
1 A brief review of how atoms and molecules interact (Is-
draelachvili)

In the course on solid state physics, you will learn how atoms and molecules, arranged
in ordered structures, behave. You will learn the mechanical and electronic properties of
these crystals which will be then used as a basis to understand more elaborated solid-state
phenomena. In this course, a new course in our curriculum, we will attempt to also move
from the behavior of isolated atoms and molecules to their collective properties, building
on the elements you have learned in your previous classes. Differently from solid-state, we
will be focusing on essentially all the materials which surround you (and which compose
yourself !) which are not solid.

Let us start from a classification of the interactions betweens atoms and/or molecules.
In your ”Struttura della Materia (Fisica Atomica)” class last year you have learned the the
solution of quantum mechanical calculations based on the Schroedinger equation provide
in principle the electronic distribution (the charge density) for fixed nuclei positions. The
resulting charge distribution can then be analyzed to predict the interactions between
different atoms/molecules.

As a frame for looking at the way atoms, molecules, macromolecules and particles
interact and the relative importance of such interactions, we start by reviewing them.

1.0.1 R-dependence of interatomic forces

Suppose the attractive potential between two molecules or particles to be of the general
form w(r) = −C/rn, where n is an integer. Now consider a region of space where the
number density of these molecules is ρ. This region can be a solid, a liquid, a gas, or
even a region in outer space extending over astronomical distances. Let us add all [he
interaction energies of one particular molecule with all the other molecules in the system.
The number of molecules in a region of space between r and (r+ dr) away will be ρ4πr2dr
(since 4πr2dr is the volume of a spherical shell of radius r and thickness dr, i.e., of area
4πr2 and thickness dr). The total interaction energy of one molecule with all the other
molecules in the system will therefore be given by

total energy =

∫ L

σ
w(r)ρ4πr2dr = −4πCρ

∫
r2−ndr =

−4πCρ

(n− 3)σn−3

[
1−

(σ
L

)n−3
]

where σ is the diameter of the molecules and L is the size of the system (e.g., the dimensions
of a solid or the size of the box containing a gas). We can see that since σ must be smaller
than L (i.e., σ/L < 1), large distance contributions to the interaction will disappear only
for values of n greater than 3 (i.e., for n = 4, 5, 6...). But for n smaller than 3, the second
term will be greater, and the contribution from more distant molecules will dominate over
that of nearby molecules. In such cases the size of the system must be taken into account,
as occurs for the gravitational force where n = 1, and where distant planets, stars, and even
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galaxies are still strongly interacting with each other. In later chapters we shall see that
theoretical derivations of intermolecular force potentials do indeed predict that n always
exceeds 3 asymptotically, and it is for this reason that the bulk properties of solids, liquids
and gases do not depend on the volume of material or on the size of the container (unless
these are extremely small) but only on the forces between molecules in close proximity
to each other. Important long-range intermolecular forces also exist, especially between
macroscopic particles and surfaces, but their effective range of action rarely exceeds 100
nm.

1.1 COVALENT OR CHEMICAL BONDING FORCES

When two or more atoms come together to form a molecule, as when two hydrogen atoms
and one oxygen atom combine to form a water molecule, the forces that tightly bind the
atoms together within the molecule are called covalent forces, and the interatomic bonds
formed are called covalent bonds. Closely allied to covalent bonds are metallic bonds.
In both cases the bonds are characterized by the electrons being shared between two or
more atoms so that the discrete nature of the atoms is lost. Depending on the position an
atom (or element) occupies in the periodic table, it can participate in a certain number of
covalent bonds with other atoms. This number or stoichiometry is known as the atomic
valency; for example, it is zero for the inert gases (e.g., argon) which cannot normally
form divalent bonds with other atoms, one for hydrogen, two for oxygen, three for nitrogen
and four for carbon. A further characteristic of covalent bonds is their directionality, that
is, they are directed or oriented at well-defined angles relative to each other. Thus, for
multivalent atoms, their covalent bonds determine the way they will coordinate themselves
in molecules or in crystalline solids to form an ordered three-dimensional lattice. For
example, they determine the way carbon atoms arrange themselves to form the perfectly
ordered diamond structure. Covalent forces are of short range, that is, they operate over
very short distances of the order of interatomic separations (0.1-0.2 nm). Table 3.1 shows
the strength of some common covalent bonds. As can be seen they are mainly in the
range 100-300 kBT per bond (200-800 kJ/mol), and they tend to decrease in strength with
increasing bond length — a characteristic property of most intermolecular interactions.

1.2 PHYSICAL FORCES: COULOMB INTERACTIONS

The potential energy for the Coulomb interaction between two charges Q1 and Q2 is given
by

w(r) =
Q1Q2

4πεr
=
z1z2e

2

4πεr

where ε is the permittivity or dielectric constant of the medium and r the distance
between the two charges. The expression on the right is commonly used for ionic interac-
tions, where the magnitude and sign of each ionic charge is given in terms of the elementary
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charge (e = 1.602x10−9C) multiplied by the ionic valency z. For example, z = q = 1 for
monovalent cations such as Na+, z = −1 for monovalent anions such as CI−, z = 2 for
divalent cations such as Ca2+, etc.

