
1 Binding and Clustering

In these notes we will review the basic elements of binding, calling attention on the competi-
tion between the energetic gain of forming a bond and the loss of translational entropy. We
will learn how to calculate theoretically the distribution of cluster sizes, in the hypothesis
of an ideal gas of cluster, and discuss how the cluster partition functions can be calculated
numerically. Building on the thermodynamic formalism, we will discuss some analytically
soluble simple models of self-assembly: equilibrium and cooperative polymerisation and
micelle formation.

The tendency of a system to spontaneously reach a well-defined structure is often
named ”self-assembly”. Originally used in biology to describe the process that brings to
the self organization of proteins into complex aggregates (like virus capsides), the word self-
assembly has progressively permeated physics, chemistry and material science, becoming
almost a substitute (despite its equivalence) for the more precise thermodynamic term, the
minimization of the system free energy on going from a collection of disordered particles to
the final (possibly ordered) structure. Crystallization of a metastable fluid can be properly
considered as a well known example of self-assembly.

While the search for a minimum free energy state is ubiquitous, the word self-assembly,
is commonly limited to the case in which the final structure is composed by (often ordered)
aggregates of finite size: micelles, vesicles, filaments, ribbons, self-assembling spontaneously
under the appropriate external conditions (density, temperature, salt concentration, pH and
so on).

Figure 1: Examples of finite size aggregates

We start with some general consideration on self-assembly of one-component systems
into finite size aggregates, and more specifically on its thermodynamic basis. Specifically,
we will focus on particles whose interaction energy scale is indicated by ϵ and whose inter-
action range is indicated by ∆. We will use the generic word ”particle”, which according
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to the context can refer to an atom, a molecule, a macromolecule, a colloidal particle.
To exploit self-assembly into finite size structures it is fundamental to develop a thermo-

dynamic description of the clustering process, highlighting the role of the bonding volume
compared to the volume per particle and the bonding energy. The competition between the
entropic driving force disfavouring self-assembly and the energetic (or enthalpic ) driving
force favouring the formation of low energy aggregates is at the heart of self-assembly.

2 Thermodynamic description of the clustering process

The first step in the description of an aggregation process is the definition of the aggregate
(or cluster). A cluster is commonly defined as the set of all particles mutually connected
(e.g. via a continuous path of bonds). Hence, the definition of a cluster as an entity
requires preliminarely the definition of ”bond” between particles. In most of the cases,
bonding can be defined geometrically or energetically. For example, two particles can be
considered bonded if they are closer than a bonding distance and with a proper relative
orientation or if their pair interaction energy is smaller than a threshold. In the case
of square-well like interactions, a clear-cut definition of bond is provided by the relative
energy of the two particles: if such energy is the square-well depth −ϵ a bond exists. Thus,
differently from extended infinite size aggregates — which can be stabilised also by repulsive
interactions (as in the paradigmatic case of hard-sphere crystallisation) — the formation
of a stable aggregate of finite size requires attraction between the participating particles.
For simplicity, I will assume generic interaction potentials, to highlight the relative role
of the interaction range (bonding volume) and of the interaction strength. The simplest
case is the square-well potential. In this case a ”bond” of strength ϵ > 0 sets in when the
distance between two particles is within σ and σ +∆ (being σ the characteristic particle
size). The values of ∆ and ϵ enter in the evaluation of the partition function of the system
(and hence in the free energy) determining the temperature T and density ρ conditions
under which bonding becomes statistically relevant. Typically, ∆ is a fraction of σ (as we
will discuss later on, larger ∆ values do not allow for self-assembly of finite size clusters).

The thermodynamic description of an aggregating system significantly simplifies if the
hypothesis that clusters do not significantly interact among themselves is satisfied. (e.g.
in the case in which the dominant contribution is excluded volume and the system packing
fraction is small, so that clusters can be considered isolated). In this ”ideal gas of cluster”
approximation, the canonical partition function a system composed by clusters differing in
the number n of bonded monomers, in the NV T ensemble (where N is the total number
of monomers) can be written as

Q =

∞∏
n=1

QNn
n

Nn!
(1)

where Qn is the partition function of the n-cluster and Nn is the number of clusters of
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size n in the system. The sum if formally running to∞ even if we will see that a constraint
will control the total number of particles. For spherical particles interacting with isotropic
potentials

Qn =
1

n!λ3n

∫ ′

dr⃗1....dr⃗N exp [−βV (r⃗1, r⃗2, ..., r⃗N )] (2)

where the ′ sign in the integration limits indicates that only points in phase space
dr⃗1....dr⃗N for which the cluster does not break into disconnected smaller clusters should
be considered.

For the monomer (assumed as a spherical rigid body, e.g. no internal fluctuations)

Q1 =
V

λ3

For directional interactions, one need to integrate over all Euler angles of the particles
Ωj and the partition function becomes

Qn =
1

n!λ3n

∫ ′

dr⃗1....dr⃗ndΩ1...dΩn exp [−βV (r⃗1, r⃗2, ..., r⃗n, Ω1, ....Ωn)] (3)

where now λ includes the rotational component of the integral over the kinetic energy.
In these cases it is convenient to redefine Λ3 = λ3/

∫
dΩ1 and define a spherically averaged

partition function

Qn =
1

n!Λ3n

∫ ′
dr⃗1....dr⃗NdΩ1...dΩn exp−βV (r⃗1, r⃗2, ..., r⃗n, Ω1, ....Ωn)∫

dΩ1...dΩn
(4)

The Helmholtz free energy F , the logarithm of the partition function, is then given by

βF = − lnQ = −
∞∑
n=1

[Nn lnQn −Nn lnNn +Nn] =
∞∑
n=1

Nn[lnQn − lnNn + 1] (5)

The cluster size distribution Nn is still undefined. To evaluate it, we require the free
energy to be a minimum respect to all possible variation of Nn. Still, we must satisfy the
constraint

∑
n nNn = N . Introducing a Lagrange multiplier α to include the constraint we

write

∂(βF + α
∑

k kNk)

∂Nn
= 0 (6)

ln
Nn

Qn
− nα = 0 (7)
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or
Nn = Qn(expα)

n (8)

Since N1 = Q1 expα, the same expression can be written as

Nn = Qn
Nn

1

Qn
1

(9)

or equivalently in a more symmetric form

Nn

Qn
=

(
N1

Q1

)n

(10)

In an ideal gas, ln(N/Q) is the chemical potential (in units of kBT ). Then, Eq. 10
essentially states that

µn = nµ1

or equivalently that each monomer has the same chemical potential, independently from
the cluster it belongs to. Eq. 9 shows also that the probability of observing an aggregate
of size n is proportional to the strength of the partition function Qn.

Knowing the cluster size distribution is now possible to write a close expression for the
system free energy in the ideal gas of cluster approximation as

βF = −
∞∑
n=1

[
Nn lnQn −Nn lnQn

Nn
1

Qn
1

+Nn

]
= −

∞∑
n=1

[
nNn ln

N1

Q1
+Nn

]
= N ln

N1

Q1
−#c

(11)
where #c is the total number of clusters in the system. Considering that ln N1

Q1
is the

chemical potential of the monomer in the ideal gas approximation, the free energy, can be
written as

βF = Nβµ−#c (12)

It is interesting to note that, being an ideal gas, the pressure is proportional to the
number of clusters (#c = βPV ) and that the monomer concentration (which fix the value
of µ) and the total number of clusters are the only information requested to write down the
system free energy. This geometric way of writing the free-energy is particularly useful when
analyzing confocal images of self-assembling systems. Indeed by measuring the number of
aggregates in the field of view as well as the number of monomer (two structural properties)
one obtain an experimental measure of the system free energy.
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2.1 on the chemical potential

For further use (and to make contact with other disciplines) we note that the chemical
potential can be split into two parts, introducing a ”mass” concentration Xn ≡ (nNn)/V
(Xn/n = ρn)

βµn = − ln
QnV

NnV
= ln

Nn

V
− ln

Qn

V
= ln

Xn

n
− ln

Qn

V
= ln ρn − ln

Qn

V

The first part is the classical concentration term, while the second part is the chemical
potential of the cluster at fixed center of mass (the so-called standard part) and indicated
as βµ0

n, such that

βµn = βµ0
n + ln

Xn

n
= βµ0

n + ln ρn

2.2 Dimer formation: what controls association

Before applying the formalism previously derived, it is useful to comment on the conditions
which allow clusters to form for a very simple case in which we limit ourselves for simplicity
to monomers and dimers. The formation of a dimer (e.g. the formation of a bond between
two monomers) is proportional to Q2. For a square-well interaction potential

Q2 =
1

2!Λ6

∫ ′

dr⃗1dr⃗2e
−βV (r⃗1,r⃗2) =

V

2!Λ6 e
βϵ 4π

3
[(σ +∆)3 − σ3] (13)

Again, let’s stress that Q2 has three contributions. A V term, associated to the center
of mass (entropic), an energy Boltzmann term (proportional in general to the number of
bonds in the cluster, one in this case), and an entropic bonding volume term Vb, counting
the number of microstates in which a bond exists.

