
1 Ions in solutions. (Suggested reading: Piazza)

The study of ionic systems, mostly solutions of ions in water, are a quite difficult topics.
There are two main difficulties arising from charged systems. The first is the difficulty of
handling a long range interaction. The second is the variability of the number of charged
particles in the system, controlled by the association/dissociation processes which can take
place in solution. If we put a protein, a DNA molecule or a colloidal particles in water,
depending on the temperature and the solution salt concentration, will dissociate and free
counter-ions, assuming a net charge to minimize the system free energy.

We start by considering the case of a pure ionic solution of so-called strong salts,
the ones that in water completely dissociate (weak salts are instead sensitive to the total
concentration). Consider a system made of several species of charged particles in a volume
V and let Nj and qj be respectively the total number of particles of type j and qj their
electric charge. The total number of particles is N and the total charge is zero. Charge
unbalance, over large distances requires too much energy for the system to stand it (there
is energy in the electric field !). Thus∑

j

Njqj = 0
∑
j

Nj = N

The energy of a probe point-like particle of charge q located at the origin is

U = qφ(0)

where φ(0) is the potential generated by all charges in the system (except the probe par-
ticle). Then

φ(0) =

′∑
i

qi
4πεri

where the prime indicate that the charge in the origin has to be excluded in the sum and
ri is the distance from the origin of the unknown position of particle i.

Differently from all the electrostatic problems you have encountered in fresh-men courses,
in which the position of the charges was given, here we need to evaluate φ(0) without a
priory knowing the detailed positions of the charges qi, which are determined by the elec-
trostatic potential itself. Since we assume that the charges are point-like, however, we
may neglect their discrete nature and try to describe the charge distribution around q as
a ”charged fluid” characterized by a charge density ρ(r) that we expect to depend on the
distance r from the probe charge. This continuum approach allows us to use the standard
macroscopic Maxwell’s equations ruling the distribution of the electrostatic field in the
presence of a distributed charge. In particular, the value of the electrostatic potential φ(r)
generated by all the charges (including q) is fixed by the Poisson equation.

∇2φ(r) = −ρ(r)

ε
(1)
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[Remember that the Poisson equation is nothing more than the Gauss theorem together
with the definition of the electric field as gradient of the electric potential,

∇ ·E =
ρ(r)

ε
and E = −∇φ(r)→ −∇ · ∇φ(r) =

ρ(r)

ε
]

Apparently, this is not a great step forward: φ(r) and ρ(r) are strongly intertwined
(they mutually determine each other), hence Eq. ?? must be solved by iterative methods.
Yet, for a system in thermal equilibrium, ρ(r) can be obtained by a simple, although
approximate, reasoning. For r → ∞ we expect the coordination effect induced by the
probe particles to vanish, which implies that φ(r) → 0, and that the number densities of
all types of charges take their average value n̄ = Nj/V . At finite r, it seems reasonable to
assume that the number density nj(r) changes with respect to n̄j by the Boltzmann factor
of the electrostatic energy qφ(r) that a charge qj possesses in r. Hence, we tentatively
write for the number density of species j

nj(r) = n̄je
−βqjφ(r),

so that the total charge density of the coordinated ions is

ρ(r) =
∑
j

qjnj(r) =
1

V

∑
j

qjNje
−βqjφ(r) (2)

Note that assuming the Boltzmann distribution is equivalent to assume constant chem-
ical potential (in the ideal gas approximation) for the ions. Indeed

lnnj(r) = ln n̄j − βqjφ(r) → lnnj(r) + βqjφ(r) = ln n̄j

Note also that Eq. ?? is valid only for r 6= 0: in fact, in the origin we also have the
contribution of the fixed probe charge, which can be represented as a charge density qδ(r),
where δ(r) is the Dirac delta. Substituting Eq. ?? in Eq. ?? we obtain

∇2φ(r) = − 1

εV

∑
j

qjNje
−βqjφ(r) (3)

Having been obtained from the Poisson equation using a Boltzmann distribution for
the charge density, this Poisson-Boltzmann(PB) equation jointly celebrates the names of
two giants of science who, however, neither wrote it, nor of course collaborated.