Let us put the strength of the Coulomb interaction into perspective. For two isolated
ions (e.g., Na+ and Cl−) in contact, r is now the sum of the two ionic radii (0.276 nm),
and the binding energy w(r) is

w(r) =
−(1.602 10−19)2

4π(8.854 10−12)(0.276 10−9)
= 8.4 10−19J

In terms of the thermal energy kBT = (1.38 10−23)(300) = 4.1 10−21 J at 300K, this energy
turns out to be of order 200 kBT per ion pair in vacuum. viz. similar to the energies of
covalent bonds. Only at a separation r greater than about 56 nm will the Coulomb energy
fall below kBT . We have thus established that the Coulomb interaction is very strong and
of long range.

One very important aspect of Coulomb forces concerns the range of the interaction. The
inverse-square distance dependence of the Coulomb force, the same as for the gravitational
force, appears to make it very long ranged, in apparent contradiction with the statement
that all intermolecular force laws must fall with distance faster than 1/r4 (1/r3 for the
energy). Since positive ions always have negative ions nearby, whether they are in a lattice
or in solution, the electric field becomes screened and decays more rapidly away from them
than from a truly isolated ion. We shall see that at large distances the decay is always
exponential with distance, thus making all Coulomb interactions between ionic crystals,
charged surfaces, and dissolved ions of much shorter range (though still of much longer
range than covalent forces).

1.3 Are gravitational forces relevant ?

Let’s try to do the same estimate for gravitational forces. The sodium mass is 23 atomic
units, while the chlorum mass is 35.4 atomic units. The gravitational constant is G =
6.67× 10−11 m3/Kg/s2. Then

w(σ) = −GmNamCl

σ
= 6.67×10−11 23× 10−3

6.023× 1023

35.4× 10−3

6.023× 1023

1

0.276× 10−9
J = 5.4×10−52 J

Comparing this number with the corresponding one for the electrostatic interaction
clearly show that at atomic level gravitational forces are irrelevant.

1.4 POLAR MOLECULES

Most molecules carry no net charge, but many possess an electric dipole. For example,
in the HCl molecule the chlorine atom tends to draw the hydrogen’s electron towards
itself, and this molecule therefore has a permanent dipole. Such molecules are called
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polar molecules. The dipoles of some molecules depend on their environment and can
change substantially when they are transferred from one medium to another, especially
when molecules become ionized in a solvent. For example, the amino acid molecule glycine
contains an acidic group on one side and a basic group on the other. In water this molecule
exists as a dipolar molecule in the following form: basic acidic

Figure 1:

Such dipolar molecules in water are also referred to as zwitterions (molecules ionized
simultaneously in two different sites). Quite often the magnitude of the positive and
negative charges on zwitterions are not the same, and these molecules therefore possess a
net charge in addition to a dipole. Such molecules are then referred to as dipolar ions. It
should already be apparent that the interactions and the solvent effects of polar molecules
can be very complex. The dipole moment of a polar molecule is defined as

µ = ql

where l is the distance between the two charges +q and −q. Thus, for two electronic
charges q = e separated by l = 0.1nm, the dipole moment is u = (1.602 10−19)(10−10) =
1.602 10−29Cm = 4.8D. The unit of dipole moment is the Debye, where 1 Debye = 1D =
3.336 10−30Cm. Small polar molecules have moments of the order of 1D. [Historically D
was defined as the dipole moment resulting from two charges of opposite sign but an equal
magnitude of 10−10 electrostatic units separated by 1 Å]. Permanent dipole moments only
occur in asymmetric molecules and thus not in single atoms. For isolated molecules, they
arise from the asymmetric displacements of electrons along the covalent bonds, and it is
therefore not surprising that a characteristic dipole moment can be assigned to each type
of covalent bond. These values are approximate but very useful for estimating the dipole
moments of molecules and especially of parts of molecules by vectorial summation of their
bond moments. For example, the dipole moment of gaseous H20 , where the HOH angle
is

θ = 104.5

may be calculated (knowing that the dipole moment of an OH group is µOH = 1.51 D)
from

µH2O
= 2 cos(θ/2)µOH = 2 cos(52.25o)1.51 = 1.85D

4



1.5 ION-DIPOLE INTERACTIONS (4.2 Isd)

The second type of electrostatic pair interaction we shall consider is that between a charged
atom and a polar molecule, for example, between Na+ and H20. As an illustrative example
we shall derive the interaction potential for this case from basic principles. Figure 4.1
shows a charge Q at a distance r from the centre of a polar molecule of dipole moment u
subtending an angle θ to the line joining the two molecules. The length of the dipole is l.

Since the electric field of the charge acting on the dipole is E(r) = Q/4πεr, we see that
in general the energy of a permanent dipole µ in a field E may be written as

w(r, θ) = −µ ·E = −µE(r) cos θ. (1)

