

PROTEIN PHASE DIAGRAMS

Emanuela Zaccarelli

CNR Institute for Complex Systems and Department of Physics, Sapienza University, Rome

Soft Matter models I have enjoyed working with...

βV(r)

r/o

microgels, star polymers

Phase diagrams maps of (thermodynamic) stability atomic/molecular liquids

Colloidal phase diagrams

short-range altractions

Anderson and Lekkerkerker

colloids with long-range altraction

Hard spheres

Peter Pusey & Bill Van Megen Nature 1986

Attractive colloids

Volume fraction, ϕ

Effect of attraction range on phase diagram

Colloidal phase diagrams

short-range altractions

Anderson and Lekkerkerker

colloids with long-range altraction

Why are we interested in phase transitions in proteins?

Phase

proteins

Protein crowding and the cytosol stability

transitions in

Optimal conditions for crystallization

Peter Schurtenberger

Understanding protein condensation disease

Cataract

Concentrated formulations

Sickle Cell Disease

The eye lens

Peter Schurtenberger

The fiber cells consist of a highly concentrated protein solution:

Alpha-crystallins:

~ 800 kDa specific volume: ~ 1.5 - 1.7 mL/g

Beta-crystallins:

 $\beta_{H} \sim 200 \text{ kDa};$ $\beta_L \sim 50 \text{ kDa}$

Gamma-crystallins:

Coarse-graining approach

Anna Stradner & Peter Schurtenberger, review article, Soft Matter 2020

The eye lens

Alpha-crystallins:

~ 800 kDa specific volume: ~ 1.5 - 1.7 mL/g

Beta-crystallins:

β_H ~ 200 kDa; $\beta_L \sim 50 \text{ kDa}$

Gamma-crystallins:

Biophysical Journal Article

Crowding in the Eye Lens: Modeling the Multisubunit Protein β -Crystallin with a Colloidal Approach

Felix Roosen-Runge,^{1,*} Alessandro Gulotta,¹ Saskia Bucciarelli,¹ Lucía Casal-Dujat,¹ Tommy Garting,¹ Nicholas Skar-Gislinge,¹ Marc Obiols-Rabasa,¹ Bela Farago,² Emanuela Zaccarelli,^{3,4} Peter Schurtenberger,¹ and Anna Stradner¹

¹Division of Physical Chemistry, Lund University, Lund, Sweden; ²Institut Laue-Langevin, Grenoble, France; ³Institute for Complex Systems, National Research Council, Uos Sapienza, Rome, Italy; and ⁴Department of Physics, Sapienza Università di Roma, Rome, Italy

ABSTRACT We present a multiscale characterization of aqueous solutions of the bovine eye lens protein β_{H} crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.

Biophysical Journal 2020

The eye lens

Alpha-crystallins:

~ 800 kDa specific volume: ~ 1.5 - 1.7 mL/g

Beta-crystallins:

β_H ~ 200 kDa; $\beta_1 \sim 50 \text{ kDa}$

Gamma-crystallins:

The eye lens

FIG. 1. The phase diagram of γ_{II} -crystallin [3–5]. The circles are points on the liquid-liquid coexistence curve (CC). The squares are points on the liquidus line (L). The triangle is a point on the solidus line (S). The lines are guides to the eye. The critical temperature is $T_c = 278.4$ K. The critical volume fraction is $\phi_c = 0.21$.

Asherie, Lomakin & Benedek PRL 1996

Alpha-crystallins:

~ 800 kDa specific volume: ~ 1.5 - 1.7 mL/g

Beta-crystallins:

β_H ~ 200 kDa; $\beta_L \sim 50 \text{ kDa}$

Gamma-crystallins:

Colloidal approach to globular protein phase diagram: isotropic potentials

Pagan & Gunton J. Chem. Phys. 2005

The need of anisotropic models: patchy models

Bianchi, Largo, Tartaglia, EZ and Sciortino PRL (2006)

The need of anisotropic models: patchy models

Bianchi, Largo, Tartaglia, EZ and Sciortino PRL (2006)

Construction of the Association of the Asso Association of the Associa

The need of anisotropic models: patchy models

Bianchi, Largo, Tartaglia, EZ and Sciortino PRL (2006)

Back to proteins

FIG. 8: Comparison of our Monte Carlo results for both $\lambda = 1.15 \ (\Box)$ and $\lambda = 1.25 \ (\nabla)$, respectively, to the gamma-II crystallin (\bullet) .