In principle, Eq.?? is a closed equation for φ(r). However, it is highly nonlinear, and can
be solved analytically only in a simple 1-dimensional planar geometry. Analytical results
in the spherical geometry we are considering can be obtained only if the PB equation is
suitably linearized: when and how this can be done is discussed in the following section.
Before that, however, it is important to point out that at least two approximations have
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implicitly been used to obtain Eq. Eq.??. First, by equating the ion distribution to a
charged fluid, we have neglected that ions are not point-like, but actually have a finite size.
You can easily guess that excluded volume effects may then limit the amount of charge
that accumulates around the probe charge. The second approximation is subtler, but more
important. To obtain Eq. ?? we have basically assumed that the probability P(r) of a
charge qj to be in r increases (or decreases) with respect to P (r = ∞) by the Boltzmann
factor of the energy gain (or cost) required to bring qj from infinity to r. If φ(r) were
an external fixed potential, this would be correct. However, we did not take into account
that, when qj is moved from infinity to r, the electrostatic potential it generates modifies,
in turn, the charge distribution around r.

1.1 The Debye-Hückel equation

In physics, a big help often comes from identifying a length, time, or energy scale, which
is somehow intrinsic to the investigated problem. This is for instance the case of the
heat capacity of solids, where the characteristic energy scale of vibrations ωD allows us,
when compared to the thermal energy kBT , to state the temperature conditions in which
the classical equipartition theorem holds. For a charged fluid, an additional energy scale
besides kBT is provided by the electrostatic interaction energy between two unit charges.
Comparing these two quantities, we can introduce an intrinsic length scale,

lB =
e2

4πεkBT
(4)

which is the distance at which two unit charges interact with an electrostatic energy equal to
the thermal energy. This typical distance is called the Bjerrum length, since it was originally
introduced by the Danish chemist Niels Bjerrum to account for ion pairing in solutions.
Yet, in the context of plasma physics, it is rather known as the Landau length, because
it has been independently introduced by Lev Davidovich Landau to discuss collisions in
dilute plasmas.

For electrolytes in water (εr = 80) we have lB ≈ 7Å. The Bjerrum length provides us
with the condition for the linearization of the PB equation. In fact, this is possible when
qjφ� kBT for all values of j, so that all the exponential functions e−βφqj can be expanded
at first order. This condition is equivalent to stating that the kinetic energy of the ions
is much larger than their electrostatic potential energy. Calling d = (V/N)1/3 the average
distance between two arbitrary charges, and taking into account that the all charges qj
typically have a magnitude of the order of the electron charge e, it is easy to see that this
implies d� lB. If this condition is verified, expanding Eq. ?? at first order we obtain

ρ(r) ≈ 1

V

∑
j

Njqj(1− βqjφ(r)) = − 1

V

∑
j

Njq
2
jβφ(r) (5)
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where the last equality comes from the charge neutrality condition. Substituting this
linearized charge density in the PB equation, we obtain the Debye-Huc̈kel (DH) equation
where

∇2φ(r)− 1

λ2
DH

φ(r) = 0 where λDH =

√
εV kBT∑
j Njq2

j

(6)

is called the Debye-Huc̈kel length. Writing qj = zje, where zj is the valency (with sign) of
the type-j ions, λDH can also be related to the Bjerrum length as
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λDH =

4πlB
∑
j

n̄jz
2
j

−1/2

Note also that in the DH approximation, since from Gauss ∇2φ(r) = −ρ(r)
ε there is a

proportionality between charge density and potential:

∇2φ(r) =
1

λ2
DH

φ(r) → ρ(r) = − ε

λ2
DH

φ(r).

