purposes of determin-
ing Pst!n", as well as Nst!n", the steady-state counterpart of
N!n", i.e., +n=0

n=hPst!n"=1 and Nst!0"++n=1
n=hnNst!n"=Np. In this

work, we actually evaluate the integrals in Eqs. !2" and !3" as
discrete sums.22

It is perhaps worth pointing out that the steady state
differs from equilibrium. Steady state refers to the case
where the system is in the process of nucleating !and the
nucleation rate is constant in time". A nucleating liquid will
not sufficiently sample near-critical states, since it is apt to
quickly slide down the free energy landscape to the crystal
once it reaches the top of the free energy barrier. The equi-

0 20 40 60 80 100 120 140 160
n

0
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2000
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τ

FIG. 3. Plot of mean first-passage times. Plotted are !!n" !diamonds", along
with a fit of !!n" to Eq. !1".

104503-3 CNT and mean first-passage times in LJ liquid J. Chem. Phys. 131, 104503 !2009"
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Summary:  
Comparison of biased sampling and MFPT analysis

If you cannot simulate nucleation directly:

• Use biased sampling to find ∆G∗ and n∗.

• Separate runs required to find f+
c .

• Obtain Z either from shape of ∆G(n) or by finding ∆µ.

If you can observe nucleation directly:

• MFPT is a robust way to analyze both thermodynamics and

kinetics.

• Use caution when barriers get small.
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MD simulations of BKS silica

• BKS silica pair potential:  
Van Beest, et al., 1990

• Charged soft spheres; 
ignores polarizability, 3-body 
interactions  

• Long range forces evaluated 
via Ewald method.

• Plus we add switching 
function to real-space part of 
potential.

• Constant (N,V,E) molecular 
dynamics simulations

• 1332 ions (888 O, 444 Si)
• See Saika-Voivod, et al., 

PRE (2004) for basic 
simulation details.

� 

φij (r) = 1
4πε

qiq j

r
+ Aije

−Bij r +
Cij

r6
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at T=0 in Fig. 4(b) and extract the coexistence pressures
from the slope of “common tangent constructions” bridging
coexisting phases. The T=0 coexistence pressures are plotted
in Fig. 5(b) and serve to check that the method used to de-
termine coexistence boundaries at finite T is consistent with
the (more straightforward) T=0 evaluation. Note that we do
not locate the !-quartz/stishovite coexistence condition at
T=0 due to the fact that !-quartz transforms to "-quartz
before T=0 is reached at the relevant volume for the com-
mon tangent construction.
Throughout the evaluation scheme described above, the

largest single source of statistical error is the uncertainty
cited in Ref. [15] for SR, the entropy of the liquid at the
reference state point. We therefore create confidence limits
for our melting lines, shown in Fig. 5, by allowing the value
of SR to vary by ±0.18 J mol!1 K!1.

III. RESULTS AND DISCUSSION

Figure 5(b) plots P-T coexistence conditions, both stable
and metastable, occurring among the liquid phase !L" and the
crystalline phases !-quartz !Q", coesite !C", and stishovite
!S". Figure 6 is the projection of the same boundaries onto
the plane of V and T. This plot exposes the volume differ-
ences of coexisting phases along phase boundaries. This type
of plot is rarely constructed for real materials, due to the
challenge of determining the densities of coexisting phases,
especially at high pressure. However, it is readily constructed
from simulation data.
Comparison of the BKS and experimental phase bound-

aries [3] in Fig. 5 exposes the quantitative deficiencies of the
model. Apparent in particular is the difference between the
pressures at which corresponding features occur. For ex-
ample, the S-L-C triple point occurs at 13.4 GPa in real
silica, but at only 5.8 GPa in the model. Overall, the P range
of the crystal stability fields is substantially lower in the
model. The pressure difference between the model and real-
ity is more of a shift than a rescaling. For example, the
coesite stability field has approximately the same extent in P
(about 5 GPa) at low T in both BKS and real silica. However,
the S-C coexistence boundary is shifted downward in P in
the model by more than 7 GPa compared to real silica. The
result is that coesite, rather than quartz, is the equilibrium
phase of BKS silica at ambient P for most of the temperature
range. Indeed, at the very lowest T, the stishovite stability
field just reaches ambient P, making stishovite the T=0
ground state of BKS silica at P=0 (filled square in Fig. 5(b)].
The correspondence of the thermal behavior is better than

that of the mechanical behavior, but significant differences
still occur. The T of the S-L-C and C-L-Q triple points are
respectively 15% and 32% higher than their experimental
values. Also, the maximum T reached by the coesite, and
especially the !-quartz stability fields, are too high compared
to reality. However, the curvature of the crystal-liquid coex-
istence boundaries are comparable to experiment.

FIG. 5. (a) Experimentally determined coexistence lines of silica
in the P-T plane. Stability fields for the stishovite !S", coesite
!C" , !-quartz !Q", and liquid !L" phases are shown. Both stable
(solid) and metastable (dashed) coexistence lines are shown. The
inset shows the stability fields of cristobalite and tridymite, not
considered in this work. Adapted from Ref. [3]. (b) Phase diagram
of BKS silica in the P-T plane. Solid lines are stable coexistence
lines. Dotted lines show error estimates for the crystal-liquid coex-
istence lines, as described in the text. Metastable coexistence lines
(dashed) are also shown that meet at the metastable S-L-Q triple
point. The locations of the S-C (filled square) and C-Q (filled circle)
coexistence boundaries at T=0, determined from Fig. 4(b), are also
shown.

FIG. 6. Phase diagram of BKS silica in the V-T plane. The
notation and symbols used have the same meaning as in Fig. 5.
Note that in this projection, both one-phase stability fields as well as
two-phase coexistence regions are located. The projections of the
metastable coexistence lines (dashed) shown in Fig. 5 are also
presented.

