
1 Forze Entropiche

2 Ideal gas expansion

All of you are familiar with the ideal gas model. The Hamiltonian of this system of N
identical particles of mass m in a volume V is quite simple, coinciding with the classical
kinetic energy

H =
N∑
i=1

p2i
2m

The corresponding partition function in the Canonical ensemble is

Q =
1

N !h3N

∫
dr1...drNdp1...dpNe−βH =

1

N !h3N
V N

[∫
dpxe

−βp2x/2m

]3N
=

1

N !h3N
V N (

√
2πmkBT )

3N

defining λ−1 =
√
2πmkBT

h ,

Q =

(
V

λ3

)N

The log of the partition function provides the system Helmholtz free energy F , which in
this case is

F = −kBT lnQ

from which one can evaluate the well known ideal gas equation of state P (V, T ) as

P = −∂F

∂V
= kBT

∂ lnQ

∂V
= kBTN

∂ lnV

∂V
= kBT

N

V

An ideal gas, in a container with a mobile piston, will then extern a force on the piston
proportional to the gas concentration. Despite you may not have thought in this way,
the ideal gas provides a very basic example of an entirely entropic force controlling the
evolution of the system.

3 Equilibrium osmotic pressure obeys the ideal gas law -
Nelson

We can now turn to the problem of osmotic pressure. A membrane divides a rigid container
into two chambers, one with pure water, the other containing a dilute solution of N solute
particles in volume V . The solute could be anything from individual molecules (sugar) to
proteins, to colloidal particles. We suppose the membrane to be permeable to water but
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Figure 1: Note that if one integrate ρgdz in the water sample one finds at the bottom ρgh1. If one integrate (panel c) inside
the cup, one find ρgh1 + ρgh2. Thus, across the membrane there is a pressure difference equal to ρgh2. Here h1 is the depth of the
cup, h2 is the upper height of the solution in the cup.
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not to solute. A very literal example would be an ultrafine sieve, with pores too small
to pass solute particles. The system will come to an equilibrium with greater hydrostatic
pressure on the sugar side, which we measure (see figure).

We would like a quantitative prediction for this ”osmotic pressure.” One might think
that the situation just described would be vastly more complicated than the ideal-gas
problem. After all, the solute molecules are in the constant, crowded, company of wa-
ter molecules. It is true that the solute molecules interact strongly with the water, and
the water molecules with each other. But in a dilute solution the solute particles don’t
interact much with each other, and so the total energy of a microstate is unaffected by
their locations. More precisely, the integral over the positions of the solute molecules is
dominated by the large domain where no two are close enough to interact significantly.
(This approximation breaks down for concentrated solutions, just as the ideal gas law fails
for dense gases.)

This means that if we calculate the (configurational part of the) partition function of
both solute and solvent particles we need to write

Z =

∫
dr1...drNdrw1 ...dr

w
Nw

e−β[Uww(rw)+Uws(rw,(r)]

Assuming each solute is solvated by some water particles, then we can approximate Uws(r
w, r) =

Nu0, where u0 is the solvation energy. Then

Z = e−βNu0

∫
V
dr1...drN

∫
drw1 ...dr

w
Nw

e−β[Uww(rw)]

Thus for dilute solutions we can do all the integrals over the solute particle locations
and we get V N , where V is the volume of just that part of the chamber accessible to solute.
The factorization we have used is consistent with the assumption that the membrane is
essentially invisible to water molecules. Hence, the V derivative of the remaining part is
nothing more then the pressure of a system with no solutes, the pure water pressure PW .
The total pressure is thus the sum of two terms, PW and the equilibrium osmotic pressure
Π given by the ideal gas law:

Π =
N

V
RT

Here c = N/V is the number density of solute molecules. Π is the force per area that we
must apply to the solute side of the apparatus in order to get equilibrium. The discussion
above was appropriate to the situation of a horizontal chamber separated by a membrane.
In the more common situation shown in the Figure, we again get a relation for the difference
in pressure between the two sides of the membrane. This difference in pressure must
compensate the difference in height of the sample. Thus

Π = ρg∆z
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where ∆z indicates the height of the column of fluid (respect to the surface), ρ is the mass
density of water, and g is the acceleration of gravity. Thus in this case we conclude that
the equilibrium height of the fluid column is proportional to the solute concentration in
the cup (after dilution).

Note that one could think of using the rise of the column to lift a weight. Then one
could extract energy from the dilution process taking place when salty and still water are
mixed together, like at the river’s estuary. There are groups working on this idea.