For electrolyte solutions, it is customary to use ion concentrations cj , measured in moles
per liter. Since

c mol/liter = NAc particelle/liter = 103cNA particle/m3

(1l = 10−3m3, n/NA → c), and to introduce the solution ionic strength,

I =
1

2

∑
j

cjz
2
j =

1

2

∑
j

n̄jz
2
j

× 103NA

Then, λDH can also be written as (
√

1
8.∗3.14∗0.7 10−9∗6.023∗1023∗103

= 0.3 10−9)

λDH = (8π × 103NAlBI)−1/2 ≈ 0.3I−1/2nm

To get an idea of the order of magnitude of the DH length in aqueous solutions, we can
observe that, for I = 100mM = 0.1M , one obtains λ = 0.3/

√
0.1 ≈ 1 nm: for other DH

values of I, λDH is simply obtained dividing the last figure by
√
I[mM ]/100.

1.2 Debye-Huc̈kel potential and charge distribution (spherical coordi-
nates)

Because of isotropy, φ(r) depends only on the radial coordinate, hence the DH equation is
readily solved in spherical coordinates, where it reads

1

r

d2

dr2
[rφ(r)] =

1

λ2
DH

φ(r)

which is valid for r 6= 0. This equation is readily solved by introducing u(r) = rφ(r).
The general solution for the potential is

φ(r) =
A

r
e−r/λDH +

B

r
er/λDH

5



Requiring φ(r) to vanish for r →∞ implies B = 0. The other boundary condition we
must impose is that, for r → 0 , φ(r) coincides with the potential generated by the probe
charge (which, remember, we assume to be point-like). Since ∇2 1

r = −4πδ(r), and since

from the Gauss theorem ∇2φ(r) = −ρ(r)
ε = − qδ(r)

ε we have

∇2φ(r) = ∇2A

r
= −4πAδ(r) = −qδ(r)

ε
→ A =

q

4πε

φ(r) =
q

4πεr
e−r/λDH

where κ = 1/λDH is usually called the screening parameter. Therefore, the net effect of
charge coordination is that of turning the Coulomb interaction into a screened potential
that, decaying exponentially over the characteristic length λDH , is short-ranged. To find
the charge density around the probe charge, we just have to observe that (in the DH
approximation) the relation between ρ(r) and φ(r) gives

ρ(r) = −εφ(r)

λ2
DH

= −εκ2φ(r)

For a point-like charge at the origin, therefore,

ρ(r) = − qκ
2

4πr
e−κr

The total charge coordinated to q is found by integrating ρ(r) from 0+ to ∞ (and substi-
tuting t = κr): ∫ ∞

0+
− qκ

2

4πr
e−κr4πr2dr = −q

∫ ∞
0+

te−tdt = −q

which confirms that the net charge accumulating around q fully screens the probe charge,
consistently with the charge neutrality condition. In practice, however, the net charge
contained in a sphere with a radius of a few DH lengths is already very close to −q.

1.3 A colloidal particle in solutions (microions)

So far, we have regarded ions as point-like, which is fully reasonable for simple (and suf-
ficiently dilute) electrolyte solutions. Currently, however, the DH theory finds its main
applications in the investigation of colloidal suspensions and of solutions of biological
macromolecules like proteins or nucleic acids. In all these cases, we deal with systems
where a large size asymmetry exist between the large macroions and the small released
counterions. The other charged species that are usually present, like salts added to modify
the thermodynamic properties of the macroion solution, can also be regarded as point-like.
It is then interesting to consider as ”probe” particle a spherical colloidal particle of radius
a and charge Ze, and find the distribution of the small ions (either counterions, or due
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to added electrolytes) around it. Imposing boundary conditions to the general solution is
slightly more complicated, but we can still analytically solve the problem recalling that,
because of charge neutrality, the net charge in the DH cloud must necessarily be −Ze.
From φ(r) = Ar−1e−κr we have φ(a) = Aa−1e−κa, and therefore

φ(r) = φ(a)
a

r
e−κ(r−a)

Requiring the net charge coordinated around the macroion to be −Ze, and recalling that
ρ(r) = −εκ2φ(r), we must then have∫ ∞

a
drρ(r)4πr2 = −4πεκ2aφ(a)

∫ ∞
a

drre−κ(r−a) = −Ze

Let’s evaluate the integral. Substituting z = r − a, we find∫ ∞
a

drre−κ(r−a) =

∫ ∞
0

dz(z + a)e−κz = − d

dκ

∫ ∞
0

dze−κz + a

∫ ∞
0

dze−κz = κ−2 +
a

κ

Then
−4πεκ2aφ(a)