PHASE DIAGRAM OF SILICA FROM COMPUTER SIMULATION PHYSICAL REVIEW E 70, 061507 (2004)

061507-5

Phase diagram 
of BKS silica
(P-T plane)

Saika-Voivod, Sciortino, Grande, 
PHP, PRE 68, 011505 (2003)
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Phase diagram 
of BKS silica
(T-V plane)

at T=0 in Fig. 4(b) and extract the coexistence pressures
from the slope of “common tangent constructions” bridging
coexisting phases. The T=0 coexistence pressures are plotted
in Fig. 5(b) and serve to check that the method used to de-
termine coexistence boundaries at finite T is consistent with
the (more straightforward) T=0 evaluation. Note that we do
not locate the !-quartz/stishovite coexistence condition at
T=0 due to the fact that !-quartz transforms to "-quartz
before T=0 is reached at the relevant volume for the com-
mon tangent construction.
Throughout the evaluation scheme described above, the

largest single source of statistical error is the uncertainty
cited in Ref. [15] for SR, the entropy of the liquid at the
reference state point. We therefore create confidence limits
for our melting lines, shown in Fig. 5, by allowing the value
of SR to vary by ±0.18 J mol!1 K!1.

III. RESULTS AND DISCUSSION

Figure 5(b) plots P-T coexistence conditions, both stable
and metastable, occurring among the liquid phase !L" and the
crystalline phases !-quartz !Q", coesite !C", and stishovite
!S". Figure 6 is the projection of the same boundaries onto
the plane of V and T. This plot exposes the volume differ-
ences of coexisting phases along phase boundaries. This type
of plot is rarely constructed for real materials, due to the
challenge of determining the densities of coexisting phases,
especially at high pressure. However, it is readily constructed
from simulation data.
Comparison of the BKS and experimental phase bound-

aries [3] in Fig. 5 exposes the quantitative deficiencies of the
model. Apparent in particular is the difference between the
pressures at which corresponding features occur. For ex-
ample, the S-L-C triple point occurs at 13.4 GPa in real
silica, but at only 5.8 GPa in the model. Overall, the P range
of the crystal stability fields is substantially lower in the
model. The pressure difference between the model and real-
ity is more of a shift than a rescaling. For example, the
coesite stability field has approximately the same extent in P
(about 5 GPa) at low T in both BKS and real silica. However,
the S-C coexistence boundary is shifted downward in P in
the model by more than 7 GPa compared to real silica. The
result is that coesite, rather than quartz, is the equilibrium
phase of BKS silica at ambient P for most of the temperature
range. Indeed, at the very lowest T, the stishovite stability
field just reaches ambient P, making stishovite the T=0
ground state of BKS silica at P=0 (filled square in Fig. 5(b)].
The correspondence of the thermal behavior is better than

that of the mechanical behavior, but significant differences
still occur. The T of the S-L-C and C-L-Q triple points are
respectively 15% and 32% higher than their experimental
values. Also, the maximum T reached by the coesite, and
especially the !-quartz stability fields, are too high compared
to reality. However, the curvature of the crystal-liquid coex-
istence boundaries are comparable to experiment.

FIG. 5. (a) Experimentally determined coexistence lines of silica
in the P-T plane. Stability fields for the stishovite !S", coesite
!C" , !-quartz !Q", and liquid !L" phases are shown. Both stable
(solid) and metastable (dashed) coexistence lines are shown. The
inset shows the stability fields of cristobalite and tridymite, not
considered in this work. Adapted from Ref. [3]. (b) Phase diagram
of BKS silica in the P-T plane. Solid lines are stable coexistence
lines. Dotted lines show error estimates for the crystal-liquid coex-
istence lines, as described in the text. Metastable coexistence lines
(dashed) are also shown that meet at the metastable S-L-Q triple
point. The locations of the S-C (filled square) and C-Q (filled circle)
coexistence boundaries at T=0, determined from Fig. 4(b), are also
shown.

FIG. 6. Phase diagram of BKS silica in the V-T plane. The
notation and symbols used have the same meaning as in Fig. 5.
Note that in this projection, both one-phase stability fields as well as
two-phase coexistence regions are located. The projections of the
metastable coexistence lines (dashed) shown in Fig. 5 are also
presented.

PHASE DIAGRAM OF SILICA FROM COMPUTER SIMULATION PHYSICAL REVIEW E 70, 061507 (2004)

061507-5

stishovite
crystallized 
from liquid
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• In CNT, the nucleation rate is

J = K exp(−β∆G∗)

• K = ρnZf+
c

• ρn is the number density of the
particles.

• Z is the Zeldovich factor:

Z =

�
β|∆µ|
6πn∗

• f+
c is the attachment rate of

particles to the critical nucleus,
found using,

f+
c =

�[n∗(t) − n∗(0)]2�
2t

0 2 4 6 8 10 12
n

0

2

4

6

8

10

12

14

Δ
G

(n
)/R

T

3300 K
3200 K
3100 K
3000 K
2900 K
2800 K

Stishovite crystallization in BKS silica

sequently, relatively few studies examine this deeply super-
cooled limit of nucleation behavior in the context of CNT.

The purpose of the present work is to explore this deeply
supercooled limit of nucleation behavior, with the goal of
testing the limits of CNT and quantifying how the theory
begins to fail in this regime; and also to determine the tech-
nical limits of applicability of the simulation methods usu-
ally employed at higher T. We are interested in determining
if it is possible to compare a nucleation rate calculated using
CNT, and a rate found directly from a spontaneously crystal-
lizing MD simulation. The latter question is particularly
interesting, since only a few simulation studies compare
nucleation rates found from CNT to a rate calculated
independently,8,11,17 yet such comparisons are a key tool for
developing and testing improved theoretical descriptions of
nucleation.