Defining Vb as the volume that allows for a bond (e.g. Vb =
4π
3 [(σ +∆)3 − σ3])

N2 = Qn(ρ1Λ
3)2 =

V Vb

2

N2
1

V 2
eβϵ = N2

1

Vb

2V
eβϵ (14)

The condition such that half of the particles are dimers (N2 = N/4 and N1 = N/2)
is reached when ρVb exp(ϵ/kBT ) ≈ 1. This expression clearly show how the probability of
forming bonds results from the competition of an entropic term (bonding volume compared
to total volume per particle ρ−1) and an energetic term (the Boltzmann factor). Assuming
typical values for ∆ ≈ 0.1σ and for the packing fraction ϕ ≡ π

6σ
3ρ ≈ 0.1 this condition

already teach us that the probability that the bond is formed in not negligible only if kBT
is smaller than ϵ ( kbT/ϵ ≈ 0.2) It is also important to consider the lifetime of the bonds,
i.e. their persistence. As a first approximation, the lifetime of a bond is proportional
to exp(ϵ/kBT ). Thus at the typical temperature when fifty per cent of the particles are
clustered (i.e. exp(ϵ/kBT ) ≈ 100 ) the bonds are generally still very intermittent and the
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aggregates are to be considered as transient clusters with significant exchange of particles
between aggregates. This immediately clarifies that to form a stable aggregate, i.e. an
aggregate in which the relative position of the constituent particles is persistent in time,
one need to go to kBT ≪ ϵ. Requiring that 108−109 attempts are needed before breaking a
bond (this estimate of course depend on the attempt rate and the experimental observation
time) implies kBT/ϵ ≈ 0.045− 0.05.

3 Dissociation Equilibrium

A salt in a solvent (commonly water) dissociates into ions. The process can be schematized
as a chemical reaction

AB ←→ A+B

We can write the three partition functions as

QA =
V

λ3
A

e−βfA QB =
V

λ3
B

e−βfB

Here βfA and βfB indicates any free-energy contribution in the case the association-
dissociation process takes place in a solvent, not in a gas phase.

QAB =
V 2

λ3
Aλ

3
B

e−βfAB

where e−βfAB now includes both the association term and the interaction with the solvent
e−βfAB = Vb

V e−βϵABe−βfsolvent
AB . Note that here we split the volume contribution in such a

way that e−βfAB is a pure number.
The free energy is

−βF = ln
QNA

A

NA!

QNB
B

NB!

QNAB
AB

NAB!

which has to be minimized (respect to NA) with the constraints (NA = NB) and NAB =
N0 −NA, where N0 is the number of salt molecules initially dissolved in the solvent. So

−βF = ln
(QAQB)

NA

(NA!)2
QN0−NA

AB

(N0 −NA)!
=

NA ln(QAQB)+(N0−NA) lnQAB−2(NA lnNA−NA)−(N0−NA) ln(N0−NA)+(N0−NA)

Minimizing respect to NA and equating to zero, we find

ln(QAQB)− lnQAB − 2 lnNA + ln(NAB) = 0

or
N2

A

NAB
=

QAQB

QAB
=

e−β(fA+fB)

e−βfAB
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Recall that in the ideal gas state, the chemical potential µ is − ln Q
N . Here we note that

the found relation is such that

ln
QAB

NAB
= ln

QA

NA
+ ln

QB

NB
→ µAB = µA + µB

hence, one can also formulate chemical equilibrium as equality of the chemical potential
for each species. The sum of the chemical potential of A and B in dissociated state must
be equal to the chemical potential of the associated complex.

Dividing by the volume, to transform number of particles in number density (concen-
tration)

nAnB

nAB
=

1

V

QAQB

QAB
= K̃AB

where K̃AB has the name of dissociation constant (in units of number density). If we
convert in mole/liter (mol/dm3),

[A][B]

[AB]
= KAB [mol dm−3]

To grasp the meaning of KAB note that when [A] = [AB], [B] = [A] = KAB. Hence
KAB indicated the molarity corresponding to an equal number of intact and dissociated
salt molecules.

3.1 Water dissociation

Water is a small molecule. Its dissociation reaction is

H2O ⇄ H+ +OH−

In pure water the concentration of H+ and OH− is equal to 10−7 M. Since the concentra-
tion of H2O is essentially fixed, the dissociation constant is, since [H2O] = 1000/18 = 55.5
mol/dm3

[H+][OH−]

[H2O]
=

10−7 · 10−7

55.5

This is the same to say that one out of 55 10
7
water molecules are dissociated at ambient

temperature. Indeed, indicating with NA the Avogadro number and with V 1 dm3,

NH+NOH−

NH2O
=

10−7 · 10−7

55.5
NAV

N2
H+ =

10−7 · 10−7

55.5
NAV NH2O
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As we have seen, in 1 dm3 NH2O = 55.5NA, such that

NH+ = 10−7NA
NH+

NH2O
=

10−7NA

55.5NA
=

1

55.5 107

Commonly, the concentration of [H+] is indicated by the relation

pH = −log10[H+]

Electrolytes are classified in three types: acid, which producesH+; base which produces
OH−1 and salt which does produce neither H+ nor OH−1. A solution is said acid when
the pH is larger than 7 and basic otherwise.

In summary

• The pH of pure water equals 7. This value is also called neutral pH.

• Adding HCl lowers the pH. A solution with pH less than 7 is called acidic. We will
call an acid any neutral substance that, when dissolved in pure water, creates an
acidic solution. (There are more sophisticated definitions of an acid than this one.)

• Adding NaOH raises the pH. A solution with pH greater than 7 is called basic. We
will call a base any neutral substance that, when dissolved in pure water, creates a
basic solution.

Many organic molecules behave like HCl above and so are called acids. For example the
carboxyl group -COOH dissociates via

−COOH → −COO− +H+

Familiar examples of this sort of acid are vinegar (acetic acid), lemon juice (citric acid),
and DNA (deoxyribonucleic acid). DNA dissociates into many mobile charges plus one big
macroion, with 2 net negative charges per basepair. Unlike hydrochloric acid, however, all
these organic acids are only partially dissociating. For example, the pK for dissociation of
acetic acid is 4.76; compare the corresponding value of 2.15 for a strong acid like phosphoric
(H3PO4). Dissolving a mole of acetic acid in a liter of water will thus generate a lot of
neutral CH3COOH and only a modest amount of H+. We say acetic acid is a weak acid.
Any molecule that gobbles up H+ will raise the pH. This can happen directly or indirectly.
For example, another common motif is the amine group, -NH2, which directly gobbles
protons by the equilibrium

−NH2 +H+ → −NH+
3

A special case is ammonia, NH3, which is simply an amine group attached to a hydrogen
atom. We have already seen how other bases (such as lye) work by gobbling protons
indirectly, liberating hydroxyl ions which push the equilibrium to the left. Bases can also
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be strong or weak, depending on the value of their dissociation equilibrium constant (for
example, NaOH → Na+ + OH−) or association constant. Now suppose we add equal
quantities of both HCl and NaOH to pure water. In this case the number of extra H+ from
the acid equals the number of extra OH− from the base, so we still have [H+] = [OH−].
The resulting solution has still pH=7. What happened is that the extra H+ and OH−

gobbled each other, combining to become water. The other ions remain, leaving a solution
of table salt, Na++Cl−. You could also get a neutral solution by mixing a strong base,
NaOH, with a weak acid, CH3COOH, but you would need a lot more acid than base.

3.1.1 The charge on a protein varies with its environment (Nelson)

proteins can be described as linear chains of monomers, the amino acids. Each amino acid
(except proline) contributes an identical group to the protein chain’s backbone, -NH-CH-
CO-, with a variable group (or side chain) covalently bonded to the central carbon. The
resulting polymer is a chain of residues, in a precise sequence specified by the message in the
cell’s genome coding for that protein. The interactions of the residues with one another and
with water determine how the protein folds; the structure of the folded protein determines
its function. In short, proteins are horrendously complicated. How can we say anything
simple about such a complex system? Some amino acids, for example aspartic or glutamic
acid, liberate H+ from their own carboxyl groups, like any organic acid. Others, including
lysine and arginine, pull H+ out of solution onto their basic side chains. The corresponding
dissociation reactions thus involve transfer of a proton:

Acidic side chain: − COOH → −COO− +H+

Basic side chain: −NH+
3 → −NH2 +H+.