(
κ−2 +

a

κ

)
= −Ze

and we obtain the value of the potential at the particle surface

φ(a) =
Ze

4πεa(1 + κa)

For r ≥ a, the DH potential around a charged spherical macroion is then

φ(r) =
Ze

4πεa(1 + κa)

e−κ(r−a)

r
(7)

Note that, compared to the potential around a point-like particle, the apparent particle
charge is reduced with respect to the ”bare” charge Ze by a factor of (1 + κa)−1. This
effective charge depends on κa = a/λDH , and can therefore be modified by adding salts or
other electrolytes that increase the total amount of ions in solution.

1.4 A single charged plane (only counter ions)

Consider an infinite planar surface separating a dielectric medium (e.g. glass, or polystyrene)
extending to the left, from an ionic solution on the right. The surface carries a uniform
charge density σ < 0 (charge per unit area), which will be assumed to be negative. Only
the corresponding counterions are present in solution The corresponding PB equation is
then

d2φ(z)

dz2
= −qρ0

ε
e−βqφ(z)
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This differential equations admit as a solution

φ(z) =
2kBT

q
ln a(z + b)

with a and b integration constants. Indeed

dφ(z)

dz
=

2kBT

q

1

(z + b)

d2φ(z)

dz2
= −2kBT

q

1

(z + b)2

and

e−βqφ(r) = e
−βq 2kBT

q
ln a(z+b)

= eln[a(z+b)]−2
=

1

[a(z + b)]2

so that

−2kBT

q

1

(z + b)2
= −qρ0

ε

1

[a(z + b)]2

The constant a is thus

a2 =
q2ρ0

2kBTε

To fix the constant b one can consider

−dφ(z)

dz
|z=0 = E =

σ

ε

which in this case becomes
dφ(z)

dz
|z=0 = −2kBT

q

1

b

and thus
2kBT

q

1

b
=
σ

ε
b =

2kBT

q

ε

σ

From the potential, one can also calculate the concentration profile as (to avoid to use
the z =∞ condition, where ρ(∞) = 0)

ρ(z) = ρ(0)e−βq(φ(z)−φ(0)) = ρ(0)
1

[a(z + b)]2
[ab]2

1
= ρ(0)

1

[(z + b)]2
b2

1

and ρ(0) can be evaluate by imposing charge neutrality (σ < 0)∫ ∞
0

ρ(z)dz = −σ

and since ∫ ∞
0

1

[(z + b)]2
=

1

b
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we get ∫ ∞
0

ρ(z)dz = ρ(0)b2
1

b
= −σ

or
ρ(0) = −σ

b

and we find a charge density (to be divided by q to obtain the number density)

ρ(z) = − σb

[(z + b)]2
= σ

2kBT

q

ε

σ

1

(z + b)2
=

2kBTε

q

1

(z + b)2
=

q

2πlB

1

(z + b)2

Note that, both the electric field and the density decay algebraically to zero for z →∞.

1.5 A single charged plane - (following Barrat-Hansen)

Consider an infinite planar surface separating a dielectric medium (e.g. glass, or polystyrene)
extending to the left, from an ionic solution on the right. The surface carries a uniform
charge density σ (charge per unit area), which will be assumed to be negative. For the sake
of simplicity, the positive counterions and negative co-ions will be assumed to be monova-
lent (e.g. Na+ and Cl−). The corresponding density profiles ρ+(z) and ρ−(z) depend only
on z, the coordinate orthogonal to the plane; the microions can not penetrate to the left
of the planar surface, so that ρ+(z < 0) = 0.