Equation gives the energy for the interaction of a charge Q and a ’point dipole’ µ (for
which l = 0) in a medium. Thus, when a cation is near a dipolar molecule maximum
attraction (i.e., maximum negative energy) will occur when the dipole points away from
the ion (θ = 0), while if the dipole points towards the ion (θ = 180o) the interaction
energy is positive and the force is repulsive. Figure 4.2 shows how the energy varies with
distance for a monovalent cation (z = +1) interacting with a dipolar molecule of moment
1D in vacuum. The solid curves are based on the exact solution calculated from the two
charges positions, while the dashed curves are for the point-dipole approximation, which
shows itself to be surprisingly accurate down to fairly small separations. Only at ion dipole
separations r below about 2l does the approximate equation deviate noticeably (>10%)
from that obtained using the exact formula. Thus, if the dipole moment arises from charges
separated by less than about 0.1 nm, the point dipole approximation will be valid at all
physically realistic intermolecular separations. However, for greater dipole lengths — as
occur in zwitterionic molecules–the deviations may be large, thereby requiring that the
energy be calculated in terms of the separate Coulombic contributions. In such cases the
interactions are always stronger than expected from the point dipole approximation, as can
be inferred from Fig. 4.2. It is also evident from Fig. 4.2 that the ion-dipole interaction
is much stronger than kBT at typical interatomic separations (0.2-0.4 nm). It is therefore
strong enough to bind ions to polar molecules and mutually align them. Let us calculate
the vacuum interaction between some common ions and water molecules. We shall assume
that the water molecule may be treated as a simple spherical molecule of radius 0.14 nm
with a point dipole of moment 1.85 D. This is a gross oversimplification: the distribution
of charges in a water molecule is much more complex than for a simple dipole, as will be
discussed later. But for our present purposes, we may ignore this complication. Thus,
for the monovalent ion Na+ (z = 1, a = 0.095 nm) near a water molecule (a = 0.14 nm,
µ = 1.85 D), the maximum interaction energy will be given by

w(r, θ = 0) =
(1.60210−19)(1.85 3.336 10−30)

4π(8.854 10−12)(0.235 10−9)2
= 1.6 10−19 J = 39 kBT or 96 kJ mol−1 at 300K,

which compares surprisingly well with the experimental value of 100 kJ mol−1. For the
smallest monovalent ion Li+ (a = 0.068 nm), this rises to about 50 kBT or 125 kJ mol−1
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(experimental value: 142 kJ mol−1), while for the small divalent cations Mg2+ (z = 2, a
= 0.065 nm) and Be2+ (z = 2, a = 0.03 nm), it will rise even further to about 100 kBT
and 150 kBT , respectively. The strongly attractive interaction between ions and water is
responsible for promoting the ”ionic” nucleation of rain drops in thunderclouds. In other
types of clouds the nucleation of water occurs around uncharged particles, molecules or
molecular groups that have a strong affinity for water.

1.6 IONS IN POLAR SOLVENTS

When ion-water interactions take place in bulk water the above energies will be reduced
by a factor of about 80, the dielectric constant of water; but even then the strength of the
interaction will exceed kBT for small divalent and multivalent ions, and it is by no means
negligible for small monovalent ions. But before we proceed it is essential to understand
what this interaction energy means. Within the continuum approach let us consider the
ion water interaction in bulk water as given by Eq. 1, where we note that it contains
an orientation term cos θ. At large separations the water molecules would be randomly
oriented relative to the ion, and if they remained randomly oriented right up to the ion, the
interaction energy would be zero since the spatial average of cos θ is zero. For an ion in a
polar solvent, Eq. 1 therefore gives us an estimate of the free energy change brought about
by orienting the polar solvent molecules around the ion, that is, the reference state of zero
energy is for randomly oriented dipoles. We have therefore established that the ion dipole
energies calculated for ions in water are comparable to or greater than kBT and reflect the
strong aligning effect that small ions must have on their surrounding water molecules.

For small or multivalent ions in highly polar solvents, the strong orientation depen-
dence of their ion-dipole interaction will tend to orient the solvent molecules around them,
favouring θ = 0 near cations and θ = 180o near anions. Thus, in water Li+, Be2+, Mg2+

and AI3+ ions have a number of water molecules orientationally bound to them. Such ions
are called solvated ions or hydrated ions, and the number of water molecules they bind
— usually between 4 and 6 — is known as their hydration number. It should be noted,
however, that these bound water molecules are not completely immobilized and that they
do exchange with bulk water, albeit more slowly. The hydration number is more of a
qualitative indicator of the degree to which ions bind water rather than an exact value.
Closely related to the hydration number is the effective radius or hydrated radius of an ion
in water, which is larger than its real radius. Because smaller ions are more hydrated they
tend to have larger hydrated radii than larger ions. Hydration numbers and radii can be
deduced from measurements of the viscosity, diffusion, compressibility, conductivity, sol-
ubility, and various thermodynamic and spectroscopic properties of electrolyte solutions,
the results rarely agreeing with one another.

More insight into the nature of ion hydration can be gained by considering the average
time that water molecules remain bound to ions. In the pure liquid at room temperature
the water molecules tumble about with a mean reorientation time or rotational correlation
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time of about 10−11 s. This also gives an estimate of the lifetime of the water-water bonds
formed in liquid water (the hydrogen bonds). But when the water molecules are near
ions various techniques, such as oxygen nuclear magnetic resonance, show that the mean
lifetimes or exchange rates of water molecules in the first hydration shell can be much
longer, varying from 10−11 s to many hours. For very weakly solvated ions (usually large
quantities monovalent ions) such as N(CH3)+