To achieve these goals, we study liquid silica as modeled
by the van Beest–Kramer–van Santen !BKS" potential.18 The
thermodynamic and transport properties of the supercooled
liquid state of this model have been characterized in
detail.19,20 Previous work has also evaluated the phase dia-
gram of the system, providing the coexistence conditions de-
marcating the liquid, and several crystalline phases.21 Most
significant for the current purpose, we find that the liquid
spontaneously crystallizes to stishovite22 in our simulations
when cooled to approximately T=3000 K at a density !
=4.38 g/cm3. The liquid at this T exhibits the two-step re-
laxation in its dynamical quantities characteristic of a deeply
supercooled fluid, but it is still diffusive enough to reach
metastable equilibrium on a time scale much shorter than the
time scale for crystal nucleation. Consequently, we are able
to make a direct calculation of the rate at 3000 K using an
ensemble of independent MD simulations, while at the same
time, we can determine the properties of the metastable liq-
uid.

We also use constrained Monte Carlo simulations of the
liquid to calculate the free energy barrier to nucleation at the
same density, over a range of temperatures from
3000 to 3300 K, to test the degree to which the predictions
of CNT are satisfied on approaching T=3000 K. The key
predictions of CNT we wish to test relate to the central quan-
tity of the theory, N!n", the equilibrium cluster size distribu-
tion, or the number of clusters containing n particles.6 In this
work, we will track Si atoms only, and assume from stoichi-
ometry that a cluster nominally of size n !n Si atoms" actu-
ally contains 3n atoms !n Si atoms and 2n O atoms". N!n" is
interpreted to yield the work "G!n" of forming a cluster of
size n from the surrounding metastable liquid via

"G!n"
kBT

= − ln#N!n"
N!0"$ , !1"

where N!0" is the number of liquidlike Si atoms; so defined
"G!0"=0. Whether the distribution of cluster sizes is exten-
sive or intensive !i.e., normalized or not", the barrier is sys-
tem size independent. Within the CNT framework, the phe-
nomenological model for the work is given by

"G!n" = − %"#%n + an2/3, !2"

where "#=#stish−#liq is the difference in chemical potential
between the bulk stable and metastable phases, and a is a
surface term that is proportional to the surface tension $ and
depends on the shape of the nuclei. At a critical cluster size
n*, "G!n" has a maximum and clusters larger than n* will
grow spontaneously, forming the new phase. "G!n*" then
represents the free energy barrier to nucleation. In this study,
we use computer simulation techniques that connect "G!n"
with the probability of appearance of an n-sized cluster
within the simulation, where the cluster is identified by a
specific cluster criterion.7,10,23 We can then compare our bar-
rier calculations with the general form suggested by Eq. !2".

According to CNT, the rate of nucleation, i.e., the rate at
which critical nuclei go over the barrier, is

JCNT = K exp&−
"G!n*"

kBT
' , !3"

where the kinetic prefactor is given by

K = 24!nZDn*2/3/%2 !4"

=!nZfcrit
+ , !5"

where Z=(%"#% /6&kBTn* is the Zeldovich factor, D is the
diffusion constant, kB is the Boltzmann constant, !n is the
number density of particles, % is a typical distance particles
must diffuse in order to go from the metastable liquid to the
embryonic cluster, and fcrit

+ is the rate at which particles are
added to the critical nucleus. We note that the use of fcrit

+ is an
innovation introduced in Ref. 10. In the case of diffusive
barrier crossing fcrit

+ can be calculated from simulation via

fcrit
+ =

1
2

)*n*!t" − n*!0"+2,
t

, !6"

where )·, denotes an ensemble average.
Our Monte Carlo simulations of liquid silica between

3300 and 3000 K show that CNT describes the liquid well at
the highest T, but that deviations in the observed and pre-
dicted behaviors emerge at lower T. At the lowest T, we also
identify technical difficulties associated with obtaining N!n"
and we describe an alternative strategy that at least partially
addresses them. Notwithstanding these challenges, at the
lowest T=3000 K, we are still able to calculate the kinetic
prefactors for the nucleation rate as described in CNT, so that
we can compare the predicted rate to that calculated from
direct MD simulations. Despite the worsening correspon-
dence between our results and the thermodynamic aspects of
CNT at low T, the rates compare reasonably well. Whether
the correspondence of the rates at this large degree of super-
cooling is peculiar to our system or whether this is a general
result is an open question. We also find that N!n", as obtained
for the equilibrium system !i.e., the system that samples the
equilibrium distribution of embryos, including those em-
bryos near to, at, and beyond the nucleation barrier", is dif-
ferent from the analogous quantity for the metastable liquid
state !i.e., the metastable equilibrium sampled in a conven-

224709-2 Saika-Voivod, Poole, and Bowles J. Chem. Phys. 124, 224709 !2006"

Downloaded 25 Jun 2007 to 129.100.249.53. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

curves are fits to CNT form:

Saika-Voivod, PHP, Bowles, JCP 124, 224709 (2006)
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• In CNT, the nucleation rate is

J = K exp(−β∆G∗)

• K = ρnZf+
c

• ρn is the number density of the
particles.

• Z is the Zeldovich factor:

Z =

�
β|∆µ|
6πn∗

• f+
c is the attachment rate of

particles to the critical nucleus,
found using,

f+
c =

�[n∗(t) − n∗(0)]2�
2t

Stishovite crystallization in BKS silica

that differences appear at lower T, getting larger as T de-
creases. Thus, though the form of Eq. !2" fits the data for
!G!n" at all T, the ability of CNT to predict !" is lost for
T#3300 K.

Assuming that we have an approximately spherical
nucleus, we estimate the surface tension from the fit param-
eter afit for our range of T to be $ /kBT#25 nm−2; see Table
III. Note that a=4%!3/ !4%&n""2/3$ for spheres. For silica at
ambient P and near T=1500 K, experimental values for $
range from 0.3 to 0.7 J m−2, or $ /kBT=15–34 nm−2.30 For
comparison, the value recently reported for NaCl at 800 K is
$NaCl=80 erg cm−2 or $NaCl /kBT=7.2 nm−2. Thus, we see
that at our high P and T, where the liquid is simpler, i.e.,
does not have a tetrahedral network, $ is still close in value
to what it is at ambient P, and does not have a value closer to
that of a simple ionic liquid. Table III also shows that despite
the breakdown in the ability of CNT to predict !" in this T
range, a fit of Eq. !2" to our !G!n" data still gives a rela-
tively consistent estimate of $.