Due to charge neutrality in the bulk, ρ+= ρ− = ρ0. Overall charge neutrality requires:∫ ∞
0

ρc(z)dz = −σ

The corresponding PB equation

d2φ(z)

dz2
=
qρ0

ε
eβqφ(z) − qρ0

ε
e−βqφ(z) =

2qρ0

ε
sinh(βqφ(z))

This non-linear second-order differential equation for z must be solved subject to the
two boundary conditions:

lim
z→∞

dφ(z)

dz
= 0

indicating that the electric field at infinity must be zero and by the condition that the
electric field just after the surface, by the Gauss theorem, has to be σ/ε. This can be
proved by using a surface extending from plus infinity to 0−, inside which the total charge
is zero, followed by an infinitesimal surface centered on the charged surface, for which

−dφ(z)

dz
|z=0 =

σ

ε

9



Note that the ’constant charge’ boundary condition is physically reasonable for most
colloidal systems. Under some circumstances a ’constant potential’ boundary condition, or
an intermediate ’self-regulating’ boundary condition may be more appropriate.

Exact solution of PB. The PB equation for this problem can be solved. Defining
Ψ(z) = βqφ(z) the PB equation can be rewritten as

d2Ψ(z)

dz2
=

1

λ2
D

sinh(Ψ(z))

where we recall that λ2
D = εkTV∑

j Njq
2
j
.

The solution can be expressed in term of inverse hyperbolic tangent

φ(z) =
kBT

q
Ψ(z) =

4kBT

q
arctanh(ge−z/λD)

where the integration constant g can be found by solving for z = 0

tanh
qφ(0)

4kBT
= g

The resulting concentration profiles

ρ+(z) = ρ0e
−βqφ(z) = ρ0e

−Ψ(z) = ρ0e
−4 arctanh(ge−z/λD )

Remembering that

arctanh(x) =
1

2
ln

1 + x

1− x
then

e−4 arctanh(x) = e−2 ln 1+x
1−x =

(
1− x
1 + x

)2

and

ρ+(z) = ρ0

(
1− ge−z/λD
1 + ge−z/λD

)2

The same calculation for ρ−(z) gives

ρ−(z) = ρ0e
βqφ(z)

Since the only difference with ρ+ is the sign in front of the exponential, one obtains

ρ−(z) = ρ0

(
1 + ge−z/λD

1− ge−z/λD

)2
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Figure 1: Solution of the PB equation for the plane case

which is the same once g is replaced by −g. The solution is graphically shown in Fig. ??.

If we can linearize....
If we go back to the original PB equation and evaluate it for the case in which βqq(z) <

1, we can expand sinh(Ψ(z)) to the leading order Ψ(z) and obtain

d2Ψ(z)

dz2
=

1

λ2
D

Ψ(z)

The resulting linear differential equation is easily solved with the result

φ(z) = φ(0)e−z/λD

Again, by using −dφ/dz = E = σ/ε,

φ(0)
1

λD
=
σ

ε
→ φ(z) =

σλD
ε
e−z/λD

while the corresponding density profiles reduce to:

ρ±(z) = ρ0 ±
|σ|
2q
e−z/λD

showing that the coion and counterion density profiles decay exponentially towards their
bulk value; the width of the electric double-layer varies as 1/

√
ρ0. The exponential decay

is reminiscent of the exponential screening of the correlation functions in bulk electrolytes.
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Going back to the full solution, we can also there calculate the relation between the
surface potential φ(0) and surface charge σ exploiting the relation −dφ/dz = σ/ε.

The derivative of the potential is (recalling that

d arctanh(x)

dx
=

1

1− x2

and that 2 sinh(x) cosh(x) = sinh(2x))

dφ(z)

dz
|z=0 =

4kBT

q

−g
λD(1− g2)

= −4kBT

q

1

λD

1

2
sinh(

qφ(0)

2kBT
)

By equating −dφ(z)
dz |z=0 with σ/ε on obtains the so-called Grahame’s equation:

σ

ε
=

2kBT

q

√∑
i ρiq

2

εkBT
sinh(

qφ(0)

2kBT
)

or

σ =
√

4εkBT sinh

(
qφ(0)

2kBT

)
(2ρ0)1/2

If the surface potential is less than about 25 mV at room temperature, the right- hand
side may be linearized to yield

σ =
√

8ρ0εkBT
qφ(0)

2kBT
=

√
8ρ0εkBTq2

4k2
BT

2
φ(0) =

√
2ρ0q2

kBTε
εφ(0) =

εφ(0)

λD

which of course coincide with the result previously derived in the DH approximation.
For a condensator with parallel plates at distance d and surface charge σ, the electric

field is E = σ/ε and ∆V = Ed = σd/ε. Comparing with the previous expression one sees
that for low surface potentials, the electric double-layer behaves as a condenser of width
equal to the Debye length.

