Differenza in energia libera tra LJ e SS a $T^*=2$ e $\rho^*=1$

Studiamo, con integrazione termodinamica, la differenza di energia libera tra

(i) un sistema di particelle interagenti con il potenziale LJ con $r_{cut}=2.5\sigma$. Non applichiamo correzioni long-range ai dati calcolati.

$$V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \qquad r < 2.5\sigma$$

(ii) un sistema di particelle interagenti con il potenziale SS con $r_{cut}=2.5\sigma$.

$$V_{SS}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \right] \qquad r < 2.5\sigma$$

a $T^*=2$ e $\rho^*=1$. Simuliamo un sistema di 300 particelle. Definendo $V_{LJ}(r)+W(r)=V_{SS}(r)$, possiamo scrivere

$$H_{\lambda} = V_{LJ}(r) + \lambda W(r)$$

cosi' che per $\lambda=0$ abbiamo il potenziale LJ e per $\lambda=1$ abbiamo il potenziale SS. La figura mostra i risultati per $< W>_{\lambda}$ vs. λ .

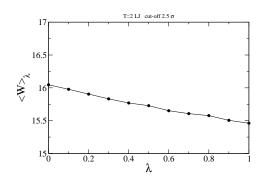


Figure 1: $\langle W \rangle_{\lambda}$ vs. λ

L' integrale $\int_0^1 < W >_{\lambda} d\lambda = 15.73.$ Quindi

$$\Delta \beta F = 15.73$$

Domanda: Quanto varrebbe $\Delta \beta F$ se avessimo approssimato $\langle W \rangle_{\lambda}$ con $\langle W \rangle_{\lambda=0}$?