Pagan & Gunton J. Chem. Phys. 2005

0.96 isotropic SW 0.94 0.5 1.5 0 ρ/ρ_{c} FIG. 4. Vapor-liquid coexistence curves in terms of the reduced temperatures T/T_c and the reduced density ρ/ρ_c for the studied patchy models: M =4 (open squares), M=5 (open circles), and M=7 (open diamonds). The isotropic only (Ref. 27) (inverted open triangles) and PMW (Ref. 16) (open triangles) data are shown for comparison. The experimental data for γ -crystallin (full circles) and lysozyme (full squares) are taken from Refs. 28 and 29, respectively. The lines are the fit to the standard critical scaling

sozyme

γ-crystallin

law used to describe coexistence curves.

0.98

 T/T_{c}

Liu, Kumar & Sciortino J. Chem. Phys. 2007

Single-point modification of protein interactions

How fluorescent labelling alters the solution behaviour of proteins

M. K. Quinn,^a N. Gnan,^b S. James,^a A. Ninarello,^c F. Sciortino,^{bc} E. Zaccarelli^{bc} and J. J. McManus*^a

Phys. Chem. Chem. Phys. (2015)

Fig. 1 Patchy particles used for modelling HGD proteins. Particles with four patches (U-patches) are unlabelled proteins (U-type), while the particle with green (wider) patch (L-patch) corresponds to a fluorescently labelled protein (L-type).

decreasing temperature

Cataract: protein condensation disease, where protein aggregation and phase separation lead to a clouding of the eye lens; cataract is still the leading cause of blindness worldwide

Peter Schurtenberger

Back to the eye-lens

Back to the eye-lens

The last example: monoclonal antibodies

Antibodies are *large* proteins (~150 kDa) employed by the immune system for

Antibodies as pharmaceutical drugs

Nature Reviews | Drug Discovery

Nelson, Dhimolea and Reichert, Nature Reviews Drug Discovery 9, 767 (2010)

widely investigated in biopharmaceutical industry due to

- large flexibility in molecular recognition **i**)
- ii) long half-life in the body
- iii) possibility of humanization with low risk of immunogenicity

NEED FOR HIGH CONCENTRATION FORMULATIONS > 100 MG/ML **OFTEN RESULTING IN TOO HIGH VISCOSITIES**

Phase transitions in human IgG solutions

Ying Wang, Aleksey Lomakin, Ramil F. Latypov, Jacob P. Laubach, Teru Hideshima, Paul G. Richardson, Nikhil C. Munshi, Kenneth C. Anderson, and George B. Benedek

exceptionally low critical volume fraction $\Phi \sim 0.07$

J. Chem. Phys. 139, 121904 (2013)

Phase separation of antibodies solutions

Bianchi, Largo, Tartaglia, EZ and F. Sciortino Phys. Rev. Lett. 97, 168301 (2006)

Experimental results for IGg4: Static light scattering added I0mM NaCl, pH=6.5, $T=25^{\circ}C$ **NO PHASE SEPARATION OBSERVED**

Apparent molecular weight shows a maximum at c ~ 25 mg/ml

Main ingredients:

- 6 hard spheres in a symmetric Y-shape;
- rigid structure;
- decorated with three attractive patches:
- 2 patches of type A and I patch of type B

electrostatic iso-surface calculations

positive arms

Main ingredients:

- 6 hard spheres in a symmetric Y-shape;
- rigid structure;
- decorated with three attractive patches:
- 2 patches of type A and I patch of type B

electrostatic iso-surface calculations

positive arms

AB (head-tail) bonds

square-well attraction fulfilling one-bond-per-patch condition

Monte Carlo Simulations

$k_{\rm B}T/\epsilon = 0.0775$

increasing concentration

finite-size clusters only

 weak aggregation also at very low temperatures no percolation is found; no phase separation