3.0.1 Relevance of Π to cells

We need some estimates to see if osmotic pressure is really significant in the world of
the cell. Suppose a cell contains globular proteins, roughly spheres of radius 10nm, at a
concentration such that 30% of the cell’s volume is occupied with protein (we say that the
volume fraction ϕ is equals to 0.3). This is not an unreasonable picture of red blood cells,
which are stuffed with hemoglobin. To find the concentration c, we set 0.3 equal to the
number of proteins per volume times the volume of one protein:

ϕ =
N

V

π

6
σ3 → 0.3 = c

π

6
203 10−27

Thus c ≈ 7 1022 m−3. To phrase this in more familiar units, remember that one mole
per liter corresponds to a concentration of 6 1023/10−3 m−3. We’ll call a solution of 1
mole/L a one molar solution, defining the symbol M = mole/L, so we have a solution
with c = 1.2 10−4 M or a 0.12 mM solution. In this class we will pretend that dilute-
solution formulas are always applicable, and so will not distinguish between molar and
molal concentration.

The osmotic pressure needed to keep our protein solution inside a cell, with pure water
outside, is then kBTrc ≈ 300Pa. That’s certainly much smaller than atmospheric pressure
(105 Pa), but is it big for a cell? In other words, what is the surface tension that the
membrane must be able to provide to avoid the rupture of the membrane (assumed to be
permeable to water) ?

The surface tension γ times the surface A is defined as the energy associated to the
interface (the membrane). Its derivative gives the force that the interface applies on the
confining volume. For a spherical droplet, A = 4πR2 and

F = −dγA

dR
= −γ8πR

Similarly, the confined fluid applies to the membrane a force attempting to expand the
interface equal to

F = ΠA = 4πR2Π

At equilibrium

γ =
RΠ

2
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Suppose now that the cell has radius R = 10µm and that the osmotic pressure creates
an excess internal pressure of 300Pa. Then, the requested surface tension must be

γ = 10−5m · 300 · 2 Pa = 6 · 10−3 N/m

This surface tension value turns out to be roughly enough to rupture a eukaryotic cell
membrane, destroying the cell. Osmotic pressure is thus significant for cells.

The situation is even more serious with a small solute like salt. Bilayer membranes
are only slightly permeable to sodium and chloride ions. A 1 M salt solution contains
about 1027 ions per m3, ten thousand times more than in the protein example above!
And indeed it’s well known that you cannot dilute red blood cells with pure water; at low
concentrations of exterior salt they burst, or lyse. Clearly to escape lysis, living cells must
precisely fine-tune their concentrations of dissolved solutes.

4 Hard Sphere Crystallization

In January 1957 in New Jersey during a symposium on many body problems, Alder and
Wainwright presented their first results on molecular dynamics simulations of hard spheres
(HS), suggesting the possibility of a transition toward an ordered crystalline phase on
increasing the density of the HS fluid. George Uhlenbeck, during the discussion time, asked
the participants to express their personal feeling on such a possibility and the vote ended
up even. The cartoon in Fig. 2-(b) and the commonly but improperly assumed connection
between entropy and disorder possibly explain the difficulty of reaching a consensus on
this question. Hard spheres interact only via excluded volume, preventing any pair of
particles to become closer than their diameters (Fig. 2-(a)). No energy is involved in the
interaction. Thus, thermodynamic is fully controlled by the entropic term in the free energy.
Improperly, the possibility of hard-sphere crystallization was perceived as contradicting the
meaning of entropy as a driving force toward increasing disorder. How can a crystal be
more disordered than a fluid configuration?

To properly answer the question, one needs to consider the number of microstates
explored in the fluid and in the crystal phase. In the crystal, particles move in cages pro-
vided by their own neighbours, as vividly shown in the cathode-ray tube used by Alder and
Wainwright to visualize the molecular dynamics trajectories of two-dimensional crystalline
hard-disks (Fig. 2-(d)). The width of the spots created by the bright line paths is a visual
measure of the phase-space sampled by each particle. The log of the number of sampled
microstates constitutes the entropy of the crystal, which we can name vibrational or cage
entropy. In the fluid, we can distinguish two contributions to the entropy: a vibrational
contribution, which again depends on the available volume inside the cage and a second
contribution which measures the number of different disordered arrangements of the parti-
cles, commonly named as configurational entropy. The mean square displacement (MSD) of
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Figure 2: The hard-sphere model. (a) The radial dependence of the interaction potential,
βV (r). The potential is infinite for r smaller than the particle diameter and zero every-
where else. (b) A cartoon of a crystalline and of a fluid configuration to highlight the
different order perceived by our eyes, trained to capture only the configurational part of
the entropy. (c) An electron microscope image of a colloidal crystal (courtesy of D. Pine).
The particles in the photograph are made from polystyrene, a common commercial plastic.
Notice that there are both hexagonal and square planes visible, which is consistent with
a face-centered cubic lattice. (d) The original trajectories detected in the first molecular
dynamics calculation of hard disks as shown by the cathode-ray tube used by Alder and
Wainwright. (e) A comparison between the mean square displacement of HS particles in
the fluid and in the crystal phase. In the crystal phase, particles rattle in larger cages, a
confirmation of the larger vibrational entropy. (f) A cartoon of a polymer-grafted colloid.
(g) The fluid, coexisting and crystal phases observed in the classic experiment by Pusey and
van Megen (h) The volume dependence of the fluid and crystal entropy (with an arbitrary
additive constant) as predicted by the CS and the Hall equation of state. The dashed line
is tangent to both the fluid and the crystal entropy. Since P = TdS/dV , the two tangent
points indicate two volumes Vxt and Vfluid for which both temperature and pressure are
identical. If we further indicate with S0 the intercept of the same line at zero volume, then
we can write for these two points S = S0 + V dS/dV = S0 + PV/T . Then the Gibbs free
energy per particle G/N = (−TS + PV )/N is equal to −TS0/N for both Vxt and Vfluid,
proving that these two volumes have also the same chemical potential µ ≡ G/N . Thus,
Vxt and Vfluid are two coexisting phases.
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a particle in the dense fluid or in the crystal can be considered as a proxy for the vibrational
contribution to entropy. Fig. 2-(e) contrasts the MSD in disordered and ordered dense HS
configurations to provide evidence that the phase-space volume explored by the particles
in the cage (vibrational motion) is significantly smaller in disordered configurations. The
difference in vibrational entropy can be so large that the additional configurational con-
tribution is not any longer sufficient to thermodynamically stabilise the fluid phase. The
ordered crystal has a larger entropy than the fluid.