4 , Cl−, Br− and I−, these lifetimes are not
much different from that for two water molecules, and they can even be shorter (referred
to as negative hydration). Cations are generally more solvated than anions of the same
valency since they are smaller — having lost rather than gained an electron. Thus, for K+,
Na+ and Li+ the residence times of water molecules in the primary hydration shells are
about 10−9 s. Divalent cations are always more strongly solvated than monovalent cations,
and for Ca2+ and Mg2+, the bound water lifetimes are about 10−8 s and 10−6 s, respectively.
Even longer lifetimes are observed for very small divalent cations such as Be2+ (10−3 s),
while for trivalent cations such as AI3+, La3+, and Cr3+ these can be many seconds or
hours. In such cases the binding is so strong that an ion-water complex is actually formed of
fixed stoichiometry. In fact, these quasi-stable complexes begin to take on the appearance
of (charged) molecules and are often designated as such, e.g. [Mg(H2O)6]+, [Be(H2O)4]2+.
In particular, protons (H+) always associate with one water molecule, which goes by the
name of the hydronium ion (H30+), while three water molecules are solvated around this
ion to form H30+ (H2O)3. Likewise, the hydroxyl ion (OH− ) is believed to be solvated by
three water molecules forming OH−(H2O)3

1.7 DIPOLE-DIPOLE INTERACTIONS - 4.7

When two polar molecules are near each other there is a dipole-dipole interaction between
them that is analogous to that between two magnets. For two point dipoles of moments
µ1 and µ2 at a distance r apart and oriented relative to each other as shown in Fig. 2.2,
the interaction energy may be derived by a procedure similar to that used to obtain the
energy for the charge-dipole interaction, and we find

w(~µ1, ~µ2) =
~µ1 · ~µ2 − 3(~µ1 · r̂12)(~µ1 · r̂12)

4πεr3

or equivalently

w(r, θ1, θ2, φ) = − µ1µ2

4πεr3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ]

This equation shows that maximum attraction occurs when two dipoles are lying in
line, when the energy is given by

w(r, 0, 0φ) = − µ1µ2

4πεr3

while for two dipoles aligned parallel to each other the energy w(r, 90o, 90o, 180o) is half of
this value at the same inter-dipole separation, r. The equation also shows that for two equal

8



dipoles of moment 1 D, their interaction energy in vacuum will equal kBT at r = 0.36 nm
when the dipoles are in line and at r = 0.29 nm when parallel. Since these distances are of
the order of molecular separations in solids and liquids, we see that at normal temperatures
dipolar interactions (alone) are strong enough to bind only very polar molecules.

Figure 4.3 shows the variation of the pair interaction energy with distance for two point
dipoles of moments 1D approaching each other at different orientations; the solid curves
are the exact solutions for finite-sized dipoles, here assumed to be of length l = 0.1 nm,
while the dashed curves are based on Eq. (4.7) for two point dipoles. In general, we
find that, even more than for the charge-dipole interaction, significant deviations from the
ideal behaviour now occur for r < 3l, when Eq. (4.7) can no longer be used. At these
smaller separations it is again necessary to analyse the interaction in terms of its individual
charge-charge (Coulomb) contributions of which there will be four such terms for each pair
of dipoles. The above calculations, and Fig. 4.3, appear to indicate that two dipoles always
prefer to mutually orient themselves in line, but this is true only at the same value of r.
Most dipolar molecules are also anisotropic in shape - being longer along the direction of
the dipole, so that in practice the centres of two such cigar-shaped molecules can come
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significantly closer together when they align in parallel, thereby making this interaction
the more favourable one. The dipole-dipole interaction is not as strong as the previous two
electrostatic interactions we considered, and for dipole moments of order 1D, it is already
weaker than kBT at distances of about 0.35 nm in vacuum, while in a solvent medium this
distance will be even smaller. This means that the dipole-dipole interaction, unlike the
ion-dipole interaction, is usually not strong enough to lead to any strong mutual alignment
of polar molecules in the liquid state. There are some exceptions, however, such as water
whose small size and large dipole moment does lead to short range association in the liquid.
The bond moments of OH+, NH+ and FH+ are unusually large. Since the electron- depleted
H atom also has a particularly small size this means that other electronegative atoms such
as -O, -N and -F can get quite close to these highly polar XH+ groups and thus experience
a very strong field. This results in a strong attractive force that can align neighbouring
molecules possessing such groups (e.g., H20, NH3, HF, C=O, and many others) in both the
liquid and crystalline state. Such liquids are called associated liquids, and the special type
of interaction they experience is known as the hydrogen-bonding interaction. The hydrogen
bonding interaction is no more than a particularly strong type of directional dipole-dipole
interaction. Because of the small size of the -H+ group it is far stronger than that predicted
by the point dipole approximation. This interaction will be discussed further later on. For
the moment, let us investigate the opposite situation: when the orientation dependence of
dipole dipole and ion-dipole interaction energies are much weaker than the thermal energy
kBT , and therefore unable to align molecules fully.

1.7.1 Mixing Energy and Entropy..... Average potential

At large separations or in a medium of high ε, when the angle dependence of the interaction
energy falls below the thermal energy kBT , dipoles can now rotate more or less freely.
However, even though the values of cos θ, sin θ, etc. when averaged over all of space are
zero, the angle-averaged potentials are not zero since there is always a Boltzmann weighting
factor that gives more weight to those orientations that have a lower (more negative) energy.