Hyperbranched polymer model

ANALYTICALLY SOLVABLE:

thermodynamic properties

M.S. Wertheim, J. Stat. Phys. 35, 19 and 35 (1984)

connectivity properties **polymers theory**

M. Rubinstein and R.H. Colby Polymer Physics (Oxford University Press), Oxford, 2003

Wertheim theory

B

hyperbranched

AB (head-tail) bonds

A

σ

square-well attraction fulfilling one-bond-per-patch condition

B

Comparison between Wertheim theory and Monte Carlo Simulations

Thermodynamic perturbative approach

free energy

$$F = F_{HS} + F_b$$
 bond contr

hard sphere reference term

bond probability $p \equiv p_B = 1 - X_B$

very good agreement between theory and simulations at all temperatures and concentrations

Byperbranched Polymers (Flory-Stockmayer)

M. Rubinstein and R.H. Colby Polymer Physics (Oxford University Press), Oxford, 2003

AB_{f-1} with $f \geqslant 2$ and only AB bonds

Model for branching without gelation

cluster size distribution

$$) = \frac{[(f-1)N]!}{N![(f-2)N+1]!} p^{N-1} (1-p)^{(f-2)N}$$

WE USE $p \equiv p_B$ from wertheim theory

Comparison with experiments: calculating S(0)

We use Wertheim theory to calculate $S(0) = \left(\frac{d\beta P}{d\rho}\right)^{-1} = \left(\frac{d\beta P_{HS}}{d\rho} + \right)^{-1}$

dependent on temperature and packing fraction of reference hard sphere system Фнз

we use effective patchy spheres

which effective diameter?

Carnahan-Starling

bond contribution

Comparison with experiments: calculating S(0)

We use Wertheim theory to calculate $S(0) = \left(\frac{d\beta P}{d\rho}\right)^{-1} = \left(\frac{d\beta P_{HS}}{d\rho} + \right)^{-1}$

dependent on temperature and packing fraction of reference hard sphere system Φ_{HS}

conversion to experimental units based on hydrodynamic radius

Carnahan-Starling bond contribution

Comparison with experiments: calculating S(0)

N. Skar-Gislinge, M. Ronti, T. Garting, C. Rischel, P. Schurtenberger, EZ and A. Stradner Molecular Pharmaceutics 16, 2394 (2019).

From static to dynamic properties

Coarse-graining strategy DYNAMIC PROPERTIES building blocks: HS or SHS clusters Parameters: • HS Model: Φ_{HS} of clusters Sticky HS Model: au $< R_{h>z, app}, \eta_r$

STATIC PROPERTIES

building blocks: patchy monomers

Parameters:

- Wertheim Theory: σ_{HS} , k_BT/ε
- Hyperbranched Polymer Theory: *p*

 $\langle s \rangle_{w, app}, n(s)$

Back to generic phase diagram: interplay with dynamics

McManus, Charbonneau, EZ, Asherie protein self-assembly review 2016

protein concentration

Why microgels?

COLLOIDS MADE BY CROSS-LINKED POLYMER NETWORKS

biotechnological

Т_{VPT} ~ 32°С

Volume phase transition

echo of the COIL-TO-GLOBULE **TRANSITION** in PNIPAM chains

T(°C)

30

PNIPAM

Poly(N-isopropylacrylamide)

20

600

5

10

VOLUME PHASE TRANSITION

40

Truzzolillo et al Soft Matter, 2018

Microgels assembled from patchy particles

- self-assembly of a binary mixture of
- 4-patch + 2-patch particles

monomers

N. Gnan, L. Rovigatti, M. Bergman, EZ Macromolecules 50, 8777 (2017)

Fully assembled network

blue = monomers

red = crosslinks

Microgel assembly protocol

$$\ln(1-(rac{r}{R_0\sigma})^2)$$
 if $r < R_0\sigma$ be

N. Gnan, L. Rovigatti, M. Bergman, EZ Macromolecules 50, 8777 (2017)

N=42000

Swelling behaviour

We complement the bead-spring model adding a solvophobic term Soddemman, Dunweg, Kremer Eur. Phys. J. E (2001)

 α : effective temperature

Volume Phase Transition (VPT)

Swelling behaviour

A MULTISCALE APPROACH TO MICROGELS