Quite accurate estimates of the HS entropy are nowadays available. The fluid phase
entropy per particle can be approximated with the Carnahan-Starling (CS) expression
(slightly more accurate expressions as the one by Kolafa are available)

1

N

SCS
ex

kB
= −4ϕ− 3ϕ2

(1− ϕ)2
, (1)

where ϕ is the packing fraction. The face-centered cubic (FCC) crystal free energy can
be approximated using Hall expression, a phenomenological expression based on computer
simulation results. Hall noted that the compressibility factor ZHS of the FCC HS crystal
can be quite accurately modelled by

ZHS =
βP

ρ
=

1 + ϕ+ ϕ2 − 0.67825ϕ3 − ϕ4 − 0.5ϕ5 − 6.028ϕ6f(ϕ)

1− 3ϕ+ 3ϕ2 − 1.004305ϕ3
, (2)

with f(ϕ) = exp((π
√
2/6−ϕ)[7.9−3.9(π

√
2/6−ϕ)]). In order to calculate the excess entropy

Sex per particle from the compressibility factor ZHS , a thermodynamic integration in ϕ
can be performed, obtaining

Sex(ϕ)

NkB
=

Sex(ϕ∗)

NkB
−
∫ ϕ

ϕ∗

(
βP

ρ
− 1

)
dϕ′

ϕ′ (3)

The integration in Eq. 3 is usually started from ϕ∗ = 0.544993, a value for which an
accurate estimate of the excess crystal entropy Sex(ϕ∗)

kB
= −5.91889 based on computer

simulation is available.
Fig. 2-(h) shows the fluid and crystal entropy per particle as a function of the volume

per particle for the HS system. In the case of hard bodies, the free energy F has only
the entropic contribution F = −TS. Thus the pressure, the volume derivative of the free
energy, is P = T∂S/∂V |T . The pressure is thus nothing more than the derivative of the
entropy function reported in Fig. 2-(h). Hence, the common tangent line shown in Fig. 2-
(h) identifies two phases (fluid and crystal) with the same T , P and identical chemical
potential µ (being µ = (F + PV )/N , see caption of Fig. 2). The equality of T , P and µ
sets the condition for phase-coexistence. In the region between the two coexisting phases,
in the thermodynamic limit, entropy is maximised by the presence of two coexisting phases.
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5 Depletion Interactions:

Now we turn to an important entropic interaction, called depletion interaction. Such
interaction, being attractive, promote the formation of dense phases, e.g. macromolecule
or particle association. To start with, let’s try to answer to the following question: if I
have two large hard-spheres in a solution of small hard-spheres, will the two large spheres
attract ? The answer to this question is at the hearth of the entropic interactions.

5.1 Depletion Interactions: Theory

One of the most powerful ways to control the attractive interaction between hard bodies is
provided by the so-called depletion interaction.The addition in solution of small (compared
to the colloids) non-absorbing cosolutes (i.e. non interacting with the particles, apart from
the excluded volume) induces an entropic attraction between the colloids proportional to
a first approximation to the concentration of cosolutes. The physics behind this important
attractive interaction was clarified by two Japanese polymer scientists, Asakura and Oo-
sawa, in a study which has remained unnoticed for more than two decades before becoming
a seminal contribution.

Asakura and Oosawa proposed to focus on an idealized model, i.e. two large hard
particles of diameter σc (the colloids) in the presence of M small hard particles (the deple-
tants) of diameter σp in a volume V (Fig. 3-(a-b)). They derived the statistical mechanics
description of the system to evaluate the probability to find the two colloids at relative
distance r, under the simplifying assumption that the depletants do not interact among
themselves (an ideal gas) but do interact via excluded volume with the two colloids.