Furthermore, it is interesting to note that while !"fit /kBT
changes some 80% as T decreases from 3300 to 3000 K,
$ /kBT roughly changes by only 25%. This perhaps indicates
that the structure and/or density of the critical nucleus inte-
rior undergo larger changes with T than surface properties.

D. Kinetic prefactor

The crucial quantity in the kinetic prefactor is either ' or
fcrit

+ from Eqs. !4" and !5". Following the work of Frenkel and
co-workers,10,11 we calculate fcrit

+ through Eq. !6". Equation
!6" follows the assumption that the addition and detachment
of particles from the near-critical crystallite are diffusive pro-
cesses. In order to measure the deviation of the cluster size
from the critical value, i.e., the right hand side of the equa-
tion, we isolate 80 clusters near the critical size from con-
strained MC simulations and use them to seed NVE simula-
tions lasting 150 ps with randomized initial velocities
corresponding to T=3000 K. We then use multiple time ori-
gins from each time series, where at each time origin the
configuration has nmax=n*. In addition, to ensure that we are
measuring the properties of clusters of critical size, each time
origin is only chosen when the average cluster size for the
preceding 1000 fs is between 2 and 4. Varying the averaging
time or these upper and lower bounds does not appreciably
affect the results.

We plot in Fig. 10!a" the quantity $%nmax!t"−n*!0"&2'.
The plot shows a very rapid early time increase to a value of
about 4 !inset shows early time behavior" or a fluctuation in
size of the cluster of about two particles. Notwithstanding
the early time change in $%nmax!t"−n*!0"&2', we see that the
time series enters into a diffusive regime that is linear in
time, with (nmax!t"−n*!0"( between 2 and 3. By fitting a line
to this section, we obtain an estimate of the slope m
= !2.0±0.2"(102 ns−1, which gives fcrit

+ =m /2= !1.0±0.1"
(102 ns−1. This is about three times larger than the value
obtained for molten NaCl at T=825 K and an atmospheric P
of 0.033 ps−1.11

The early time behavior of $%nmax!t"−n*!0"&2' is plotted
in the inset of Fig. 10!a" and shows a rapid increase corre-

sponding to short-time fluctuations in the cluster size. These
rapid fluctuations are seen in Fig. 10!b", where we plot a
representative portion of an NVE simulation with a critical
cluster in it. Although short-time fluctuations can be consid-
erable given that n!=3, the general trend shown here sug-
gests nmax fluctuates around n!.

All the factors required to calculate the nucleation rate
via Eq. !3" are summarized in Table IV. The resulting rate is
JCNT=4.1(1035 m−3s−1, and given the uncertainties in the
calculated quantities, this result should be accurate within a
factor of 2. Note that we have calculated the rate using (!"(
as obtained from independent free energy calculations. It
could be argued that (!"fit( is the appropriate quantity and
this introduces an additional factor of uncertainty of
)(!"fit( / (!"(=1.25.

The quantity ' can be obtained by solving Eqs. !4" and
!5", resulting in

' =)24Dn*2/3

fcrit
+ . !18"

Using our values for D, fcrit
+ and n*, we obtain '=0.20 nm.

To put this in perspective, the first peak of the Si–Si radial

FIG. 10. !Color online" Calculation of fcrit
+ . Panel !a" shows a plot of

$%n!t"−n*!0"&2' as a function of time at 3000 K. After a brief early time
regime, the size of the cluster shows a diffusive behavior. The slope of the
line of best fit in the linear regime is !2.0±0.2"(102 ns−1=2fcrit

+ . The inset
shows early time behavior. Panel !b" shows nmax!t" for a portion of an NVE
simulation seeded with a cluster of size n!=3.

224709-10 Saika-Voivod, Poole, and Bowles J. Chem. Phys. 124, 224709 !2006"

Downloaded 25 Jun 2007 to 129.100.249.53. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Evaluating the mean nucleation time

• 200 runs at each T
• R is the number of runs 

remaining un-nucleated 
after time t.

• slope gives system 
nucleation rate (JV) 

• characteristic nucleation 
time τR = (JV)-1
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Crystal nucleation times vs T

• τo=average of latest 
time that the max 
cluster size was 0

• τR found from rates, 
with definition of 
nucleation time as last 
time that max cluster 
size was 0.

• τCNT is nucleation time 
evaluated based on 
CNT.

BKS silica
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Lecture 2
Interplay of glassy dynamics and crystal nucleation on 
approaching Kauzmann’s entropy catastrophe 

Peter H. Poole
St. Francis Xavier University
Antigonish, Nova Scotia, Canada

School on Glass Formers and Glasses - Bengaluru - January, 2010 

Thursday, January 7, 2010



Outline

• Kauzmann’s 1948 proposal for 
resolving his famous paradox:  that 
crystal nucleation prevents the 
supercooled liquid from reaching the 
entropy catastrophe

• Tanaka’s 2003 insight:  breakdown of 
the Stokes-Einstein relation makes this 
scenario a real possibility

• Testing this scenario in simulations of 
BKS silica

I. Saika-Voivod, R.K. Bowles and PHP, Phys Rev Lett 103, 225701 (2009).
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Collaborators

New work with...

Ivan Saika-Voivod
Department of Physics and Physical Oceanography
Memorial University of Newfoundland, St. John's, Newfoundland

Richard K. Bowles
Department of Chemistry, University of Saskatchewan
Saskatoon, Saskatchewan

Builds on earlier results with...

Francesco Sciortino
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia
Università di Roma La Sapienza, Rome
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Kauzmann’s 
Paradox

• A thermodynamic problem 
(the impending entropy 
catastrophe of supercooled 
liquids) is not resolved by 
appealing to a dynamic 
phenomenon (the glass 
transition).