A trick:
We now note the general relation (note the difference between ρnumber and ρcharge)

dρnumber
dz

=
d

dz

∑
j

ρ∞j e
−βqjφ(z) = −

∑
j

βqjρ
∞
j e
−βqjφ(z)dφ(z)

dz
= −βρcharge(z)

dφ(z)

dz

and by using the Poisson equation d2φ/dz2 = −ρcharge/ε

dρnumber
dz

= εβ
d2φ(z)

dz2

dφ(z)

dz
=
εβ

2

d

dz

(
dφ(z)

dz

)2
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Using this relation, we can integrate over z and find

ρnumber(z)− ρnumber(∞) =
εβ

2
E2(z) → ρnumber(z) = 2ρ0 +

εβ

2
E2(z)

Since the microions are non-interacting, the left-hand side is the difference in local
osmotic pressure Π = kBTρ, between a point at z and in the bulk; the right-hand side is the
electrostatic pressure at z, which vanishes in the bulk. The previous equation thus expresses
that a difference in osmotic pressure must be balanced by a difference in electrostatic
pressure to ensure mechanical equilibrium.

Now in z=0: Going back to the previous expression, evaluated in z = 0, one finds

ρnumber(0) = 2ρ0 +
σ2β

2ε

The enhancement in density grows quadratically with σ, and becomes quite substantial
for high surface charges. In fact at sufficiently high values of σ, the local microion den-
sity becomes unphysically large, such that the corresponding packing fraction (calculated
with the ionic radii) would exceed close-packing. This breakdown of the PB theory, which
systematically overestimates contact densities, can be traced back to the neglect of correla-
tions between microions. This deficiency may be partly remediated by introducing a layer
of counterions tightly bound to tile highly charged surface, the so-called Stern layer of ”ad-
sorbed” counterions; this reduces the surface charge from its bare value to some effective
value σeff which may be considered as a phenomenological, adjustable parameter. The
PB theory sketched above applies then only to the ”diffuse” electric double-layer, beyond
the Stern layer. We use the word ”diffusive” to indicate the charge distribution created by
the freely diffusion ions in solutions.

1.6 Two surfaces in water (no electrolite solution) - Israelevich: Another
one-dimension case where the PB can be solved.

In the following sections we shall consider the counterion distribution and force between
two similarly charged planar surfaces in a pure liquid such as water, where (apart from
H30 + and OH− ions) the only ions in the solution are only those that have come
off the surfaces. Such systems occur when, for example, colloidal particles, clay sheets,
surfactant micelles or bilayers whose surfaces contain ionizable groups interact in water,
and also when thick films of water build up (condense) on an ionizable surface such as
glass. But first we must consider some fundamental equations that describe the counterion
distribution between two charged surfaces in solution.

When solved, the PB equation gives the potential φ, electric field E = dφ/dx, and
counterion density ρ, at any point x in the gap between the two surfaces. Let us first
determine these values at the surfaces themselves. These quantities are often referred to
as the contact values: φs, Es, ρs, etc.
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The PB equation is a non-linear second-order differential equation, and to solve for φ
we need two boundary conditions, which determine the two integration constants. The
first boundary condition follows from the symmetry requirement that the field must vanish
at the mid-plane, i.e., that E(0) = −dφ/dx(0) = 0. The second boundary condition
follows from the requirement of overall electro-neutrality, i.e., that the total charge of the
counterions in the gap must be equal (and opposite) to the charge on the surfaces. If σ is
the surface charge density on each surface (in Cm−2) and D is the distance between the
surfaces, then the condition of electroneutrality implies that

σ = −
∫ D/2

0
qρ(x)dx = relating the density to the potential via the Gauss theorem =

= ε

∫ D/2

0

d2φ

dx2
dx = ε

dφ

dx
|D/20 = ε

dφ

dx
|s = −εEs

Then the electric field at the surface is related to the surface density by

Es =
σ

ε

(again applying Gauss first to the entire system and then to a tiny volume across the
charged surface). This equation gives an important boundary condition relating the surface
charge density σ to the electric field Es at each surface (at x = ±D/2), which we may note
is independent of the gap width D.