We have learned from statistical mechanics that a description of the position and ori-
entation of the dipole (assuming there is a fixed ion in the origin) can be calculated as

P (r, θ) =
e−βw(r,θ)

Z

where Z is the normalization

Z =

∫
r2dr sin θdθdφe−βw(r,θ)

If we are interested only in the r dependence of the probability, we need to average over
the angular variable

P (r) =

∫
P (r, θ) sin θdθdφ
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In this way, an angle-averaged potential w(r)can be written as

P (r) =
e−βweff (r)

Z ′

or

e−βweff (r) =

∫
e−βw(r,Ω)dΩ∫

dΩ
=< e−βw(r,Ω) >Ω

where dΩ = sin θdθdφ corresponds to the polar and azimuthal angles θ and φ and the
integration is over all of angular space.

You may be surprised that we are not calculating directly the angle-averaged potential.
The reason is that in the averaging process we do not want to change the probability that
the two interacting particles are found at distance r. Note that we have already significantly
approximated the problem by assuming that the N − body problem can be reduced to a
sum of independent two-body terms.

Considering first the interaction between a charge and a dipole, for which

w(r,Ω) = −µE cos θ E =
Q

4πε0r

e−βweff (r) =
1

Z ′

∫
dΩe−βw(r,Ω).

To find the missing constant, consider that for r →∞, w(r) = 0, e−βw(r) = e−βw(r,Ω) = 1.
Then the proportionality constant has to be 1/4π

e−βweff (r) =

∫
dφ
∫
e−βw(r,Ω) sin θdθ

4π

We may note the spatially averaged values of some angles:

< cos2 θ >=
1

4π

∫ π

0
cos2 θ sin θdθ

∫ 2π

0
dφ =

1

3

< sin2 θ >=
1

4π

∫ π

0
sin2 θ sin θdθ

∫ 2π

0
dφ =

2

3

< sin2 φ >=< cos2 φ >=
1

2

< sin θ >=< cos θ >=< sin θ cos θ >= 0

< sinφ >=< cosφ >=< sinφ cosφ >= 0
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The charge-dipole potential w(r,Ω) is

w(r,Ω) = −~µ ·E = −µE cos θ E =
Q

4πε0

e−βweff (r) =
2π

4π

∫
−1

1d cos θeβEµ cos θ

=
1

2

∫
−1

1dteβEµt

and calling A = βEµ

=
1

2

1

A

∫
−A

AdteAt =
1

2

1

A
(eA − e−A)

if A is small

≈=
1

2

1

A

[
1 +A+

A2

2
+
A3

3!
+ ....− (1−A+

A2

2
− A3

3!
+ ....)

]
=

=
1

A
(2A+

2

3!
A3) = 1 +

A2

3!

or, expanding the exponential

1− βweff (r) = 1 +
(βEµ)2

6

The angle-averaged free energy for the charge-dipole interaction is therefore,

weff (r) ≈ −1

6

(
Qµ

4πε

)2 1

kBTr4

which is attractive and temperature dependent. The presence of a kBT in the average
potential reflects the thermodynamic origin of the interaction, which now contains some
entropic component, in addition to the energetic ones. We will see more and more in this
course on this effect.

Thus, for a monovalent ion interacting with the polar solvent molecules of a medium
of dielectric constant ε the interaction potential spherically averages will supersede the
non-averaged one (charge-dipole) at distances larger than r =

√
Qµ/4πεkBT , which for a

monovalent ion in water, setting Q = e, µ = 1.85D, ε = 80, becomes roughly 0.2 nm (i.e.,
about 0.1 nm out from an ion of radius 0.1 nm).

We can now see why only water molecules of the first shell around ions sometimes
become strongly restricted in their motion, and we may anticipate that this should be the
sort of range around an ion over which the properties of the solvent may be substantially
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different from the bulk values. For the dipole dipole interaction, a similar Boltzmann av-
eraging of the interaction energy, over all orientations (θ1, θ2, φ) leads to an angle-averaged
interaction free energy of

w(r) = − µ2
1µ

2
2

3(4πε)2kBT

1

r6

The Boltzmann-averaged interaction between two permanent dipoles is usually referred
to as the orientation or Keesom interaction. It is one of three important interactions,
each varying with the inverse sixth power of the distance, that together contribute to the
total van der Waals interaction between atoms and molecules. The rotational averaged
potentials show that beyond a certain distance the interaction energies fall faster than
r−3 In view of the previous analysis this confirms that neither ion-dipole nor dipole-dipole
forces can produce long-range alignment effects in liquids.

1.8 Polarizability

1.8.1 Electronic contribution

We now enter the last category of electrostatic interactions we shall be considering those
that involve molecular polarization, that is, the dipole moments induced in molecules
by the electric fields emanating from nearby molecules. Actually, we have already been
much involved with polarization effects: whenever the macroscopic dielectric constant of
a medium entered into our consideration this was no more than a reflection of the way
the molecules of the medium are polarized by the local electric field. Here we shall look
at these effects in more detail, starting at the molecular level. All atoms and molecules
are polarizable. Their (dipole) polarizability is defined according to the strength of the
induced dipole moment µind they acquire near an electric field E, viz.,

µind = αE

For a non-polar molecule, the polarizability arises from the displacement of its negatively
charged electron cloud relative to the positively charged nucleus under the influence of
an external electric field. For polar molecules, there are other contributions to the po-
larizability, discussed in the next section. For the moment, we shall concentrate on the
polarizabilities of non-polar molecules, which we shall denote by α0.