W. Kauzmann, 
Chem. Rev. 43, 219 (1948) 
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Scenarios 
for avoiding 
the entropy 
catastrophe

(a) Ideal glass transition at TK

(b) Fragile-to-strong 
crossover (first-order or 
continuous)

(c) Crystallization occurs 
before TK can be reached 

Fig. 1 from
H. Tanaka, PRE 68, 011505 (2003)
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W. Kauzmann, Chem. Rev. 43, 219 (1948)...from pages 246-7:
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Kauzmann’s resolution of Kauzmann’s paradox

free energy barrier to 
crystal nucleation

free energy barrier to 
liquid state relaxation

Kauzmann (1948):
• At TLML, crossing the barrier to crystal nucleation will be as likely as crossing the barriers 

associated with liquid-state structural relaxation
• Below TLML, the liquid cannot be observed in equilibrium, because crystal nucleation will 

occur before internal equilibrium can be attained.

τliq

τnuc

supercooled 
liquid 

observed 
here

TLML = “lower metastable limit” for liquid state 
For T<TLML crystal nucleates before liquid equilibrates

time scale 
for crystal 
nucleation

structural 
relaxation time 

of liquid
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Tm

Classical nucleation theory (CNT) 
seems to suggest this won’t happen...

τliq

τnuc

supercooled 
liquid 

observed 
here

In CNT the nucleation rate is given by

J = K exp
�
−∆G(n∗)

kT

�

where
K = 24D ρn Z n∗

2
3 λ−2

and

Z =
�

|∆µ|
6πkTn∗

Nucleation time for a system of volume V is

τnuc = (JV )−1 = A
D exp

�
∆G(n∗)

kT

�

D−1 ∼ τliqAs long as                      then  
...which means no TLML.                    

τnuc > τliq
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TLML

...but if the Stokes-Einstein (SE) relation breaks down, 
TLML can exist, within the CNT framework

supercooled 
liquid 

observed 
here

τliq

τnuc

without SE 
breakdown

with SE 
breakdown

τliq ∼ ηDη

T
= const

co = lim
T→∞

Dτliq

T

τnuc =
A

D
exp

�
∆G(n∗)

kT

�

τliq is 
increasing 
faster with 
T than (T/D)

Stokes-Einstein 
relation... we assume...
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H. Tanaka, PRE 68, 011505 (2003)

data for the metallic glass former 
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5

time scale 
for crystal 
nucleation

structural 
relaxation time 

of liquid time scale 
for diffusion

from A. Masuhr, et al., 
Phys. Rev. Lett. 
82, 2290 (1999)
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Other recent work on stability limits of supercooled liquids...

• A. Cavagna and coworkers: “kinetic 
spinodal temperature” for supercooled 
liquids...
- EPL 61, 74 (2003)
- JCP 118, 6974 (2003) 
- PRL 95, 115702 (2005) 

• Spinodal-like crystal nucleation in 
deeply supercooled LJ liquid...
- Trudu, Donadio and Parrinello, PRL 

97, 105701 (2006)
- Wang, Gould and Klein, PRE 76, 

031604 (2007)

• Stability limits for crystal nucleation in 
supercooled gold nanoclusters...
- Mendez-Villuendas, Saika-Voivod 

and Bowles, JCP, 127, 154703 (2007) 
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temperature
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m
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Tm

TLML

supercooled 
liquid 

observed 
here

τliq

τnuc

without SE 
breakdown

with SE 
breakdown

What do we need to study 
the physics of TLML in simulations?

• A system which nucleates 
spontaneously, and crosses over 
from steady-state to transient 
nucleation...

• ...and that exhibits SE breakdown 
in the same region of T.

TLML = “lower metastable limit” for liquid state.... 

•  T>TLML → steady-state nucleation: crystal nucleates within equilibrium liquid 

•  T<TLML → transient nucleation: crystal nucleates before liquid equilibrates
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MD simulations of BKS silica

• BKS silica pair potential:  
Van Beest, et al., 1990

• Charged soft spheres; 
ignores polarizability, 3-body 
interactions  

• Long range forces evaluated 
via Ewald method.

• Plus we add switching 
function to real-space part of 
potential.

• Constant (N,V,E) molecular 
dynamics simulations

• 1332 ions (888 O, 444 Si)
• See Saika-Voivod, et al., 

PRE (2004) for basic 
simulation details.

� 

φij (r) = 1
4πε

qiq j

r
+ Aije

−Bij r +
Cij

r6
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(d) 3.01 (e) 2.80 (f) 2.61

(g) 2.45 (i) 2.31(h) 2.36

Potential energy landscape and 
configurational entropy of liquid silica

Sc(T) obtained by evaluating the inherent 
structure energy, the vibrational entropy, and 
the total entropy of the liquid, for BKS silica.

Saika-Voivod, Poole and Sciortino, Nature, 2001; PRE, 2004.

inherent structure energy, eIS

inflection in Sc = 
fragile-to-strong 
crossover

Adam-Gibbs relation

D

T
= K exp

�
− C

TSc

� low density

high density

low densityhigh density
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Test of Adam-Gibbs theory 
in liquid BKS silica
Saika-Voivod, Poole and Sciortino, 
Nature, 2001; PRE, 2004.
 

The AG relation is satisfied along 
isochores, and this gives us the 
constant “C” in the AG relation at 
any given density.