The species on the left are the protonated forms; those on the right are deprotonated.
Each residue of type α has a characteristic equilibrium constant Keq,α for its deprotonation
reaction. We find these values tabulated in books. The range of actual values is about
10−4.4 for the most acidic (aspartic acid) to about 10−12 for the most basic (arginine). The
actual probability that a residue of type α will be protonated will then depend onKeq,α, and
on the pH of the surrounding fluid. Denoting this probability by Pα, the average charge
on an acidic residue in solution will then be (−e)(1 − Pα). Similarly, the average charge
on a basic residue will be ePα. In both cases the average charge goes down as pH goes
up. Actually, in a protein uncharged and charged residues will affect each other instead
of all behaving independently. Hence the degree of dissociation of a residue is a universal
function of the pH in its protein environment, shifted by the pK of that residue. A residue
is protonated half the time when the ambient pH just equals its dissociation pK.
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3.1.2 A historic note

Not only does every protein have its characteristic isoelectric point; each variant of a given
protein will too. A famous example is the defect responsible for sickle-cell anemia. In a
historic discovery, Linus Pauling and coauthors showed in 1949 that the red blood cells of
sickle-cell patients contained a defective form of haemoglobin. Today we know that the
defect lies in parts of haemoglobin called the β−globin chains, which differ from normal
β−globin by the substitution of a single amino acid, from glutamic acid to valine in position
six. This tiny change (β−globin has 146 amino acids in all) is enough to create a sticky
(hydrophobic) patch on the molecular surface. The mutant molecules clump together,
forming a solid fiber of fourteen interwound helical strands inside the red cell and giving
it the sickle shape for which the disease is named. The deformed red cells in turn get
stuck in capillaries, then damaged, and destroyed by the body, with the net effect of
creating pain and anemia. In 1949, the sequence of β−globin was unknown. Nevertheless,
Pauling and coauthors pinpointed the source of the disease in a single molecule. They
reasoned that a slight chemical modification to haemoglobin could make a correspondingly
small change in its titration curve, if the differing amino acids had different dissociation
constants. Isolating normal and sickle-cell haemoglobin, they indeed found that while
the corresponding titration curves look quite similar, still their isoelectric points differ by
about a fifth of a pH unit. The sign of this difference is just what would be expected
for a substitution of valine for glutamic acid: The normal protein is consistently more
negatively charged in the range of pH shown than the defective one, because it has one more
acidic (negative) residue, and that residue (glutamic acid) has pK=4.4, so it is dissociated
throughout the range of explored pH. In other physical respects the two molecules are
alike; for example, Pauling and coauthors measured that both had the same sedimentation
and diffusion constants. Nevertheless, the difference in isoelectric point was enough to
distinguish the two versions of the molecule. Most strikingly, at pH 6.9, the normal and
defective proteins have opposite signs of their charges, and so migrate in opposite directions
under an electric field.

4 The simplest self-assembly process. Equilibrium polymer-
ization

The simplest case of self-assembly refers to particles that can form two bonds each (e.g.
particles with functionality f = 2). To evaluate the partition function we assume that
particles interact with two attractive sites. We consider that the surface of the particle
is decorated with two patches on the poles, and that a bond is present between the two
patches when the relative distance between the particles is within σ + ∆ and when the
orientation of both patches involved in the bonds is within a cone of semi-amplitude θ. For
example, for a dimer we have
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Q2 =
1

2!Λ6

∫ ′

dr⃗1dr⃗2dΩ1dΩ2e
−βV (r⃗1,r⃗2,Ω1,Ω2)/

∫
dΩ1dΩ2 (15)

With the simple model selected, the Boltzmann factor exp (βϵ) is constant in all points
in space where a bond is present. Changing variable to r⃗1 and r⃗2− r⃗1, the integration over
r⃗1 is immediate and results in a V term. The integration over r⃗2− r⃗1 is limited for relative
distances between σ and σ + ∆ and so it gives 4

3π[(σ + ∆)3 − σ3)] times the integration
over the bonding angles. Normalized by the (4π)2 factor, the angular part results in a
contribution (1−cos θ

2 )2. This last term correspond to the so-called coverage χ (the fraction
of the sphere surface associated to bonding) squared. The resulting partition function is
thus

Q2 =
V

2Λ6 f
2 4

3
π[(σ +∆)3 − σ3)]χ2 exp (βϵ)

where the term f2 counts the four ways a bond can be formed between two particles
with two patches each. Using the previously introduced bonding volume definition,

Q2 = 2
V Vb

Λ6 exp (βϵ) =
V

Λ3Qbond Qbond = 2
Vb

Λ3 exp (βϵ) (16)

where the term V/λ3 indicates the contribution to the partition function associated to
the exploration of the system volume of the cluster center of mass, while the remaining part
is the bond partition function in which the term 2Vb/λ

3 counts the number of microstates
associated to the existence of the bond and exp (βϵ) is the Boltzmann term, which depends
on the ratio between the bond energy and the thermal energy.

Generalization to the case of a cluster of size n (neglecting self-avoiding contributions
and under the assumption that there is no change in the bonding energy on clustering, the
so-called isodesmic hypothesis, implicit in the simple classical potential we are using) the
partition function can be written as

Qf=2
n =

ωn

n!λ3n
V [V 11

b exp (βϵ)]#b (17)

with the number of bonds #b = n− 1 and

ωn

n!
= 2n−1 (18)

where ωn counts the number of distinct bonded chains that can be formed by n distin-
guishable particles. To calculate ωn one considers that the first particle can be selected in
n ways and that it has two possible bonding configurations. The second one among the
n− 1 remaining particles, always with two bonding possibilities. Hence

ωn = 2n× 2(n− 1)× 2(n− 2)× .....× 2 = n! 2n−1
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(the missing 2 arises from the left-right symmetry of the polymers) and

Qf=2
n = 2n−1 V

λ3

[
Vb

λ3
exp (βϵ)

]n−1

=
V

λ3

[
2
Vb

λ3
exp (βϵ)

]n−1

=
V

Λ3Q
n−1
bond (19)

which can be interpreted as the center of mass partition function (V/Λ3) and the bonds
(n− 1) partition function Qn−1

bond.
The cluster size distribution is then given by

Nn =
Nn

1

Qn
1

Qn =

(
N1λ

3

V

)n
V

λ3
Qn−1

bond = ρ1V
(
ρ1λ

3Qbond

)n−1
= N1

(
ρ1λ

3Qbond

)n−1
= N1e

(n−1) ln(ρ1λ3Qbond)

e.g. an exponential distribution of polymer lengths, with characteristic decay n̄ =
−[ln(ρ1λ3Qbond)]

−1.
The functional dependence of the cluster free energy in linear polymerization,

lnQf=2
n = ln

V

Λ3 + (n− 1) lnQbond

scales with n. This is typical of all one-dimensional aggregates (rods), for which the
standard part of the chemical potential is

βµ0
n ≡ − ln

Qn

V
= −(n− 1) lnQbond

4.1 Geometrical description

In the bifunctional particle system, the maximum number of possible bonds #max
bonds is

equal to the total number of particles. The number of bonds in the system can instead be
calculated from the cluster size distribution as

#bonds =

∞∑
n=1

(n− 1)Nn = N −#clusters

where the last equality is based on the fact that N =
∑∞

n=1 nNn and we have defined
#clusters the total number of cluster in the system. Thus, the probability that a bond
exists is

pb =
#bonds

#max
bonds

= 1− #clusters

N

Since
Nn = N1x

n−1 x = eln(ρ1λ
3Qbond)

we find

N =

∞∑
n=1

nNn =
N1

x

∞∑
n=1

nxn =
N1

x
x
d

dx

∞∑
n=1

xn = N1
d

dx

x

1− x
= N1

1

(1− x)2
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and

#clusters =
∞∑
n=1

Nn =
N1

x

∞∑
n=1

xn = N1
1

1− x

and, as a result,

pb = 1−N1
1

1− x

(1− x)2

N1
= 1− (1− x) = x

Thus, x has the meaning of bond probability and we can rewrite

Nn = N1p
n−1
b Nn = N(1− pb)

2pn−1
b

The number of monomers N1 is N(1− pb)
2 which can be interpreted as both reactive sites

un-bonded. Then each additional particle is connected with probability pb.