Polarizability can be calculated formally by quantum mechanics. You may have seen
such a calculation for the hydrogen atom in a static electric field. From a classical point
of view, to evaluate polarizability, one need to accept a reasonable simple model. Let us
use the classical view of an atom as composed by a nuclear charge q and an homogeneous
electronic density inside a sphere of radius R. The electron charge density is then

ρq = − q

4πR3/3
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Under the influence of an external field E the electron orbit is shifted by a distance d
from the nucleus. Then the nucleus is subjected to two electric fields: the external field E
and the field generated by the displaced charge density. Using Gauss theorem we can say
that the electric field generated on the nucleus by the charge density is

4πd2Eq =
ρq4πd

3/3

ε0
→ Eq = − qd

4πR3ε

Then, by writing E = Eq,

qd

4πR3ε0
= E → µ = 4πε0R

3E

whence we obtain for the polarisability

α0 = 4πε0R
3

The unit of polarizability is therefore 4πε0 times a volume or C2m2/J. The polarizability
of atoms and molecules that arises from such electron displacements is known as electronic
polarizability. Its magnitude, apart from the 4πε0 term, is usually less than but of the order
of the (radius)3 of the atom or molecule. For example, for water, α0/4πε0 = 1.48× 10−30

m3 =(0.114nm)3, where 0.114 nm is about 15 % less than the radius of a water molecule
(0.135 nm). Since the electronic polarizability is associated with displacements of electron
clouds, it has long been recognized that the polarizability of a molecule can be obtained
by simply summing the characteristic polarizabilities of its covalent bonds, since these are
where the polarizable electrons are mostly localized.

1.8.2 Dipolar contribution

Up to now we have considered the polarizability arising solely from the electronic displace-
ments in atoms and molecules. A freely rotating dipolar molecule (whose time-averaged
dipole moment is zero) also has an orientational polarizability, arising from the effect of
an external field on the Boltzmann-averaged orientations of the rotating dipole. Thus, in
the presence of an electric field E these orientations will no longer time-average to zero but
will be weighted along the field. If at any instant the permanent dipole µ is at an angle θ
to the field E, its resolved dipole moment along the field is µz = µ cos θ, and its energy in
the field is −µE cos θ, so that the angle-averaged induced dipole moment < µz > is given
by

< µz >= µind =

∫ 1
−1 µ cos θeβµE cos θ sin θdθ∫ 1
−1 e

βµE cos θ sin θdθ

= µ
1

βEµ

∫ βEµ
βEµ xe

xdx∫ βEµ
βEµ e

xdx
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Calling A = βEµ

= µ
1

A

∫ A
−A xe

xdx∫ A
−A e

xdx
= µ

1

A
(A coth(A)− 1)

From which

< µz >

µ
= coth(βEµ)− 1

βEµ
≈ βEµ

3
− (βEµ)3

45
+

2(βEµ)5

945

At high T (or better at small βEµ), we can stop at the first term in the expansion and
write

µind =< µz >=
βµ2E

3
µE � kBT

Since µind is proportional to the field E, we see that the factor βµ2/3 provides an
additional contribution to the molecular polarizability. This is known as the orientational
polarizability:

αorient =
βµ2

3

The total polarizability of a polar molecule is therefore

α = α0 +
βµ2

3

where µ is its permanent dipole moment. Thus, for example, a polar molecule of moment
µ = 1D = 3.336× 10−30 C m at 300 K will have an orientational polarizability of

αorient = (4πε0)8× 10−30m3

a value that is comparable to the electronic polarizabilities α0 of molecules
In very high fields or at sufficiently low temperatures such that µE � kBT , a dipolar

molecule will become completely aligned along the field. When this happens (e.g., water
near a small ion), the concept of a molecule’s orientational polarizability breaks down, but
the electronic polarizability still applies.

1.8.3 DIPOLE-INDUCED DIPOLE INTERACTIONS

The interaction between a polar molecule and a non-polar molecule is analogous to the
ion-induced dipole interaction just discussed except that the polarizing field comes from a
permanent dipole rather than a charge. For a fixed dipole µ oriented at an angle θ to the
line joining it to a polarizable molecule, it may be shown that the magnitude of the electric
field of the dipole acting on the molecule is

E =
µ(1 + 3 cos2 θ)1/2

4πε0r3

15



the interaction energy is therefore

w(r, θ) = −1

2
α0E

2 = −1

2

µ2α0(1 + 3 cos2 θ)

(4πε0)2r6

(the factor 1/2 comes from the fact that it is necessary to account also the work re-
quested to create the dipole dW = E · qds = E · d~µ = αE · dE = d(αE2/2))

For typical values of µ and α0, the strength of this interaction is small compared to
kBT . Hence one can expand the Boltzmann factor

e−βweff (r) =
1

4π

∫
e−βw(r,Ω)dΩ → 1− βweff (r) =

1

4π

∫
(1− βw(r,Ω))dΩ

or

weff (r) = −1

2

µ2α0(1 + 3 < cos2 θ >)