Indicating with r⃗ and s⃗ the positions of the colloids and of the cosolutes, the partition
function in the canonical ensemble can be written as

Q =
1

2λ6
1

1

M !λ3M
2

∫
e−β(V11(r⃗1,r⃗2)dr⃗1dr⃗2

∫
ds⃗1...ds⃗Me−βV12(r⃗1,r⃗2,s⃗M ), (4)

where V11 is the HS potential between the colloids and V12 the HS potential between the
depletants and the two colloids. Since V12 is pair-wise additive (V12 =

∑M
i=1 v12(r⃗1, r⃗2, s⃗i))

Q =
1

2λ6
1

1

M !λ3M
2

∫
e−β(V11(r⃗1,r⃗2))dr⃗1dr⃗2

[∫
ds⃗1e

−βv12(r⃗1,r⃗2,s⃗1)

]M
. (5)

The integral between square brakets is exactly the volume accessible to a single depletant,
i.e. the total volume of the system minus the volume prohibited by the presence of the two
colloids. Since the depletant-colloid distance can not be smaller than

σc+σp

2 , the prohibited
volume is twice V0, the volume of a sphere of diameter (σc+σp)/2 minus, if the two colloids
are close-by, the overlap volume Voverlap between the two spheres of diameter (σc + σp)/2.
Thus, ∫

ds⃗1e
−βv12(r⃗1,r⃗2,s⃗1) = V − 2V0 + Voverlap(|r⃗1 − r⃗2|), (6)

8



*

Figure 3: Depletion Interactions: (a) A large colloidal particle immersed in a solution of
small particles (usually polymers). The center of the polymer is prevented from accessing
the volume occupied by the particle and the corona around it. (b) When two colloidal par-
ticles are close-by, the coronas of the two particles overlap increasing the volume accessible
to polymers. (c) The shape of the depletion interaction potential calculated by Asakura-
Oosawa. (d-e) Confocal images of a colloid polymer mixture for two different polymer
concentrations. In (d) the colloids are dispersed in a fluid phase. In (e) the depletion
interaction has grown driving the system through a spinodal decomposition process, which
leads to the formation of a two-phase system. In the dense phase the dynamics of the
particles is strongly reduced, generating a depletion gel. (f-g) Depletion in dumbbells com-
posed by particles with smooth and rough surfaces. The rough surface generates a smaller
overlap volume and hence a less intense attraction between rough surfaces as compared to
the attraction between smooth surfaces. (i-h) Lock and key colloids. With the appropriate
size ratio of the buckled region and the colloidal particle, it is possible to maximize the
excluded volume, generating a preferential binding. (h) A colloidal polymer resulting from
a lock-and-key depletion mechanism.
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where the overlap volume can be calculated geometrically using sphere-sphere intersection
properties as

Voverlap(r) =
π

12
[2(σc + σp) + r] [(σc + σp)− r]2 . (7)

Then

[V − 2V0 + Voverlap(|r⃗1 − r⃗2|)]M = (V − 2V0)
M

[
1 +

Voverlap(|r⃗1 − r⃗2|)
V − 2V0

)

]M
(8)

Substituting this in Eq. 5

Q =
1

2λ6
1

1

M !λ3M
2

∫
e−β(V11(r⃗1,r⃗2))dr⃗1dr⃗2e

ln(V−2V0)M
[
1+

Voverlap(|r⃗1−r⃗2|)
V −2V0

)

]M
(9)

and neglecting 2V0 compared to V

Q ≈ 1

2λ6
1

1

M !λ3M
2

eM ln(V )

∫
e−β(V11(r⃗1,r⃗2))dr⃗1dr⃗2e

M ln

[
1+

Voverlap(|r⃗1−r⃗2|)
V

]

and, similarly, considering
Voverlap(|r⃗1−r⃗2|)

V ≪ 1,

Q =
1

2λ6
1

1

M !λ3M
2

V M

∫
e−β(V11(r⃗1,r⃗2))−M

Voverlap(|r⃗1−r⃗2|)
V dr⃗1dr⃗2

The argument of the exponential shows that the two large colloids interact with a total
interaction potential which is the sum of the original HS (V11) potential complemented by
an effective potential Veff (r) induced by the presence of the cosolutes whose r dependence
is (Fig. 3-(c))

Veff (r) = −kBTρMVoverlap(r) = −Π Voverlap(r), (10)

where Π ≡ kBTρM is the ideal gas pressure originating from the cosolutes (with ρM =
M/V ).

We note on passing that an alternative but equivalent derivation can be formulated in
terms of the net force induced by the osmotic pressure on the surface of the two colloids.
While when the two large particles are far apart the cosolutes hit the colloids symmetrically,
when the two large particles are close-by, the cosolutes are excluded in the overlap volume
region, producing a net unbalance in the average pressure which pushes inward the two
colloids.

Let’s start defining Rd the sum of the colloid and depletant radii, r the center-to-center
distance and θ0 the angle indicated in Fig. 4. From simple geometry we find

r

2
= Rd cos θ0 → cos θ0 =

r

2Rd
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Figure 4: Schematic representation of two colloids (blue) and of the depleted volume (yel-
low). When the two colloids are close by, the depletion volumes overlaps (purple volume).