5 Surfactants. (Nelsen)

Emulsions form when amphiphilic molecules reduce the oil-water interface tension Section
7.5 discussed why salad dressing separates into oil and water, despite the superficial increase
in order which such separation entails. Water molecules are attracted to oil molecules, but
not as much as they are attracted to each other: The oil-water interface disrupts the
network of hydrogen bonds, so droplets of water coalesce in order to reduce their total
surface area. But some people prefer mayonnaise to vinaigrette. Mayonnaise, too, is
mostly a mixture of oil and water, and yet it does not separate. What is the difference?
One difference is that mayonnaise contains a small quantity of egg. An egg is a complicated
system, including many large and small molecules. But even very simple, pure substances
can stabilize suspensions of tiny oil droplets in water for long periods. Such substances are
generically called emulsifiers or surfactants; a suspension stabilized in this way is called an
emulsion. Particularly important are a class of simple molecules called detergents, and the
more elaborate phospholipids found in cell membranes. The molecular architecture of a
surfactant shows us how it works. Figure 8.3a shows the structure of sodium dodecylsulfate
(SDS), a strong detergent. The left side of this molecule is hydrophobic: It is a hydrocarbon
chain. The right side, however, is highly polar: In fact it is an ion. This fusion of unlike
parts gives the class of molecules with this structure the name amphiphiles. These two
parts would normally migrate (or partition) into the oil phase and water phase, respectively,
of an oil-water mixture. But such an amicable separation is not an option— the two parts
are handcuffed together by a chemical bond. When added to an oil-water mixture, though,
surfactant molecules can simultaneously satisfy both of their halves by migrating to the
oil-water interface.

In this way the polar head can face water while the nonpolar tails face oil. Given
enough surfactant to make a layer one molecule thick (that is, a monolayer) over the entire
interface, the oil and water phases need not make any direct contact at all. In mayonnaise,
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the relevant component of the egg is a phospholipid (lecithin), which migrates to the oil-
water interface to minimize its own free energy, and at the same time also lowers the
interfacial energy to the point where rapid coalescence of droplets does not occur. (Other
delicacies, for example sauce Béarnaise, also work this way.) Since a monolayer can be only
a couple of nanometers thick, a small quantity of surfactant can stabilize an enormous area
of interface.

5.0.1 Historical Note

Around 1773, Franklin’s attention turned to, of all things, oil slicks. What intrigued him
was the fact that a certain quantity of oil could spread only so far on water. Attempting
to spread it farther caused the film to break up into patches. Franklin noticed that a given
quantity of olive oil always covered about the same area of water; specifically, he found that
a teaspoon of oil (≈ 5cm3) covered half an acre of pond (≈ 2000m2). Franklin reasoned
that if the oil were composed of tiny irreducible particles, then it could only spread until
these particles formed a single layer, or ”monolayer”, on the surface of the water. It is
easy to go one step farther than Franklin and find the thickness of the layer, and hence the
size scale of a single molecule. Dividing the volume of oil by the area of the layer, we find
the size of one oil molecule to be about 2.5 nm. Remarkably, Franklin’s eighteenth-century
experiment gives a reasonable estimate of the molecular size scale!

You can observe the vast reduction in surface tension brought about by a tiny amount
of dissolved soap in a simple experiment. Carefully float a loop of fine sewing thread on
water. Now touch a bar of soap to the part of the water surrounded by the rubber band.
Explain what happens. You can also see for yourself just how large an area can be covered
by one drop of detergent, or equivalently, just how much that drop can be diluted and still
change the surface tension over several square centimetres of water. In the same way, a
small amount of detergent can clean up a big oily mess by encapsulating oil into stable,
hydrophilic droplets small enough to be flushed away by running water.

5.1 Micelles self-assemble suddenly at a critical concentration

A mixture of stabilized oil droplets in water may be delicious or useful, but it hardly
qualifies as a ”self-assembled” structure. The droplets come in many different sizes (that
is, they are poly- disperse), and just generally have little structure. Can entropic forces
drive the construction of anything more closely resembling what we find in cells? To
answer the above question we begin with another: It may seem from Section 8.4.1 that
surfactant molecules in pure water (or pure oil) would be stymied: With no interface to
go to, won’t they just have to accept the hydrophobic cost of exposing their tails to the
surrounding water? Figure 8.5 shows that the answer to the second question is ”no.”
Surfactant molecules in solution can assemble into a micelle, a sphere consisting of a few
dozen molecules. In this way the molecules can present their nonpolar tails to each other,
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and not to the surrounding water. This configuration can be entropically favorable, even
though by choosing to associate in this way each molecule loses some of its freedom to be
located anywhere, oriented in any way (see Section 7.5 on page 240). A remarkable feature
of Figure 8.5 is that there is a definite ”best” size for the resulting micellar aggregate. If
there were too many amphiphile molecules, then some would be completely in the interior,
where their polar heads would be cut off from the surrounding water. But with too few
amphiphiles (for example, just one molecule), the tails would not be effectively shielded.
Thus amphiphilic molecules can spontaneously self-assemble into objects of fixed, limited,
molecular- scale size. The chemical force driving the assembly is not the formation of
covalent bonds, but something gentler: the hydrophobic effect, an entropic force.

5.1.1 Historical Note

As early as 1913 J. McBain had deduced the existence of well-defined micelles from his
quantitative study of the physical properties of soap solutions. One of McBain’s arguments
went as follows. We know how many total molecules are in a solution just by measuring
how much soap we put in, and making sure that none of it precipitates out of solution. But
we can independently measure how many independently moving objects the solution con-
tains, by measuring its osmotic pressure and using the van ’t Hoff relation. For very dilute
solutions McBain and others found that the osmotic pressure faithfully tracked the total
number of amphiphilic ions (solid symbols on the left of Figure 8.6), just as it would for an
ordinary salt like potassium chloride (open symbols in Figure 8.6). But the similarity ended
at a well-defined point, now called the critical micelle concentration or CMC. Beyond this
concentration, the ratio of independently moving objects to all ions dropped sharply (solid
symbols on the right of the graph). McBain was forced to conclude that beyond the CMC his
molecules didn’t stay in an ordinary solution, dispersed through the sample. Nor, however,
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did they aggregate into a separate bulk phase, as oil does in vinaigrette. Instead, they were
spontaneously assembling into intermediate- scale objects, bigger than a molecule but still
microscopic. Each type of amphiphile, in each type of polar solvent, had its own charac-
teristic value of the CMC. This value typically decreases at higher temperature, pointing to
the role of the hydrophobic interaction in driving the aggregation. McBain’s results were
not immediately accepted. But eventually, as a large number of physical quantities were all
found to undergo sharp changes at the same critical concentration as the osmotic pressure
(for instance, electrical conductivity), the chemical community realized that he was right.

6 How to predict the cluster distribution from the free-
energy per particle

We have seen that (assuming Λ = 1 in the following)

ρn =
Nn

V
=

Qn

V

(
N1

Q1

)n

The term Qn

V indicates the free energy associated to the aggregate, excluding the center
of mass translational degrees of freedom (V ). If we define a free energy Faggregate(n) =

−kBT ln Qn

V of the cluster of size n and as fb(n) =
Faggregate(n)

n

Qn

V
= e−βFaggregate(n) = e−βnfb(n)

then, writing for retaining generality Q1 = V e−βnfb(1)

ρn =
(
ρ1e

−βfb(n)e+βfb(1)
)n

This expression shows that if fb(n) < fb(1), i.e. that if the free energy per particle goes
down on increasing n, then ρn ≫ ρ1. Oppositely, if fb(n) > fb(1), small finite clusters will
dominate.

7 Critical Micelle Concentration (CMC)

We have seen that the probability of observing a cluster of size n is proportional to its
partition function times the monomer concentration to the power n. This simple expres-
sion already reveals that, even at constant T (i.e. without changing the cluster partition
function) aggregation can be stimulated by the increase in the density.

The thermodynamic equilibrium condition results in

ρn =
(
ρ1e

−βfb(n)e+βfb(1)
)n
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7.1 What do we need to have finite size clusters (micelles)

We have seen that when fb(n) decreases with n clusters do form but keep growing on
increasing density (or decreasing T ). Different is the case when fb(n) shows a minimum in
its n dependence. In this case finite size clusters can result from the aggregation process.