Turning now to the ionic distribution, we recall that there exists an important general
relation between the concentrations of counterions at either surface and at the midplane.
Differentiating the Boltzman distribution ρ(x) = ρ0e

−qβφ(x) and then using the PB we
obtain

dρ

dx
= − qρ0

kBT
e−qφ/kBT

(
dφ

dx

)
= −qρ0e

−qφ/kBT
(
dφ

dx

)
recognizing in qρ the charge density and again using Gauss

dρ

dx
=

ε

kBT

(
dφ

dx

)(
d2φ

dx2

)
which can be written as

=
ε

2kBT

d

dx

(
dφ

dx

)2

hence integrating both sides (and remembering that the electric field in 0 is zero)

ρ(x)− ρ0 =

∫ x

0
dρ =

ε

2kBT

∫ x

0
d

(
dφ

dx

)2

=
ε

2kBT

(
dφ

dx

)2

(x) (8)
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which gives ρ(x) at any point x can be written in terms of ρ0 at the mid-plane and the
electric field dφ/dx at x. In particular at the surface, x = D/2, we obtain the contact value
of ρ(D/2) = ρs Recalling that

ρs = ρ0 +
σ2

2εkBT

This result shows that the concentration of counterions at the surface depends only on
the surface charge density σ and the counterion concentration at the midplane. Note that
ρs never falls below σ2

2εkBT
even for isolated surfaces, i.e., for two surfaces far apart when

ρ0 → 0.
The above equations are quite general and are the starting point of all theoretical

computations of the ionic distributions near planar charged surfaces, even when the solution
contains added electrolyte. To proceed further we consider the specific case of counterions
only.

Evaluation of ρ(x). We must now solve the Poisson Boltzmann equation. The
solution is

φ(x) =
kBT

q
ln(cos2Kx)

or

e−qφ/kBT =
1

cos2Kx

where K is a constant.
As a proof, consider that

dφ

dx
=
kBT

ze

1

cos2Kx
2 cosKx sinKx(−K) = −2K

kBT

q

sinKx

cosKx

d2φ

dx2
= −2K

kBT

ze

K cos2Kx+K sin2Kx

cosKx2
= −2K2kBT

q

1

cos2Kx
= −2K2kBT

q
e−qφ/kBT

Comparing with the PB equation

d2φ(x)

dx2
=
qρ0

ε
e−βqφ(x)

one indeed find

K2 =
q2ρ0

2εkBT

With this form for the potential we see that φ = 0 and dφ/dx = 0 at x = 0 for all K,
as required.

The counterion distribution profile

ρ(x) = ρ0e
−qφ/kBT =

ρ0

cos2Kx
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can be expressed in term of σ and D by evaluating the electric field at the surface and
equating it to σ/ε as

Es = −dφ
dx s

=
2KkBT

q
tan

(
KD

2

)
=
σ

ε

Pressure: Before we proceed to calculate the force or pressure between two surfaces it
is instructive to discuss, in qualitative terms, how the counterion distribution, potential field
and pressure between two surfaces arise. The first thing to notice is that if there were no ions
between two similarly charged surfaces, there would be no electric field in the gap between
them. This is because the field emanating from a planar charged surface, E = σ/2ε, is
uniform away from the surface. The two opposing fields emanating from the two plane
parallel surfaces therefore cancel out to zero between them. Thus, when the counterions
are introduced into the intervening region they do not experience an attractive electrostatic
force towards each surface. The reason why the counterions build up at each surface is
simply because of their mutual repulsion and is similar to the accumulation of mobile
charges on the surface of any charged conductor. The repulsive electrostatic interaction
between the counterions and their entropy of mixing alone determine their concentration
profile ρ(x), the potential profile φ(x) and the field E(x) between the surfaces, and we may
further note that in all the theoretical derivations so far the only way the surface charge
density σ enters into the picture is via the total number of counterions in the gap.