(4πε0)2r6
= − µ2α0

(4πε0)2r6
(2)

since the angle average of cos2 θ is 1/3.
This is often referred to as the Debye interaction or the induction interaction. It

constitutes the second of three inverse sixth power contributions to the total van der
Waals interaction energy between molecules. The first we have already encountered in
the angle-averaged dipole-dipole or Keesom interaction, which incidentally may also be
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obtained from the previous expression by replacing α0 by αorient = µ2/3kBT so that for
two dipoles µ1 and µ2 it gives the Keesom free energy:

weff (r) = − µ2
1µ

2
2

3kBT (4πε0)2r6

1.9 In a solvent....

The interaction between molecules or small particles in a solvent medium can be very
different from that of isolated molecules in free space or in a gas. The presence of a
suspending medium does more than simply reduce the interaction energy or force by a
factor ε/ε0, as might appear from equations derived earlier. First, the intrinsic dipole
moment and polarizability of an isolated gas molecule may be different in the liquid state
or when dissolved in a medium. This depends in a complicated way on its interactions with
the surrounding solvent and can usually only be found by experiment. Second a dissolved
molecule can move only by displacing an equal volume of solvent from its path; hence, the
polarizability in a medium must represent the excess polarizability of a molecule or particle
over that of the solvent and must vanish when a dissolved particle has the same properties
as the solvent. Qualitatively, we may say that if no electric field is reflected by a particle,
it is ’invisible’ in the solvent medium and consequently does not experience a force. The
problem of knowing the excess or effective polarizability can be approached by treating a
dissolved molecule or a small particle as a separate dielectric medium of a given size and
shape. This continuum approach has an obvious advantage since the dielectric constant
of a medium is usually known. Accordingly, a molecule i may be modelled as a dielectric
sphere of radius a1 and dielectric constant εi. Now in a medium of dielectric constant ε,
such a dielectric sphere will be polarized by a field E and acquire an excess dipole moment
given by (Landau and Lifshitz, 1963, p. 44)

µind = 4πε0εr

(
εi − ε
εi + 2ε

)
a3
iE

so that its effective or excess polarizability in the medium is

αi = 4πε0εr

(
εi − ε
εi + 2ε

)
a3
i = 3ε0ε

(
εi − ε
εi + 2ε

)
vi

where vi is the volume of the molecule or sphere. This equation shows that for a dielectric
sphere of high εi, in free space (where ε = 1) its polarizability is roughly αi ≈ 4πε0a

3 , as
previously found for a simple one-electron atom. Further, if ε > εi, the polarizability is
negative, implying that the direction of the induced dipole is opposite to that in free space.

If we now consider two uncharged dielectric particles immersed in a medium, we obtain
for the spherically averaged interaction potential
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weff (r) = −3kBT

r6

(
ε1 − ε
ε1 + 2ε

)
a3

1

(
ε2 − ε
ε2 + 2ε

)
a3

2

which allows us to conclude that:

• (i) The net force between dissolved molecules or small particles in a medium can be
zero, attractive, or repulsive, depending on the relative magnitudes of ε1, ε2 and ε

• (ii) The interaction between any two identical uncharged molecules (ε1 = ε2) is always
attractive regardless of the nature of the suspending medium. Interestingly, two
microscopic air bubbles also attract each other in a liquid.

In addition we can expect that ions will be attracted to dissolved molecules of high dielectric
constant (highly polar molecules where ε2 > ε) but repelled from molecules of low dielectric
constant (non-polar molecules where ε2 < ε).

This approach will generally predict the right qualitative trends, but it is quantitatively
somewhat model-dependent in that it treats solute molecules as if they were a uniform
medium having bulk dielectric properties. It is essentially a continuum treatment where
the molecular properties only appear in determining the molecular radius or volume. This
may be valid for larger molecules, macromolecules, and small particles in solution but may
fail for small molecules, especially when close together.

1.10 Dispersion Forces

The various types of physical forces so far described are fairly easy to understand since they
arise from straightforward electrostatic interactions involving charged or dipolar molecules.
But there is a further type of force, which like the gravitational force acts between all
atoms and molecules, even totally neutral ones such as helium, carbon dioxide and hy-
drocarbons. These forces have been variously known as dispersion forces, London forces,
charge-fluctuation forces, electrodynamic forces, and induced-dipole- induced-dipole forces.
We shall refer to them as dispersion forces since it is by this name that they are most widely
known. The origin of this name has to do with their relation to the dispersion of light in
the visible and UV regions of the spectrum, as we shall see. The literature on this subject
is quite voluminous, and the reader is referred to books and reviews. Dispersion forces
make up the third and perhaps most important contribution to the total van der Waals
force between atoms and molecules, and because they are always present (in contrast to
the other types of forces that may or may not be present depending on the properties of
the molecules) they play a role in a host of important phenomena such as adhesion, surface
tension, physical adsorption, wetting, the properties of gases, liquids and thin films, the
strengths of solids, the flocculation of particles in liquids, and the structures of condensed
macromolecules such as proteins and polymers. Their main features may be summarized
as follows:
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1. They are long-range forces and, depending on the situation, can be effective from
large distances (greater than 10 nm) down to interatomic spacings (about 0.2 nm).

2. These forces may be repulsive or attractive, and in general the dispersion force be-
tween two molecules or large particles does not follow a simple power law.

3. Dispersion forces not only bring molecules together but also tend to mutually align
or orient them, though this orienting effect is usually weak.