Let us assume that we can expand the bonding free energy around its minimum M ,

βfb(n) = βfb(M) +
1

2

d2βfb(m)

dn2
|M (n−M)2 = βfb(M) +

1

2
Γ(n−M)2

To start, let’s now compare ρn for a generic n and for n = M

ρn =
[
ρ1e

−βfb(n)e+βfb(1)
]n

and ρM =
[
ρ1e

−βfb(M)e+βfb(1)
]M

then

ρ
1
n
n =

[
ρ1e

−βfb(n)e+βfb(1)
]

and ρ
1
M
M =

[
ρ1e

−βfb(M)e+βfb(1)
]

and dividing member by member

ρ
1
n
n

ρ
1
M
M

=

[
��ρ1e

−βfb(n)����
e+βfb(1)

][
��ρ1e

−βfb(M)����
e+βfb(1)

]
which can also be expressed as

ρ
1
n
n

ρ
1
M
M

=

[
e−βfb(n)

][
e−βfb(M)

]
or

ρ
1
n
n = e−βfb(n)+βfb(M)ρ

1
M
M = e

(βfb(M)−βfb(n))M

M ρ
1
M
M =

[
ρMeM(βfb(M)−βfb(n)

] 1
M
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or

ρn =
[
ρMeM(βfb(M)−βfb(n)

] n
M

If we assume that the n dependence of the bond free energy has a minimum for n = M ,
then

ρn =
[
ρMeMΓ(n−M)2)/2

] n
M

When M is large, for all cluster sizes close to M , n/M ≈ 1 and

ρn =
[
ρMeMΓ(n−M)2)/2

]
e.g. a gaussian distribution with variance σ2 = kBT/(2MΓ).

It is also interesting to look how the density affects the micellization process. To do
so in a simplified way, let’s lump all micelles in just one size M and consider only the
equilibrium between monomers and micelles.

In this case

ρM =
[
ρ1e

−β(fb(M)−fb(1))
]M

It is important to notice that, being M large, it acts in the exponent as a selector.
Since the total number density is ρ = ρM + ρ1, three cases are relevant. When

• ρ1e
−β(fb(M)−fb(1)) < 0. In this case ρM ≈ 0 and ρ ≈ ρ1.

• ρ1e
−β(fb(M)−fb(1)) > 0. In this case ρM is much larger than ρ1 and ρM ≈ ρ

• The density for which ρ1e
−β(fb(M)−fb(1)) = 1 defines the critical micelle concentration

(CMC).

Note that on increasing ρ beyond the CMC, ρ1 remains fixed at the CMC value. ρ1 can
not decrease, since else there would be no larger clusters. It also can not really increase,
since all density is concentrated in the micelles.

8 Micelles (once more)

The same calculation can be done retaining the partition functions. As before, particles
can only exist in monomeric state or in a cluster of M >> 1 particles (the micelle)

As we have demonstrated previously, in the case of an ideal gas of non-interacting
clusters

NM = QM
NM

1

QM
1

Then, indicating with N the original number of particles in the system
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N = N1 +MNM = N1 +MQM
NM

1

QM
1

or
N1

N
= 1−MQM

NM
1

NQM
1

Now we can write, assuming that a micelle has a well defined energy EM in all of its
configurations, the partition function of the micelle as

QM =
V

λ3

(
Vb

λ3

)M−1

exp(−βEM )

to emphasise the entropy and energy (or enthalpy) contributions and the partition
function of the monomer Q1 =

V
λ3 . Then

N1

N
= 1−M

V

λ3

(
Vb

λ3

)M−1

exp(−βEM )
NM

1

N( V
λ3 )M

and after some algebra

N1

N
= 1−M

(
N1

N

)M (
NVb

V

)M−1

exp(−βEM ) (20)

which can be written symbolically defining x as the fraction of particles in monomeric

state x = 1 −M(Ax)M , with A1/M =
(
NVb
V

)M−1
exp(−βEM ). Fixing the properties of

the micelle (M and the model parameters Vb and EM ) it is possible to solve Eq. 20 for
all densities and temperatures. The solution for N1/N depends on the value of A. For
values of Ax smaller than one, N1/N ≈ 1 and the system is a monomeric state. For Ax
greater than 1, ρ1 ≡ N1/V reaches a constant value. Note also that both the entropic and
the energetic contributions scale with M . Hence, the cross-over from values smaller than
one to values larger than one is extremely fast. The concentration for which Ax = 1 is
commonly indicated critical micelle concentration (cmc).

8.1 One dimensional aggregates: Cylindrical micelles

In the case of a one-dimensional growth process, as is the case of cylindrical micelles, one
can associate to molecules in the body of the cylinder a free-energy fbulk and an extra free-
energy penalty to the particles at the end ∆fendcup Then we can express the free energy
per particle as

βfb(n) =
nβfbulk + 2β∆fendcup

n
= βfbulk +

2

n
β∆fendcup
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Calling α = 2β∆fendcup, this functional form gives, since βfb(n)− βfb(1) =
α
n − α

From the general expression we have previously derived

ρn =
(
ρ1e

−βfb(n)e+βfb(1)
)n

we obtain for the cylindrical case

ρn =
(
ρ1e

−α
n
+α

)n
= e−α

(
ρ1e

+α
)n

confirming the exponential decay of Nn at equilibrium and the decay proportional to ρ1e
α.

We can find ρ1 for each ρ by evaluating

ρ =
∑
n

nρn =
N

V
= e−α

∑
n

n (ρ1e
α)n

which by now we know using the identity
∑

nxn = x/(1− x)2

ρ = e−α ρ1e
α

1− (ρ1eα)2

When ρ1e
α approaches 1 the solution of cylindrical surfactants can be thought of as a

solution of living polymers. Micelles are continuously brewing and reforming; the drive to
merge comes from the reduction in end-cap energies that occurs when two micelles merge,
while the driving force for long micelles to break into two arises from the extra entropy the
system gains by having more micelles.

8.2 Two-dimensional aggregates (disks, sheets and vesicles....)

Let us assume we are considering now particles (atoms, molecules) which self assemble into
disk-like two-dimensional structure. We can try to write a very rough partition function by
considering that the number of particles in the bulk of the disk will be proportional to the
surface area (or to the total number of particles (n) while the number of partially bonded
particles will be proportional to the circumference (n1/2). These boundary particles are
described by a free energy fbulkn+∆fsurfacen

1/2.

βFb(n) = fbulkn+∆fsurfacen
1/2

or
βfb(n) = fbulk +∆fsurfacen

−1/2

where fbulk and ∆.fsurface are the free energy of a particle in the bulk and the additional
cost of being located on the surface of the disk.

Then
βfb(n)− βfb(1) = βfsurfacen

−1/2 − βfsurface = αn−1/2 − α
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The thermodynamic equilibrium condition results in

ρn =
(
ρ1e

−βfb(n)e+βfb(1)
)n

=
(
ρ1e

α−αn−1/2
)n

= (ρ1e
α)n e−αn1/2

Comparing this with the equation for cylinders, we find the factor eα is replaced by.
e−αn1/2

. The factor of n1/2 leads to a qualitatively different situation. Rather than there
being a distribution of sizes of micelles, as there is for cylinders, in the case of disks we see
that the number of large but finite disk aggregates is exponentially small.

Above the CMC, any extra amphiphile we add to the system must join an infinite,
two-dimensional, sheet-like aggregate. There is one possibility that we have not considered
that could alter this conclusion. If the edges of the sheet can join up on one another, to
give a closed surface of bilayer, then the extra energy of the edge may be eliminated. Such
a structure is known as a vesicle. However, there is an energy cost in forming a vesicle,
which arises from the curvature that it is necessary to impart to the bilayer. This energy
cost needs to be set against the energy gain from eliminating the edge, together with a gain
in translational entropy that arises because the vesicles are of finite size. It turns out that,
for a system containing only one type of amphiphile, vesicles are stable only at extremely
low concentrations. In practice, vesicles can be obtained reasonably easily, for example by
breaking up the bilayers in a lamellar phase using ultrasound; these are metastable but
reasonably long-lived on experimental timescales. Vesicles can also be formed at equilib-
rium from mixtures of surfactants. Vesicles are potentially of great importance as a means
of encapsulating particular molecules. For example, if drug molecules are encapsulated in
vesicles they can be delivered to a target part of the body without unwanted interactions;
if the vesicle can be made to break up in a controlled way at the target then this provides
a very efficient way of delivering the drug. Vesicles can also be considered to be a simple
model of a biological cell, whose contents are separated from the outside world by a bilayer
membrane of this kind.