We can assume that each surface element da⃗ = R2
d sin θdθdϕâ feels a force dF⃗ coming

from the depletants applied (osmotic) pressure Π (applied in Rd, the closest position that
depletants can explore)

dF⃗ = −Πda⃗ = −ΠR2
d sin θdθdϕâ

whose component along the center to center direction x is

dFx = −|dF⃗ | cos θ

Considering that the only unbalanced forces are the one acting inside the angle θ0 the net
force along x can be written as (note that we are integrating over spherical coordinates
counting θ from the positive x axis and hence the θ integral goes from 0 to θ0)

Fx(r) =

∫
unbalanced

dFx = −ΠR2
d

∫ 2π

0

∫ θ0

0
cos θ sin θdθdϕ = −πΠR2

d[1−cos(θ0)
2] = −πΠR2

d

[
1−

(
r

2Rd

)2
]

From the force we can evaluate the interaction potential as

V (r) = −
∫ r

2Rd

Fx(r
′)dr′

V (r) = πΠR2
d

∫ r

2Rd

[
1−

(
r′

2Rd

)2
]
dr′

giving

V (r)

Π
= −

4πR3
d

3

[
1− 3

4

r

Rd
+

1

16

(
r

Rd

)3
]
= −Voverlap(r)
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We note that
16− 12y + y3

16
=

(y − 2)2(y + 4)

16

and thus the previous expression can be written, with the change of variable Rd =
σc+σp

2

V (r)

Π
= −4π(σc + σp)

3

24

1

16

(
2r

σc + σp
− 2

)2( 2r

σc + σp
+ 4

)
= − π

12
(r − (σc + σp))

2 (r + 2(σc + σp))

and this expression is identical to the one we had found evaluating the sphere-sphere
intersection).

For σp ≪ σc, and defining h as the surface-to-surface distance, both the expression for
the force and for the potential simplify, and for h = r − 2σc < σp one can approximate
(r + 2(σc + σp) ≈ 4σc and

V (h) = −Π
4σcπ

12
(h− σp)

2

and

F (h) = − d

dh
V (h) = Ππ

2

3
σc(σp − h)

Figure 5: Note that the, along the horizontal axis, the etched surface has a width equal to σ/2−h
(on the left of the boundary) and σ/2 on the right of the boundary. Thus, the cap height is σ − h.
Here h is the distance between the surface and the colloid.
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One can similarly treat the case of a hard sphere close to a hard surface, in the presence
of depletants. In this case the overlap volume can be calculated by the volume of a spherical
cup. Generically, the volume of a cup of height a for a sphere of radius R0 can be calculated
as

Vcup(a) =

∫ a

0
πz2dx

and considering that R2
0 = z2 + (R0 − x)2, from which

Vcup(a) =

∫ a

0
π(2R0x− x2)dx =

πa2

3
(3R0 − a)

In our case, R0 = Rd = R+ σ/2 and a = Rd −R− h+ σ/2 = σ − h and

Voverlap(h) =
π

3
(σ − h)2(3Rd − σ + h) =

π

3
(σ − h)2(3R+ σ/2 + h) 0 < h < σ

Note that the depletion interaction is attractive. Hence if we put a colloidal solution in
a vessel containing some small surfactant, the spacial distribution of the colloidal particles
will be altered. Particles will tend to explore more frequently the boundary of the sample.
Playing with the geometry of the sample holder, it is possible to push the colloids in
specific locations. Fig. 5.1 shows graphically that a colloidal particles is driven toward
inner corners, since in that configuration the excluded volume is maximized.

5.2 wall-wall case

We conclude this series of calculation looking at the wall-wall case.
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In this case, if the distance between the planes of surface A is less than σp, there are
no depletants between the two walls. Hence the internal pressure is zero, while the outside
pressure is always P = ρpkBT . Then

F (h) = PA

and

V (h) = −
∫ h

σ
F (h′)dh′ = −PA(h− σ) 0 < h < σ

We can also check the Derjaguin approximation which states that for h << R

Fsphere−sphere = πRWplane−plane

In the depletion interaction case, for h << R, we have seen that

Fsphere−sphere = PπR(σ − h) Wplane−plane = −PA(h− σ)

consistent with the Derjaguin approximation.

5.2.1 Application of depletion interactions

The essence of the depletion interaction is the tiny gain of entropy experienced by each
cosolute when colloids are close-by (and Voverlap is different from zero), originating from the
possibility to additionally explore the overlap volume. This entropy gain, once multiplied
by the large number M of small cosolutes, results into a net attractive potential between
the two colloids, which can easily become of the order of the thermal energy kBT . The
concentration of cosolutes then determines the strength of the interaction while their size
determines the interaction range, explaining the large versatility of depletion interaction
in the design of effective potentials between colloids.