D

T
= K exp

�
− C

TSc

�
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Supercooled liquid BKS silica 
spontaneously crystallizes to 
stishovite at high density

Phase Diagram:
Saika-Voivod, Sciortino, Grande, PHP, PRE 68, 011505 (2003)

Crystal nucleation rates from CNT:
Saika-Voivod, PHP, Bowles, JCP 124, 224709 (2006)

Si atoms 
only shown

Crystallization 
occurs at density 
4.38 g/cm3 for 
T<3200 K
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Intermediate scattering function of liquid silica 
at 3000K and 4.38 g/cm3
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Potential energy landscape, configurational entropy and 
fragile dynamics of liquid silica at 4.38 g/cm3

3000 4000 5000
T (K)

-1.845

-1.84

e IS
 (M

J/
m

ol
)

0 1000 2000 3000 4000 5000
T (K)

0

1

2

3

4

5

6

S c 
(J

/m
ol

 K
)

*
• For T<3100 K, τα and D evaluated from the 

longest un-nucleated runs

• τα found from fit of time dependence of the 
intermediate scattering function to stretched 
exponential, at q corresponding to the first peak 
of S(q). 

• D found from mean square displacement vs time.
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Modeling the dynamics of liquid silica at 4.38 g/cm3

D

T
= A exp

�
− B

TSc

�

τα = C exp
�

E

TSc

�

D

T
= a exp

�
b

T − To

�

τα = c exp
�

e

T − To

�

Fits to VFT 
equation

Fits to AG 
equation

To = 2281 K

To = 2303 K

• Filled symbols: 
normal MD runs in 
which system does 
not crystallize

• Open symbols:  data 
taken from longest 
un-nucleated run of 
crystallization study
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Breakdown of the Stokes-Einstein relation in liquid silica 
at 4.38 g/cm3

co = lim
T→∞

Dτα

T

c =
Dτα

T

slope = -0.66

fractional Stokes-Einstein relation:

D

T
∼ (τα)−ξ, ξ < 1

from VFT fits

from AG fits
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Low T extrapolation of the configurational entropy
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Does crystallization 
impose a fundamental 
limit on studying the 
liquid at low T, or does it 
merely present a 
technical challenge?

form of Sc consistent 
with VFT and AG fits 
to the data for D/T

fit of Sc to two-state 
model of Moynihan 
and Angell (JNCS, 
274, p131, 2000)

a exp
�

b

T − To

�
= A exp

�
− B

TSc

�

crystallization in 
simulations
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Identifying particles having crystal-like local environments

nc = number of crystal-like bonds 
between a particle and its neighbors 
within the first coordination shell. 

• We use the procedure developed by 
Frenkel and coworkers:  defines a local 
orientational order parameter, based on 
spherical harmonics...

• See: Ten Wolde, Ruiz-Montero and 
Frenkel, JCP, 1996; Faraday Discuss., 
1996.

crystal-
like 
bonds

liquid-like 
bonds

one-component 
Lennard-Jones system
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first minimum in the radial distribution function. Ideally, fcc,
bcc, and hcp structures have 12 neighbors, while simple cu-
bic has six. However, during a simulation, Nb will fluctuate.
In the present work, instead of defining a distance cutoff, we
always choose the closest ten silicon neighbors of a given
silicon atom, i.e., Nb=10 always. In stishovite, the first Si–Si
neighbor shell contains ten atoms, although the shell is split
with two neighbors slightly closer than the other eight.

In Table V, we list the Ql values for l=4, 6, and 8, for
various crystal structures as well as for both the metastable
liquid and the state after the liquid has spontaneously crys-
tallized !crystal with defects". We see that both Q6 and Q8
give high values for most crystals. However, l=8 seems to be
less sensitive to the value of Nb chosen. In particular, for
Nb=10 in the case of the simple cubic structure, Q6 fares
much worse that Q8. For our study, we do not know what the
structure of the precritical nuclei of stishovite is, and thus we
prefer to have an order parameter that is more accepting of
different structures. Therefore, we choose l=8

Having selected Nb=10, and l=8, we now proceed to
determine what a crystal-like atom is, and whether two
crystal-like atoms are part of the same cluster. Having de-
fined qlm in Eq. !A1", we can form a dot product c !−1!c
!1" between two neighboring Si atoms i and j as follow:

cij = #
m=−8

8

q̂8m!i"q̂8m
* !j" , !A4"

where

q̂8m!i" =
q8m!i"

!#m=−8
8 $q8m!i"$2"1/2 !A5"

and q* is the complex conjugate of q. In this way, c is deter-
mined for every pair of neighboring atoms. For two atoms
with very similarly oriented bonding geometry, c will have a
value close to unity.

The distribution of c values is plotted in Fig. 12!a" for
stishovite, liquid, and spontaneously crystallized liquid all at
T0 and V0. We see from the plot that very few atom pairs in
the liquid have a value greater than about 0.75, while very
few atom pairs in stishovite have a value less than 0.75.
However, a value of c=0.5 provides a better criterion for
differentiating between the liquid and the spontaneously
crystallized configuration. Therefore, we choose a cutoff
value of ccut=0.5. A pair of neighboring atoms i and j that
have cij "ccut are considered to be connected by a crystal-
like bond.

To define a crystal-like atom, we say that the number of
connections Nc an atom possesses must be greater than or
equal to Ncut

c . To determine Ncut
c , we plot the distribution of

Nc in Fig. 12!b" for the same cases as for c. We see that all
atoms in the stishovite crystal have Nc=10, while the distri-
bution for the liquid vanishes near Nc=5. From the plot, any
value between 5 and 10 would serve to distinguish the liquid
from the crystal. We choose Ncut

c =5 to be less restrictive in
our choice of order parameter. Beyond this, clusters are
defined by considering connections only between crystal-like
atoms.

TABLE V. Ql for l=4, 6, and 8, for various structures and choices of Nb:
face-centered cubic !fcc", body-centered cubic !bcc", hexagonally close-
packed !hcp", simple cubic !sc", liquid silica at T=3000 K !Liq", stishovite
!ST" at 3000 K, stishovite at 0 K, and the structure that results when the
liquid spontaneously crystallizes to stishovite at 3000 K !X-Liq".