4. The dispersion interaction of two bodies is affected by the presence of other bodies
nearby. This is known as the non-additivity of an interaction.

Dispersion forces are quantum mechanical in origin and amenable to a host of theoretical
treatments of varying complexity, the most rigorous of which would take us into the world
of quantum electrodynamics. Their origin may be understood intuitively as follows: for
a non-polar atom such as helium, the time average of its dipole moment is zero, yet at
any instant there exists a finite dipole moment given by the instantaneous positions of the
electrons about the nuclear protons. This instantaneous dipole generates an electric field
that polarizes any nearby neutral atom, inducing a dipole moment in it. The resulting
interaction between the two dipoles gives rise to an instantaneous attractive force between
the two atoms, and the time average of this force is finite. For a simple semiquantitative
understanding of how these forces arise, let us consider the following model, based on the
interaction between two Bohr atoms. In the Bohr atom an electron is pictured as orbiting
around a proton. The smallest distance between the electron and proton is known as the
first Bohr radius a0

The Bohr atom has no permanent dipole moment. However, at any instant there exists
an instantaneous dipole of moment

µ = a0e

whose field will polarize a nearby neutral atom giving rise to an attractive interaction that
is entirely analagous to the dipole-induced dipole interaction discussed previously. The
energy of this interaction in vacuum will therefore be given as (see the interaction energy
of a dipole with a polarizable molecule, Eq. 2)

w(r) = − µ2α0

(4πε0)2

1

r6
= − e

2a2
0α0

(4πε0)2

1

r6

where α0 is the electronic polarizability of the second Bohr atom, which is approximately
4πε0a

3
0.

To estimate the radius a0 of the Bohr atom, we remember that a0 is the radius at which
the Coulomb energy e2/4πε0a0 is equal to 2I, that is,

a0 =
e2

4πε0

1

2I
= 0.053nm,
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where I is the first ionization energy. Indeed, in the Bohr atom, under the hypothesis that
the electron orbit is circular, one can write an equivalence between the Coulomb force and
the centripetal force

e2

4πε0a2
0

=
mv2

a0

and simplifying a0 one obtain a relation for the potential and kinetic energy

e2

4πε0a0
= mv2 → V = −2K

such that the energy satisfies

E = V +K =
V

2
= − e2

4πε0a0

1

2

The ionization energy I = −E is for the Bohr model I = 2.2× 10−18 J.
Using this expression for α0 and the previously calculated expression for a0, we imme-

diately find that the above interaction energy can be written as

w(r) = − 2α2
0I

(4πε0)2

1

r6
=

Except for a numerical factor, it is the same as that derived by London in 1930 using
quantum mechanical perturbation theory. London’s famous expression for the dispersion
interaction energy between two identical atoms or molecules is (London, 1937)

w(r) =
−Cdisp
r6

= −3

4

α2
0I

(4πε0)2

1

r6

London’s equation has since been superseded by more exact, though more complicated
expressions, but it can be relied upon to give fairly accurate values, though these are usu-
ally lower than more rigorously determined ones. From the above simple model we see
that while dispersion forces are quantum mechanical (in determining the instantaneous,
but fluctuating, dipole moments of neutral atoms), the ensuing interaction is still essen-
tially electrostatic–a sort of quantum mechanical polarization force. And we may further
note that the r−6 distance dependence is the same as that for the other two polarization
interactions (the Keesom and Debye forces) that contribute to the net van der Waals force,
discussed in Section 5.6. But before we consider these three interactions collectively let us
first investigate the nature of dispersion forces.

To estimate the strength of the dispersion energy, we may consider two atoms or small
molecules with α0/4πε0 = 1.5×10−30 m and I ≈ 2×10−18 J (a typical ionization potential in
the UV). We thus find that for two atoms in contact at r = σ ≈ 0.3 nm, w(σ) = −4.6×10−21

J ≈ kBT . This is very respectable energy, considering that the interaction appears at first
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sight to spring up from nowhere, But when we recall that the inducing (instantaneous)
dipole moment of even a small hydrogen (Bohr) atom is of order a0e ≈ 2.4D, we can
appreciate why the dispersion interaction is by no means negligible. Thus, while very
small non-polar atoms and molecules such as argon and methane are gaseous at room
temperature and pressure, larger molecules such as hexane and higher molecular weight
hydrocarbons are liquids or solids, held together solely by dispersion forces. The solids are
referred to as van der Waals solids, and they are characterized by having weak undirected
’bonds’, and therefore low melting points and low latent heats of melting. For spherically
symmetrical inert molecules such as neon, argon and methane, the van der Waals solids
they form at low temperatures are dose-packed structures with 12 nearest neighbours per
atom. Their lattice energy (12 shared ’bonds’ or six full ’bonds’ per molecule) is therefore
approximately 6w(σ) per molecule, though if the attractions of more distant neighbours are
also included the factor of six rises to 7.22. The expected molar lattice energy or cohesive
energy of a van der Waals solid is therefore

U ≈ 7.22N0

[
2α2

0I

4(4πε0)2σ6

]
where σ is now the equilibrium interatomic distance in the solid. Thus, for argon, since

α0/(4πε0) = 1.63 × 10−30 m3, I = hν = 2.52 × 10−18 J, and σ = 0.376 nm, we obtain
U = 7.7 kJ/mol.
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