8.3 Three-dimensional aggregates (spheres)

A similar calculation for a spherical aggregate suggests to write

βfb(n) = fbulk + fsurfacen
−1/3

where fbulk and fsurface are the free energy of a particle in the bulk and on the surface of
the sphere. The surface free energy can also be expressed as interfacial free energy γ

fsurfacen
2/3 = 4πR2γ =

3

R

4

3
πR3γ =

3

R
nvγ

and per particle
fsurfacen

2/3

n
∼ 3

n1/3
vγ
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9 Competing interactions

10 Reasonable classification of the shape of the aggregates

Some insight into the factors which determine what kind of micelle is formed by a given
amphiphile is obtained from a simple geometrical argument due to Israelachvili. In this
approach, we characterise an amphiphile by three parameters:

• the optimum head-group area a0,

• the critical chain length lc,

• the hydrocarbon volume v0.

The hydrocarbon volume is simply the volume of the hydrocarbon chain, while the critical
chain length is related to the length of the hydrocarbon chain if it is in a fully extended,
straight configuration. The optimum head-group area needs more consideration. The idea
of an optimum head-group area for an amphiphile in a micelle is illustrated in Fig. 9.2. If
the head-groups are forced too closely together they will repel each other by electrostatic
and other interactions. On the other hand, if the head-groups are too far apart, this forces
the hydrophobic tails to come into contact with the water, with a resulting increase in
interfacial energy. A balance between these two factors gives rise to the optimum head-
group area a0. Note that this is not solely a geometric factor; because it arises from a
balance between attractive and repulsive forces, if the range of the forces is modified (e.g.
by changing the salt concentration to screen out electrostatic forces) then the optimum
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head-group area can be altered. The condition for various shapes of micelle to be adopted
can now be derived.

• Sphere:

For a sphere of radius r, the volume is Vsphere = 4πr3/3. If there are M molecules in
the micelle, then Vsphere = Mv0. The surface are is Ssphere = 4πr2. Each of the M
molecules contributes with a0 and thus Ssphere = Ma0. Taking the ratio

Vsphere

Ssphere
=

Mv0
Ma0

=
4πr3/3

4πr2
=

r

3

This means that the radius is 3v/a0. In order to be able to form a spherical micelle
this radius must be less than the fully stretched chain length lc (i.e. lc > r), giving
the condition for spherical micelles as

v

lca0
<

1

3
(spheres)

• Cylinders:

For cylinders of radius r and length L, the same reasoning gives

Vcylinder

Scylinder
=

Mv0
Ma0

=
πr2L

2πrL
=

r

2

Thus the radius is 2v/ao, and then the stretched polymer length lc > 2v/ao. The
resulting condition for cylindrical micelles is

1

3
<

v

lca0
<

1

2
(cylinders)

• Bilayers

When the combination v/(lcao) becomes larger than 1/2, then the favoured shape of
the aggregate will be a bilayer.

11 Cooperative polymerization: Slaved equilibrium poly-
merization

A relevant case of self-assembly is provided by the ”explosive” formation of very long one
dimensional aggregates (fibers, fibrils and so on). In this cases, a very small change in
the external control parameters determines the formation of extremely long chains. This
fast growth of fibers originates from the presence of two distinct aggregation mechanisms.
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A very slow preliminary aggregation process, with a very small reaction constant and a
subsequent fast aggregation process with a large reaction constant. A typical example is
provided by the coil to helix transition, where first four monomers need to arrange in an
proto-helix configuration and then the helix polymerization is rather fast.

In chemical language cooperative polymerization is described (in its simplest form) by
the expressions

[N2]

[N1]2
= K2

[N3]

[N1][N2]
= K3

while all successive Kn terms are equal to K3. In other words, we assume that first one
need to nucleate a dimer and then the dimer can grow with an isodesmic process. In this
case

[Nn]

[Nn−1][N1]
= K3, n ≥ 3

In terms of concentrations
[N2]

[N1]2
= K2

and
[Nn]

[N1]n
= K2K

n−2
3 , n ≥ 3

The total monomer concentration can thus be written as

ρ =

∞∑
1

nNn = N1 +K2N
2
1 +

∞∑
3

K2K
n−2
3 [N1]

n

ρ =
∞∑
1

nNn = [N1] + 2K2[N1]
2 +

∞∑
3

nK2K
n−2
3 [N1]

n = [N1] +
∞∑
2

nK2K
n−2
3 [N1]

n

and using
∞∑
2

nxn =
(2− x)x2

1− x)2

ρ = [N1] +
K2

K3

(2−K3[N1])K3[N1]
2

(1−K3[N1])2

By multiplying for K3 one obtains a a-dimensional expression

K3ρ = K3[N1] +
K2

K3

(2−K3[N1])K
2
3 [N1]

2

(1−K3[N1])2
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A plot shows that for small K2
K3

the total density coincides with the monomer density

till ρ = K−1
3 and then it abruptly decay to zero.

Recently, a simple model for patchy particles interacting with pair-wise additive interac-
tions has been shown to undergoes cooperative polymerisation, forming abruptly extremely
long tubes.

12 Simplified thermodynamic model for DNA hybridation

Let’s consider a reactions, to which is associated a (standard) free energy variation, that is
the free energy needed for single strands α and β to hybridize into a double strand γ = αβ:

A+B <=> AB

The approach is similar of course to what we have studied before for a generic reaction.
Assuming the simplifying initial condition that number of A and B strands originally

placed in solution were equal, and let that value be (for each strand) N0, then

N0 = NA +NAB (21a)

NA = NB (21b)

where Nα is the number of α strands when equilibrium has been reached. In terms of
probability of observing two paired DNA strands (an AB double helix) , we can write

pb =
NAB

N0
= 1− NA

N0

Note that when half of the strands are in double helix, NAB = N0/2 and pb = 1/2.
In the ideal gas of clusters approximation, the equilibrium conditions read

NAB

NANB
=

QAB

QAQB
(22a)

where Qα is the partition function of species α; they can be written as follows

QA =
V

λ3
A

e−βfA QB =
V

λ3
B

e−βfB

QAB =
V 2

λ3
Aλ

3
B

Vb

V
eβϵe−βfsolvation

AB

NAB

NANB
=

QAB

QAQB
= e−β(fAB−fA−fB) = e−β∆G (24)

Note that inside ∆G it is included the information of the volume of the system.
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Going to bond probability, since pb =
NAB
N0

= 1− NA
N0

we can write

NAB

NANB
=

NABN
2
0

NANBN2
0

=
pb

(1− pb)2
1

N0
(25)

and hence

pb
(1− pb)2

=
N0Vb

V
eβϵe−β(fsolvation

AB −fA−fB) = eln
N0Vb

V
+βϵe−β(fsolvation

AB −fA−fB)

All these terms on the right describe the change in free energy on going from undisso-
ciated to associated strands, at strand-A concentration N0/V . When this concentration is
1 molar, one writes

pb
(1− pb)2

= e−β∆G1M

For other concentrations C0, always expressed in molarity

∆GC0 = ∆G1M − kBT ln(C0)

The values of ∆G1M can be experimentally evaluated by measuring, in a 1 Molar
solution, the fraction of paired strands via circular dicroism, extracting in this way (from
a best fit of the temperature dependence) the term ∆H and ∆S.

Theoretically, the hybridization free energies can be estimated using the nearest-neighbor
method proposed by SantaLucia. These values are estimated at a specific molar concen-
tration of 1M/liter

To evaluate the free-energy difference between the strand

3′ −ATGGAC − 5′

and its complementary strand
3′ −GTCCAT − 5′

one needs to write the ”helix” complex

5′ − TACCTG− 3′ (26)

3′ −ATGGAC − 5′ (27)

and then consider all possible blocks of four bases. In the selected sequence we have the
following blocks (one plus the length of the sequence)

TA AC CC CT TG (28)

AT TG GG GA AC (29)
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Figure 2: Table of SantaLucia values from Annu. Rev. Biophys. Biomol. Struct. 2004.
33:415-40
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Then one has to find the contribution of each block from the Santalucia table for both ∆S
(in J/mol/K) and ∆H (kJ/mol)

∆H = −30.1− 35.1− 33.5− 32.6− 35.6 = −166.9

∆S = −89.1− 93.7− 83.3− 87.9− 95.0 = −449

To these values one need to add the contribution of the two terminals, one AT and one
GC, giving

∆H = −166.9 + 9.6 + 0.4 = −156.9

∆S = −449 + 17.2− 11.7 = −443.5

This provides the ∆G at 1 Molar NaCl concentration and 1 molar concentration of each
strand. To find the ∆G at the desired concentration and salt molarity one need to add two
entropic terms: a salt contribution (which depends linearly in the number of bases N

∆Ssalt = 0.368N ln[Na+]

As we have discussed, in the entropy one has also to account for a term which depends on
the strand concentration (C), expressed in mole/liter. If C is not equal to 1 Molar, one
need to add

∆Sc = −R ln[C]

The melting temperatures (defined as pb = 0.5) are then given by

ln 2 = −(∆HSL
AB − Tm∆SSL −RTm ln[C0])/RTm

ln 2−∆SSL/R− ln[C0] = −∆HSL
AB/RTm

or

Tm =
∆HSL

AB

∆SSL +R ln[C0]−R ln 2

Often one express C0 in term of total DNA concentration, CDNA = 2C0, and in this case

Tm =
∆HSL

AB

∆SSL +R ln[CDNA/4]
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Figure 3: Comparison between the experimentally measured (via the melting temperature
and the SantaLucia predictions.