Structure Nb Q4 Q6 Q8

fcc 12 0.19 0.57 0.40
bcc 12 0.08 0.54 0.38
hcp 12 0.10 0.48 0.32
sc 6 0.76 0.35 0.72
sc 10 0.40 0.02 0.60
Liq 10 0.02 0.03 0.02
X-Liq 6 0.21 0.33 0.24
X-Liq 8 0.23 0.30 0.27
X-Liq 10 0.23 0.27 0.29
X-Liq 12 0.11 0.22 0.33
ST 3000 K 6 0.39 0.52 0.33
ST 3000 K 8 0.39 0.48 0.35
ST 3000 K 10 0.40 0.45 0.38
ST 3000 K 12 0.25 0.38 0.42
ST 0 K 10 0.41 0.51 0.42

FIG. 12. !Color online" Determination of characterization thresholds. We
plot the probability distribution of cij values in !a" for the liquid, stishovite,
and the spontaneously crystallized liquid at T0 and V0. The results in each
case are averages from five configurations. Based on this plot, we choose a
value of ccut=0.5. In !b" we plot the probability distribution of Nc values
based on ccut. At this T, stishovite appears to always have ten Si–Si connec-
tions per Si. Based on this plot, we choose a value of Ncut

c =5, at or above
which a Si ion is deemed to be crystal-like.

224709-14 Saika-Voivod, Poole, and Bowles J. Chem. Phys. 124, 224709 !2006"

Downloaded 25 Jun 2007 to 129.100.249.53. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Identifying particles having crystal-like local environments
• We use q=8 instead of q=6, because q=6 

does not select out cubic structures well.  
Stishovite is nearly cubic, and we do not 
want to assume the structure of the critical 
nucleus.

crystal-
like 
bonds

liquid-like 
bonds

crystal-like 
particles

liquid-like 
particles

first minimum in the radial distribution function. Ideally, fcc,
bcc, and hcp structures have 12 neighbors, while simple cu-
bic has six. However, during a simulation, Nb will fluctuate.
In the present work, instead of defining a distance cutoff, we
always choose the closest ten silicon neighbors of a given
silicon atom, i.e., Nb=10 always. In stishovite, the first Si–Si
neighbor shell contains ten atoms, although the shell is split
with two neighbors slightly closer than the other eight.

In Table V, we list the Ql values for l=4, 6, and 8, for
various crystal structures as well as for both the metastable
liquid and the state after the liquid has spontaneously crys-
tallized !crystal with defects". We see that both Q6 and Q8
give high values for most crystals. However, l=8 seems to be
less sensitive to the value of Nb chosen. In particular, for
Nb=10 in the case of the simple cubic structure, Q6 fares
much worse that Q8. For our study, we do not know what the
structure of the precritical nuclei of stishovite is, and thus we
prefer to have an order parameter that is more accepting of
different structures. Therefore, we choose l=8

Having selected Nb=10, and l=8, we now proceed to
determine what a crystal-like atom is, and whether two
crystal-like atoms are part of the same cluster. Having de-
fined qlm in Eq. !A1", we can form a dot product c !−1!c
!1" between two neighboring Si atoms i and j as follow:

cij = #
m=−8

8

q̂8m!i"q̂8m
* !j" , !A4"

where

q̂8m!i" =
q8m!i"

!#m=−8
8 $q8m!i"$2"1/2 !A5"

and q* is the complex conjugate of q. In this way, c is deter-
mined for every pair of neighboring atoms. For two atoms
with very similarly oriented bonding geometry, c will have a
value close to unity.

The distribution of c values is plotted in Fig. 12!a" for
stishovite, liquid, and spontaneously crystallized liquid all at
T0 and V0. We see from the plot that very few atom pairs in
the liquid have a value greater than about 0.75, while very
few atom pairs in stishovite have a value less than 0.75.
However, a value of c=0.5 provides a better criterion for
differentiating between the liquid and the spontaneously
crystallized configuration. Therefore, we choose a cutoff
value of ccut=0.5. A pair of neighboring atoms i and j that
have cij "ccut are considered to be connected by a crystal-
like bond.

To define a crystal-like atom, we say that the number of
connections Nc an atom possesses must be greater than or
equal to Ncut

c . To determine Ncut
c , we plot the distribution of

Nc in Fig. 12!b" for the same cases as for c. We see that all
atoms in the stishovite crystal have Nc=10, while the distri-
bution for the liquid vanishes near Nc=5. From the plot, any
value between 5 and 10 would serve to distinguish the liquid
from the crystal. We choose Ncut

c =5 to be less restrictive in
our choice of order parameter. Beyond this, clusters are
defined by considering connections only between crystal-like
atoms.

TABLE V. Ql for l=4, 6, and 8, for various structures and choices of Nb:
face-centered cubic !fcc", body-centered cubic !bcc", hexagonally close-
packed !hcp", simple cubic !sc", liquid silica at T=3000 K !Liq", stishovite
!ST" at 3000 K, stishovite at 0 K, and the structure that results when the
liquid spontaneously crystallizes to stishovite at 3000 K !X-Liq".

Structure Nb Q4 Q6 Q8

fcc 12 0.19 0.57 0.40
bcc 12 0.08 0.54 0.38
hcp 12 0.10 0.48 0.32
sc 6 0.76 0.35 0.72
sc 10 0.40 0.02 0.60
Liq 10 0.02 0.03 0.02
X-Liq 6 0.21 0.33 0.24
X-Liq 8 0.23 0.30 0.27
X-Liq 10 0.23 0.27 0.29
X-Liq 12 0.11 0.22 0.33
ST 3000 K 6 0.39 0.52 0.33
ST 3000 K 8 0.39 0.48 0.35
ST 3000 K 10 0.40 0.45 0.38
ST 3000 K 12 0.25 0.38 0.42
ST 0 K 10 0.41 0.51 0.42

FIG. 12. !Color online" Determination of characterization thresholds. We
plot the probability distribution of cij values in !a" for the liquid, stishovite,
and the spontaneously crystallized liquid at T0 and V0. The results in each
case are averages from five configurations. Based on this plot, we choose a
value of ccut=0.5. In !b" we plot the probability distribution of Nc values
based on ccut. At this T, stishovite appears to always have ten Si–Si connec-
tions per Si. Based on this plot, we choose a value of Ncut

c =5, at or above
which a Si ion is deemed to be crystal-like.