Depletion forces have found several applications in colloidal science

• to induce crystallization, phase separation, shape fractionation. The ability to control
the interaction range has been exploited to investigate the existence of the liquid state,
colloidal gelation(Fig. 3-(d-e)), glass-glass transitions.
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• to control the self-assembly of dumbbells composed by fused spheres of different sur-
face roughness(Fig. 3-(f-g)) The different overlap volume between rough and smooth
spheres and between locks and keys of comparable size is the crucial element in the
self-assembly process.

• to control the self-assembly of colloidal particles with indented surfaces(Fig. 3-(h-i)),
to imitate the lock and key mechanism of protein selectivity.

• to direct the motion of colloidal particles on properly patterned surfaces or to drive
crystallization on patterned surfaces.

• to provide a depletion analog of critical Casimir forces. Recently, depletion interac-
tions arising from highly polydisperse cosolutes clusters, typical of systems in proxim-
ity of a sol-gel transition, have been evaluated numerically. The observed exponential
attractive effective potential and the tunable range of the interaction (depending on
the distance from percolation) suggests a similarity with critical Casimir forces.

5.3 Biological Evidence: Clustering of Red Blood Cells: Lekkerkerker-
Tunier

Red blood cells (RBCs) are biconcave particles and their detailed shape and size depend
on the RBC type. The human RBC may be considered a disc with a diameter of 6.6 µm
and a thickness of 2 µ nm; its volume thus being of the order of 70 µm3: The RBCs occupy
about 40 to 50 vol % of our blood.

Already in the 18th century it was known that RBCs tend to cluster, preferably with
their flat sides facing each other. Such a side by side RBC aggregate reminds of the packing
of ’a number of coins’. These structures are commonly denoted as ”rouleaux”. In blood of
healthy human beings the tendency of RBCs to aggregate is weak. In case of pregnancy
or a wide range of illnesses aggregation is found to be enhanced, giving rather pronounced
rouleaux, see Fig. 1.11.

Enhanced RBC aggregation can be detected for instance by measuring the sedimenta-
tion rate. The sedimentation rate varies between 1 and 3 mm/h for healthy blood up to
100 mm/h in case of severe illnesses. The blood sedimentation test, based on monitoring
aggregation of red blood cells, became a standard method for detecting illnesses. The
relation between pathological condition, RBC aggregation and enhanced sedimentation
rate, has been known for at least two centuries. Fähraeus related enhanced aggregation of
RBCs plus longer and stronger rouleaux to the concentration of the blood serum proteins
fibrinogen, globulin and albumin. The tendency to promote aggregation depends on the
type of protein. Rouleaux formation is most sensitive to increased serum concentrations of
(rod-like) fibrinogen (molar mass 340 kg/mol) compared to (globular) β- and γ-globulins
(90 and 156 kg/mol, respectively). The globulins in turn lead to RBC aggregation at lower
protein concentrations than albumin proteins (69 kg/mol). It has further been shown that
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adding other macromolecules such as dextrans also promote rouleaux formation. Asakura
and Oosawa (whose theory we will discuss later on) suggested that RBC aggregation might
be caused by depletion forces between the RBCs induced by serum proteins. This is in
line with the finding that the sedimentation rate is more sensitive to larger serum pro-
teins. Some authors interpret rouleaux formation as being caused by bridging of RBCs
by serum proteins. There is however no evidence for protein adsorption onto RBCs. A
study on rouleaux formation in mixtures of human RBCs (diameter 6.6µm) and rabbit
RBCs (diameter 7.8 µm) resulted in rouleaux structures that consisted (mainly) of only a
single type of RBC. This can be explained by a depletion effect (the overlap volume, hence
entropy, is maximized if similar RBCs stack onto each other). In case of bridging, however,
mixed aggregates are expected, so there is little support for the bridging hypothesis. The
general picture is that red blood cells tend to cluster at elevated concentrations
of the blood serum proteins, which act as depletants.

5.4 Mixing Biopolymers

Another manifestation of a depletion phenomenon was reported by the micro-biologist
Beijerinck who tried to mix gelatin (denatured protein coil) with starch (polysaccharide) in
aqueous solution in order to prepare new Petri dish growth media for bacteria. He reported
that these biopolymers could not be mixed; ”emulsion droplets” appeared instead. With
current knowledge this can be regarded as an early detection of depletion-induced demixing.
The separate liquid phases in demixed protein-polysaccharide mixtures can sometimes
be characterized by a sharp liquid-liquid interface. The interfacial tension between the
coexisting phases in protein-polysaccharide mixtures has been determined and is of the
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order of µN/m.

5.5 Depletion Effects in Biological Systems: Macromolecular Crowding

A longstanding question in molecular biology is the extent to which the behaviour of macro-
molecules observed in vitro accurately reflects their behavior in vivo. The cytoplasm of
a living cell contains a high concentration of macro-molecules (up to 400 g/L), including
proteins and nucleic acids. Over the last 30 years or so it has been increasingly appreci-
ated that the large volume fraction occupied by these macromolecules influences several
intracellular processes, ranging from the bundling of biopolymers like DNA and actin to
the phase separation in a bacterial cell. These effects are known amongst biochemists and
biophysicists as macromolecular crowding.