13 Colloidal Gels: Depletion interactions

Gels are ubiquitous in nature. At atomic and molecular level, network liquids form ex-
tended open transient networks of bonds of quantum-mechanics origin (tetrahedral in water
and silica). In the amorphous state, the bonding pattern is frozen in a permanent network.
At polymer level, gels arise from multiple chemical or physical connections between distinct
chains.At colloidal level, gels occur when the inter-particle interaction strength becomes
considerably larger than the thermal energy kBT and particles stick together forming a
disordered highly porous material.

The origin of the colloidal gel state is one of the fascinating questions in soft matter:
why particles prefer to form an arrested state of matter (a disordered solid), despite the
very limited amount of occupied volume, i.e. in the absence of excluded volume caging
effects? Does colloidal gelation always require an underlying phase-separation? When and
how the gel state is a real equilibrium state of matter, that does not age or coarsen with
time? Some of these questions are discussed here.

We specifically focus on particle colloidal gels, e.g. on systems in which the monomeric
unit is a particle, although some of the concepts we will develop are also relevant to
molecular and polymeric gels. While we deliberately discuss only one-component gels, the
same ideas can be generalized to multicomponent systems. We thus focus on systems in
which gelation arises from the onset of a network of long-lived interparticle bonds between
identical particles. The solvent, when present, and its quality enter only in the definition of
the effective interaction potential between particles. Under these simplifying assumptions,
the phase behavior of the system can be represented on a two-dimensional plane. In colloids,
it is conventional to indicate the state of the system as a point in the attraction strength-
density or temperature-density plane. The plane is commonly partitioned in different
regions: fluid, gas (colloid-poor phase), liquid (colloid-rich phase), crystal (ordered) and
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their coexistence regions.
The most common colloidal gels (depletion gels) are formed by a quench into a thermo-

dynamic unstable region, followed by spinodal decomposition and kinetic arrest, which fi-
nally prevent a complete phase-separation.This process creates dynamically arrested struc-
tures encoding information of the underlying decomposition process in the resulting ma-
terial.Such gels are in a non-equilibrium state and display restructuring processes aim-
ing at slowly completing phase-separation. Colloidal particles interacting via competing
long-range electrostatic repulsion and short-range attraction also give rise to slowly aging
filamentous gels.

One of the most common arrest mechanisms derives from a phase separation interrupted
by the formation of a glass. In all interacting particle systems with potentials character-
ized, in addition to the ubiquitous repulsive part determined by the excluded volume, by
an attractive spherical interaction, when the interaction energy u0 becomes comparable
with the heat energy kBT , minimization of the free energy determine a separation in two
phases characterized by a significantly different density (the order parameter). Also in
colloidal systems, when u0/kBT exceeds a critical value, it triggers a phase separation,
which determines the formation of regions with large and small concentration of particles
respectively, in full analogy with the liquid-gas separation observed in atomic and molecular
systems. The thermodynamics driving force at the basis of phase separation can therefore
be exploited to generate regions that locally have a concentration of particles significantly
higher than average.

The concentration of the particles in the dense phase increases with the depth of the
quench (i.e. with u0/kBT ), and under appropriate conditions can determine a sufficiently
high density to make the excluded volume interactions relevant, giving rise to the local
(non-homogeneous) formation of an arrested glassy state. The formation of the glass con-
tributes to the sudden decrease of the mobility of the particles, with consequent arrest on
the experimentally observable time scales of the phase separation process. The competition
between phase separation and glass formation determines the final structure of the system.
In fact, the spatial modulation of density — and as far as gel formation is concerned, the in-
terconnectivity of dense zones — is controlled by the process of phase separation, and more
precisely by the depth of the quench. The interruption of the coarsening process freezes the
system in a two-continuous structure formed by an arrested phase and another one with
low particle concentration. Since the glassy phase extends from one end of the sample to
another end (percolation) the sample assumes properties typical of a solid, although the
volume occupied, on average, is quite small.

This scenario is schematically illustrated for a generic system in Fig. 4. For our pur-
poses it is interesting to observe the position of the point where the glass transition curve
(experimentally defined as the set of points where the characteristic time of structural re-
laxation of the system reaches hundreds of seconds) meets the thermodynamic instability
curve. Bringing the system abruptly inside the unstable zone, with values of kBT/u0 lower
than the point of intersection, the dense phase of equilibrium will dynamically arrest and
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the system will form a gel.

Figure 4: Schematic representation of the phase diagram of a colloidal particle system in-
teracting with an attractive potential (in addition to excluded volume interaction) of depth
u0. The areas of thermodynamic instability and non-ergodicity (glass) are represented. If
the system is brought inside the unstable zone, but under the yellow dotted curve, the
density of the denser zones during the spinodal separation process increases over time until
it reaches a value for which the vitrification system and the resulting reduction in mobility
interrupts the separation process. Phases arrested at very small volume fractions can be
generated with this mechanism.

The arrest following a spinodal decomposition is a widespread phenomenon, which
characterizes all physical systems for sufficiently low values of u0/kBT and in principle
observable also in atomic and molecular systems. Several reasons make this observation
difficult in those systems: (i) the propensity to crystallize at low temperature (which in
colloids is disadvantaged by the intrinsic polydispersity in colloidal particle size) (ii) the
density of atomic and molecular liquids at ambient pressure and temperature, a value
typically comparable with the density of the liquid phase, greater than the density of the
point of intersection. In this case, a cooled and non-crystallizing system creates a dense
homogeneous glass. Finally (iii) the difficulty to generate significant variations of kBT/u0,
so that often the quench is shallow and the phase separation process is completed.

In the case of colloidal systems it is not difficult to work at low particle concentrations
and, even more important, it is possible, by modifying the chemical-physical properties of
the solution, to generate interactions between colloidal particles significantly more intense
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than thermal energy. Finally, as we have mentioned, it is possible to control the range of
the interaction, and in particular to generate very narrow ranges of interactions through
the mechanism of depletion. The interaction of depletion, attraction, arises when you add
in solution a co-solute much smaller than the size of the colloidal particle. For geometric
reasons, the co-solute has a larger accessible volume when the colloidal particles are close
together. The intensity of this entropic interaction is controlled by the concentration of
cosolute and is characterized by a range of interaction in the order of size of the cosolute
itself. For attractive interactions with very narrow range, prerogative of colloidal systems,
the region of instability is very large in concentration and the glassy curve intersects the
instability curve at values of kT/u0 not very different from those of the critical point.

It is just a model system of spherical colloidal particles in solution, to which a polymer
(not adsorbing) has been added — whose radius of rotation is one tenth of that of colloidal
particles — that has been recently used to study in detail the phenomenon of colloidal gel
formation. This work of confocal microscopy, preceded and stimulated by several theoret-
ical, numerical and experimental work, has recently demonstrated that for particles where
the excluded volume interactions are complemented by an attractive (spherical symmetry)
interaction, the formation of a gel always requires phase separation as a prerogative, re-
gardless of the value of the interaction range. Fig. 5 shows a confocal image of the system
structure for two very similar values of kT/u0, corresponding to a state in which the fluid
is stable and a state in which the system separates phase and forms a gel.

Many colloidal gels are produced in the limit of quench infinitely deep, i.e. in conditions
where the attraction between the particles is much bigger than kBT . In these cases the
phase separation is entirely controlled by the (local) energy minimization kinetics and we
prefer to talk about irreversible aggregation (limited by diffusion) rather than interrupted
phase separation, even if conceptually the irreversible aggregation between the particles
is to all intents and purposes the way in which the system tends to minimize, as far as
possible and compatible with kinetics, its free energy. The aggregation is present for all
concentration values of colloidal particles, even for extremely small values. In this limit
the system forms fractal aggregates that grow by aggregation with other clusters and the
process, studied in great detail in the 80s, takes the name DLCA diffusion limited cluster-
cluster aggregation. Since the aggregates have a fractal dimension smaller than the spatial
dimension, the clusters progressively fill all the space, decreasing the process of diffusion
of the aggregates that is in fact dictated by excluded volume conditions.