224709-14 Saika-Voivod, Poole, and Bowles J. Chem. Phys. 124, 224709 !2006"
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Measuring the nucleation time:
a single MD run at 2900 K, starting from 5000 K

• evolution of the 
potential energy U 
as a function of time 
following a 
temperature jump 
from 5000 K

• nmax, size of the 
largest crystalline 
cluster, as a function 
of time

• nucleation time to in 
an individual run is 
defined as the last 
time that nmax=0.

to=2.05 ns
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Evaluating the mean nucleation time

• 200 runs at each T
• R is the number of runs 

remaining un-nucleated 
after time t.

• slope gives system 
nucleation rate (JV) 

• characteristic nucleation 
time τR = (JV)-1

• We also evaluate the 
mean nucleation time 
τo=<to>
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Crystal nucleation time compared to alpha relaxation time

τn = mean nucleation 
time, i.e. average of 
latest time that the 
max cluster size was 
zero, over all 200 runs 
at each T

System is approaching 
a kinetic limit, below 
which crystallization 
will occur faster than 
equilibration.
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Crossover from steady-state to transient nucleation

• 200 quenches from 5000 K to 
each T.

• U = system potential energy, 
averaged over all runs that 
remain un-nucleated at that t.

• Each curve ends at t=τn for 
that T.

• Indicates that below 2900 K, 
the crystal typically nucleates 
before the liquid can 
equilibrate 

3000 K

Thursday, January 7, 2010



10-2

10-1

100

101

tim
e 

(n
s)

τ
α
τn
τliq=20τ

α

2600 2800 3000 3200
T (K)

100

101

102

τ n/τ α

(a)

(b)

• Data for U indicate that the 
crossover from steady-state 
to transient nucleation 
occurs at about 2900 K.

• We model the system 
equilibration time τliq by 
taking a multiple of τα such 
that the curves cross at 
2900 K.

Shifting τα to model the crossing of the 
nucleation and equilibration times

TLML
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• τn is the nucleation time for 
the system. 

• Larger system will nucleate 
quicker, smaller system will 
take longer.

• But even the smallest 
credible system size 
nucleates on the time scale 
of equilibration at finite T 
(approx 2700 K)...

• ...i.e. we cannot avoid 
crystallization by using 
smaller systems.

Influence of system size on nucleation time

N =
 4

44

N =
 4

N =
 4

4
N =

 4
44

0

τn = (JV )−1
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If SE breakdown did not occur, 
what would the nucleation time be?

CNT nucleation time is

τn = A D−1 exp
�

∆G(n∗)
kT

�
.

Let DSE be the value D would
have if SE breakdown did not
occur. This can be found from,

DSE = coT
τα

.

We can then find τSE
n , the value

τn would have in the absence
of SE breakdown,

τSE
n =

�
D

DSE

�
τn =

�
c
co

�
τn.

c =
Dτα

T
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• SE breakdown in this 
system is sufficiently 
strong to account for the 
onset of transient 
nucleation. 

• Consistent with Tanaka’s 
proposal that the presence 
of TLML is induced by SE 
breakdown

• Does not mean that other 
mechanisms do not 
contribute.

• Entropy catastrophe would 
be accessible, were it not 
for SE breakdown.

Nucleation time vs T with and without SE breakdown

with SE 
breakdown

without SE 
breakdown

with SE 
breakdown

without SE 
breakdownVFT 

extrapolation

AG + 2-state model 
extrapolation
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• The size of the critical nucleus becomes small...
• ...and the height of the nucleation barrier is 

dropping...
• ...but neither go to zero.  The liquid maintains a 

(weak) thermodynamic stability against 
crystallization...i.e. there is no crystal “spinodal”.

Nucleation barrier and size of critical nucleus
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nucleation barrier 
profiles
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Can we find ΔGliq(T)...to compare to ΔGnuc(T)?

• Adam and Gibbs (JCP, 1965) describe the average transition probabilities for 
cooperative rearrangements in a supercooled liquid as...

• ...where ΔGliq is the free energy difference between a subsystem that is “rearrangeable”, 
and the system free energy.  That is, it is the work required to form a cooperatively 
rearranging region. 

• Since the alpha relaxation time satisfies the AG relation in the form of...

• ...then ΔGliq as defined in the AG theory can be estimated from...

W̄ (T ) = A exp
�
−∆Gliq

kT

�
= A exp

�
− C

TSc

�

∆Gliq(T )
kT

� ∆Gα(T )
kT

=
Cα

T Sc(T )

τα = K exp
�

Cα

TSc

�
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Free energy barriers to crystal nucleation and 
liquid-state relaxation in BKS silica

• Can the kinetically-defined 
crystallization limit be 
expressed in terms of 
thermodynamic barriers, to 
realize Kauzmann’s idea?  
Perhaps...

• In the T range of the kinetic 
limit, the molecular 
rearrangements required to 
remain a liquid (i.e. alpha 
relaxation) and those required 
to leave the liquid state (via 
nucleation) occur on similar 
free-energy scales.

• Caution: Equal barriers do not 
correspond to equal times.
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Conclusions

• BKS silica at this density seems to 
exhibit an unavoidable, finite-T, 
kinetically-defined limit on the liquid 
state, due to crystallization (...consistent 
with Kauzmann’s 1948 idea).

• The presence or absence of glassy 
dynamics in the liquid (i.e. SE 
breakdown) is crucial for the existence 
of this limit (...as Tanaka predicted).

• Next steps:  
• Does this kinetic limit correspond to a 

thermodynamic limit?
• Examine role of dynamical 

heterogeneities, and their relationship 
to pre-critical crystal embryos.
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