Phase separation between a nucleoid and cytoplasm in bacterial cells is a striking exam-
ple of macromolecular crowding. Chromosomes in bacterial cells do not occur in dispersed
form but are organized in the nucleoid as a separate phase. Depletion forces that originate
from the presence of proteins can explain the phase separation. As a result, the proteins
partition over the cytoplasm and nucleoid phases. Their concentration in the cytoplasm is
about two times larger than their concentration in the nucleoid phase (see Figs. 1.24).
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Depletion forces can be of use in biomedical applications. Non-adsorbing polymer chains
promote the adhesion of cells to surfaces and enhance adsorption of lung surfactants at the
air/water interface in lungs so as to help patients suffering from acute respiratory syndrome.
The physical properties of actin networks are affected by non-adsorbing polymers, which
also modify phase transitions in virus dispersions.

5.6 Combinatorial Entropy: microemulsion droplets linked by telechelic
polymers

Another source of entropy, different from the translational, orientational, or depletion cases
we have previously discussed, plays an important role in soft matter self-assembly processes.
This entropy arises from the different combinatorial ways one can distribute bonds between
distinct clusters. One interesting case is offered by a solution of microemulsion droplets
linked by telechelic polymers.The two hydrophobic ends of each polymer are energetically
constrained to reside inside the oil droplets, in the same or in two different ones. Thus, the
polymers can provide links between different droplets. To a first approximation, energy
does not play a relevant role and the behaviour of the system is mainly controlled by the
different ways the polymer ends can be distributed over the accessible droplets.

Ideally, since all ends must be inside oil droplets, one would think that the state of
maximum entropy is the one in which both ends of the polymers reside in the same droplet
(Fig. 6-(a)). Indeed, in this configuration all droplets retain their translational freedom.
Binding between droplets to generate a connected structure (Fig. 6-(b)) would imply a
loss of translational entropy. This simple argument neglects the fact that the possibility
to connect with neighbouring droplets significantly increases the number of microstates
so much to overcome, beyond a certain packing fraction and beyond a certain number of
polymers per droplet, the loss of translational entropy upon binding.

A theoretical analysis of this system, highlighting the importance of the combinatorial
entropy has been presented by Safran and coworkers. The authors propose to write a zero-
order free energy as a function of two independent parameters: the droplet concentration
ρd = N

V and the polymer concentration ρp =
Np

V . By neglecting coupling between the
droplets and the polymers, the free energy can be expressed as βF = βFdroplet+βFpolymer,
where

βFpolymer = −Np lnZp with Zp = N
Σd

Σp

(
Σd

Σp
+Naccessible

d

Σd

Σp

)
. (11)

Here Naccessible
d ∼ ρd indicates the number of droplets that can be connected by a polymer

originating in an arbitrary selected droplet. Note that we have assumed that Σd
Σp

is the

number of attachment points on a droplet (proportional to the surface area Σd of the
droplet divided by the surface area Σp of the polymer head). Each polymer can then end
on the same droplet with probability Σd

Σp
and on a distinct but accessible droplet with

probability Naccessible
d

Σd
Σp

. Note that the polymer free energy does not incorporate any

18



energetic contribution.
The system is thermodynamically stable if the free energy is a convex function of both

ρp and ρd. This means that the second derivative of the free energy (δ2F = Fρd,ρdδρ
2
d +

2Fρd,ρpδρdδρp + Fρp,ρpδρ
2
p) has to be positive. Equivalently, the matrix(

Fρd,ρd Fρd,ρp

Fρd,ρp Fρp,ρp

)
(12)

must posses two positive eigenvalues, allowing us to separate stable from unstable states
(mean field spinodals). The results of the calculations for different values of the number
of polymers per droplet r are shown in Fig. 6-(d) and compared with the corresponding
experimental data (Fig. 6-(c)). Beyond a critical value of r, at low densities the system
prefers to phase separate in a gas phase of droplets, in which polymers start and end in
the same droplet, and in a connected phase (a network) in which the ends of the polymer
preferentially explore the interior of different droplets. The connected phase emerging
from the entropic phase separation constitutes a dense gel phase, being the number of
connections per droplet significantly larger than the percolation threshold.

5.7 Combinatorial Entropy: DNA grafted particles

Another interesting and very recent application, where combinatorial entropy plays an
important role in controlling attraction between particles, is found in DNA grafted colloids.
These are gold (at the nanoscale) or polymeric particles coated with DNA strands [?,
?, ?]. The DNA strands end with a specific sequence A (sticky end) that can bind to
complementary sequences Ā on nearby coated colloids.

If the particles are grafted with both A and Ā sticky ends [?, ?] (or if A is self com-
plementary and, thus, able to bind to itself satisfying the Watson-Crick pairing rules) the
situation is analogous to the microemulsion droplets linked by telechelic polymers [?] is en-
countered. Indeed particles can always satisfy their bonds (exploiting intra or inter particle
links), rendering the energetic contribution to binding irrelevant [?]. In this case, again,
only the combinatorial contributions dictate the net attraction between the particles. This
is quite relevant since, for several-bases long sticky sequences, the binding energy can easily
become dozens of kBT which would suggest at a first glance an irreversible aggregation
process. Differently, the combinatorial term can be tuned to be of the order of a few
kBT , making a reversible self-assembly process possible, especially if the bonding scheme
is associated to a toehold displacement mechanism [?].