14 Colloidal Gels: Phase diagram of patchy colloids

We have learned that if a system forms clusters, then in the ideal gas approximation, the
free energy can be expressed as

βF = Nβµ−#clusters
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Figure 5: Confocal image (reconstructed with rendering programs) of the structure of a
colloidal gel obtained by phase separation followed by kinetic stop. The image on the left
shows the structure of the system in the homogeneous region. The image on the right
shows the final arrested structure of a sample carried within the unstable region. The color
of the particles indicates the size of the clusters. The black and white images show the data
of the confocal measurement on a specific plane, before three-dimensional reconstruction
and rendering.

In the case of a system of N particles with valence f (particles decorated with f
identical attractive patches or with f reversibly reacting units), the ground state of the
system corresponds to the state in which all bonds are formed. The maximum number of
bonds is Nf/2. As usual, we can define a bond probability pb (which will be dependent on
T and ρ) as

pb =
#bonds

Nf/2

In terms of pb, the number of monomers is

N1 = N(1− pb)
f

and thus the chemical potential

βµ = ln
N1

V
= ln ρ+ f ln(1− pb).
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In the mean field approximations when clusters do not contain loops,

#clusters = N −#bonds = N − pb
Nf

2
= N

(
1− fpb

2

)
We thus obtain an expression of the system free energy completely controlled by pb,

βF

N
= βµ−#clusters/N = ln ρ+ f ln(1− pb)−

(
1− fpb

2

)
and identifying ln ρ− 1 with the reference ideal gas free-energy

βF

N
=

βFideal gas

N
+ f ln(1− pb) +

fpb
2

which clearly shows the effect of cluster formation on the free energy.
If the ideal gas free energy is substituted with the hard-sphere free energy, the previous

expression coincides with the prediction of the graph-based theory of Wertheim:

βF

N
=

βFhard−sphere

N
+ f ln(1− pb) +

fpb
2

The T and ρ dependence of pb can be estimated assuming independent binding pro-
cesses, estimating the probability that a bond exists between two particles. pb can be
estimated by looking at the chemical equilibrium between monomer and dimers. In this
case we have seen that the equality of the chemical potential implies

N2

Q2
=

(
N1

Q1

)2

Since N1 = N(1− pb) and N2 = Npb

Npb
N2(1− pb)2

=
Q2

Q2
1

Since Q1 = V and Q2 =
1
2!V Vbfe

βϵ

pb
(1− pb)2

=
Nf

2V
Vbe

βϵ

which provides the sought T and V dependence of the bond probability pb(T, V ).
The equation of states can thus be calculated from

P = −∂F

∂V
= PHS + Pbonding

as a sum of the hard-sphere positive (repulsive) contribution and of the negative (attractive)
bonding contribution.
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The HS equation of state is

βPHS

ρ
=

1 + ϕ+ ϕ2 − ϕ3

(1− ϕ)3

In principle, we know already what the bonding contribution to pressure Pbonding is,

since βPV = #clusters = N(1 − f
2pb) where the 1 is the ideal gas contribution and −f

2pb
is the attractive bonding contribution. Let’s derive this result again from the derivative of
the free energy

βPbonding

N
=

(
f

1− pb
− f

2

)
∂pb
∂V

= f
1 + pb

2(1− pb)

(1− pb)
2 + 2(1− pb)pb
(1− pb)4

dpb = −
Nf

2
Vbe

βϵdV

V 2
= − pb

(1− pb)2
dV

V

so that
∂pb
∂V

= − 1

V

(1− pb)
2pb

(1− pb)2 + 2(1− pb)pb
= − 1

V

pb(1− pb)

1 + pb

and

βPbonding

N
= − 1

V
f

1 + pb
2(1− pb)

pb(1− pb)

1 + pb
= −f pb

2V

which confirm that the bonding contribution to pressure comes from the reduction of the
number of clusters.

15 A trip to the kitchen (Nelson)

15.1 Milk, a solution of charged micelles

In addition to fat and water, milk contains two classes of proteins, the casein complex and
whey (mainly α-lactalbumin and β-lactoglobulinlactoglobulins). In fresh milk the casein
complexes self-assemble into micelles of radius around 50 nm. The micelles are kept apart
in part by electrostatic repulsion and so the milk is fluid.

However, minor environmental changes can induce curdling, a coagulation (clumping)
of the micelles into a gel. In the case of yogurt, the growth of bacteria such as Lacto-
bacillus bulgaricus and Streptococcus thermophilus creates lactic acid as a waste product
(alternatively you can add acid by hand, for example lemon juice). The ensuing increase
in the concentration of [H+] ions reduces the effective charge on the casein micelles and
hence also reduces the normal electrostatic repulsion between them. This change tips the
balance toward aggregation; milk curdles when its pH is lowered from the natural value of
6.5 to below 5.3. The casein network in turn traps the fat globules.
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Figure 8: Schematic representation of the phase diagram of a low valence system
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15.2 Eggs, a solution of T -denaturable proteins

Eggs provide another example of a system of protein complexes. Each protein is a long,
chemically bonded chain of amino acids. Most culinary operations do not disrupt the
primary structure, or sequence, of this chain, since normal cooking temperatures don?t
supply enough energy to break the peptide bonds. But each protein has been engineered
to assume a useful native conformation under the assumption that it will live in an aqueous
environment at temperatures below 37o C. When the environment is changed (by intro-
ducing air or by cooking), the protein denatures. Raising the temperature can convert the
precisely folded native structures into random chains. Once the chains open, the various
charged and hydrophobic residues on one chain, previously interacting mainly with other
residues elsewhere on the same chain, can now find and bind to those on other chains. In
this way a crosslinked network of chains can form. The interstices of this network can hold
water, and the result is a solid gel: the cooked egg.

15.3 Hydrophobic protein parts close to air: mousses

As with milk, one may expect that the addition of acid would enhance the coagulation of
eggs once the proteins are denatured, and indeed it is so. Heating is not the only way to
denature egg proteins and create a linked network. Merely whipping air into the eggs, to
create a large surface area of contact with air, can totally disrupt the hydrophobic inter-
actions. The ensuing surface denaturation of egg proteins like conalbumin is what gives
chiffon pie or mousse their structural stability: A network of unfolded proteins arrange
themselves with their hydrophobic residues facing the air bubbles, while their hydrophilic
ones face the water. This network not only reduces the air-water tension like any am-
phiphile; it also stabilizes the arrangement of bubbles, since unlike simple amphiphiles
the proteins are long chains. Other proteins, like ovomucin and globulins, play a sup-
porting role by making the egg viscous enough that the initial foam drains slowly, giving
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the conalbumin time to form its network. Still others, like ovalbumin, support air foams
but require heat for their initial denaturation; these are key to supporting the stronger
structures of meringue and souffle. All of these attributions of specific roles to specific pro-
teins were established by isolating particular proteins and trying them alone or in various
combinations.

15.4 La Bechamel: un gel polimerico di amilosio — Le scienze blog

Il responsabile della alta viscosità della besciamella e’ l’amido idratato contenuto nella
farina. Presente in forma di microscopici granuli, l’ amido è formato da molecole di amilosio
e amilopectina, a loro volta formate da moltissime molecole di glucosio legate tra loro.

L’amido non si scioglie in acqua ma i suoi granuli possono formare una sospensione.
Quando l’acqua raggiunge una temperatura critica, dipendente dal tipo di amido ma solita-
mente tra i 50 e i 70 o C, i granuli si gonfiano, e cominciano ad assorbire acqua. Riducendo
l?acqua disponibile e aumentando di volume i granuli riducono molto la loro possibilità
di muoversi e questo causa un aumento della viscosità del liquido. Ad alte temperature
l’amilosio viene espulso dai granuli e si scioglie in acqua. Le lunghe catene lineari di questa
molecola cominciano a legarsi tra loro formando un reticolo tridimensionale che raffred-
dandosi intrappola ulteriore acqua al proprio interno: inizia il fenomeno della gelificazione.

É possibile addensare un liquido acquoso semplicemente disperdendo dell’ amido in
poco liquido freddo, formare una pastella e successivamente aggiungerla al resto scaldando.
Tuttavia il metodo preferito per disperdere al meglio i granuli è ricoprirli di un grasso e
successivamente di disperderli in un liquido.
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