To clarify the role of combinatorial entropy in the case of palindromic DNA sticky
sequences A = Ā, consider the case of two particles with grafted polymers ending with
a sticky site that can bind to only one other distinct sticky site (see Fig. 7). When the
particles are far, all sticky sites find their own partner among chains grafted on the same
particle. At low T , all sticky sites are essentially paired. One would then expect that
under these conditions there is no additional energetic gain that can compensate for the
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loss of translational entropy upon inter-particle binding. Instead, when the particles probe
distances x compatible with intra-particle binding (see Fig. 7) a finite number B(x) of
chains on each particle can bind to partners grafted on the other particle.

To estimate the strength of the entropic attraction let us focus on this pool of approx-
imatively 2B(x) interacting sites, which can pair to form B(x) bonds. If each site can
bind to any other site, independently from where the corresponding chain is grafted, then
the number of distinct bonding patterns is (2B(x) − 1)!! (being !! the symbol for double
factorial). Indeed the first site can bind to 2B(x)− 1 other sites, the first of the remaining
2B(x) − 2 sites can bind to 2B(x) − 3 others and so on, resulting in the double factorial
term. If instead a site can only bind to sites of the same particle, then the number of dis-
tinct bonding configurations is (B(x)− 1)!! for each particle. Thus, the change in entropy
introduced from allowing inter-particle binding can be quantified as

∆Scomb(x)

kB
= ln

[
(2B(x)− 1)!!

[(B(x)− 1)!!]2

]
. (13)

For typical nanoparticles grafting densities, B(x) ∼ 5 − 25, corresponding to entropic
attraction ∆Scomb/kB ∼ 2.7 − 16. Such entropic contribution is sufficient to compensate
the repulsive contribution arising from the overlap between the brushes, and to provide
a net attractive potential sufficiently strong to drive aggregation of the colloidal particles
into a dense liquid or into a crystal phase.

6 Riguardiamo in generale cosa abbiamo fatto: il concetto
di potenziale efficace

Supponiamo di avere un sistema composto da N particelle ”lente” o ”grandi” eM particelle
”veloci” o ”piccole”. La funzione di partizione del sistema e’ data da

QN+M =
1

N !λ3N
N

1

M !λ3M
M

∫
dr⃗1...dr⃗N

∫
ds⃗1...ds⃗Me−β(V11(r⃗N )+V12(r⃗N ,s⃗M )+V22(s⃗M )

possiamo formalmente scrivere

e−βVeff (r⃗
N ) =

1

M !λ3M
M

∫
ds⃗1...ds⃗Me−β(V12(r⃗N ,s⃗M )+V22(s⃗M )

cosi’ che

QN+M =
1

N !λ3N
N

∫
dr⃗1...dr⃗Ne−βV11(r⃗N )e−βVeff (r⃗

N )

per cui il potenziale del sistema formato dalle particelle ”grandi” e’

Vtot(r⃗
N ) = V11(r⃗

N ) + Veff (r⃗
N )
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dove pero’ Veff (r⃗
N ) e’ funzione della temperatura e della densita’. Infatti.. possiamo gia’

velocemente vedere che

−βVeff (r⃗
N ) = ln

V M

M !λ3M
M

+ ln

(
Z(r⃗N )

V M

)
= −V [ρM ln(ρMλ3

M )− ρM ] + ln

(
Z(r⃗N )

V M

)
con

Z(r⃗N ) =

∫
ds⃗1...ds⃗Me−βV22(s⃗M )e−βV12(s⃗M ,r⃗N )

Fin qui, non abbiamo fatto nessuna approssimazione, e la media di qualsiasi quantita’
dipendente da r⃗N solo, usando Vtot(r⃗

N ) nella funzione di partizione e’ esatta.
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Figure 6: Cartoon of the microemulsion droplets (yellow spheres) connected by telechelic
polymers (red) with hydrophobic ends (blues). (a) A schematic representation of a gas-
like phase in which both ends of the polymers are immersed in the same droplet. (b)
A dense percolating liquid-like phase, in which polymers connects different droplets. (c)
Experimental phase diagram showing a phase-coexistence between a dilute and a dense
phase of droplets, induced by the increase in the number of polymers per droplet r. (d)
Theoretical phase diagram.
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Figure 7: Cartoon of a nanoparticle (black) decorated by grafted polymers ending with a
sticky sequence (blue and red, respectively). (a) Two isolated particles in which all sticky
ends form intraparticle bonds. (b) Two close-by particles in which some of the bonds
involve chains of different particles (red-blue pairs). (c) Combinatorial entropy change
associated to the formation of interparticle bonds.
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