1.6.1 Stern Layer

If the locations of the charged surface groups were not at the physical solid-liquid interface
(at x = ±D/2) but at some small distance δ within the surface (Fig. 12.4), the ionic
distribution ρ(x), potential φ(x), field E(x), and the pressure in the medium between D/2
and −D/2 would not change. But the potential would be different if it were measured
at x = ±(D/2 + δ). This is the origin of the so called Stern layers which separate the
charged plane from the plane from which the ionic atmosphere begins to obey the Poisson-
Boltzmann equation. The thickness of the Stern layer δ is of the order of a few Å and
reflects the finite size of the charged surface groups and transiently bound counterions, as
illustrated in Fig. 12.4. If the dielectric constant of the Stern layer is uniform and equal
to εδ it can be modelled as a capacitor whence the additional drop in potential across the
layer is given by

φδ =
σδ

εδ

For example, if δ = 0.2 nm, σ = 0.2 Cm−2 and εδ = 40, we obtain φδ = 130 mV.

17



1.6.2 Pressure

We now turn to the origin of the force or pressure between the two surfaces. Contrary
to intuition, the origin of the repulsive force between two similarly charged surfaces in a
solvent containing counterions and electrolyte ions is entropic (osmotic), not electrostatic.
Indeed, the electrostatic contribution to the net force is actually attractive. Consider
a surface, initially uncharged, placed in water. When the surface groups dissociate the
counterions leave the surface against the attractive Coulombic force pulling them back.
What maintains the diffuse double layer is the repulsive osmotic pressure between the
counterions which forces them away from the surface and from each other so as to increase
their configurational entropy. On bringing two such surfaces together one is therefore
forcing the counterions back onto the surfaces against their preferred equilibrium state, i.e.,
against their osmotic repulsion, but favoured by the electrostatic interaction. The former
dominates and the net force is repulsive. To understand why the purely electrostatic part of
the interaction is attractive recall that it involves an equal number of positive (counterion)
and negative (surface) charges, i.e., the system is overall electrically neutral. The net
Coulombic interaction between a system of charges that are overall neutral always favours
their association, as we know for the case of ionic crystals (e.g., NaCI) and dipoles.

1.7 Infinte charged cylinder - Barrat-Hansen

Consider now the sheath-like electric double-layer around a uniformly charged cylindrical
rod of radius a and length L. This is a model for rod-like colloids, like boehmite, or viruses,
like the tobacco mosaic virus (TMV). The aspect ratio L/a of the latter is about 20, and if
the main interest is in the immediate vicinity of the rod, end effects are unimportant, and
one may usefully consider the simpler case of an infinitely long rod (L→∞). Moreover, a
charged rod may also serve as a model for stiff polyelectrolytes, i.e. water-soluble polymers
made up of ionizable monomers, carrying a line charge, or charge per unit length, ξ.

An important length scale for charged rods or polyelectrolytes is the distance l = q/ξ
between successive monovalent charges;

In vacuum, the electrostatic field around an infinite cylindrical rod is radial by symme-
try, and its amplitude E(r) follows directly from Gauss’ theorem by calculating the flux of
the radial field through a coaxial cylinder of radius r; the result is

E(r) =
ξ

2πεr

and the corresponding electrostatic potential is (where the subscript 0 indicates the vacuum
condition, reasonably correct very close to the line):

φ0 = − ξ

2πε
ln r/λ

where λ here is an arbitrary length determined by the boundary condition imposed on
φ(r).
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The radial structure of the double-layer sheath (in italian ”guaina”) may again be
studied within the PB theory. The cylindrical Poisson equation is:

1

r

d

dr

[
r
dφ

dr

]
= −q

ε
ρc(r)

where ρc(r) denotes the radial charge density. Consider first a single charged rod in a
monovalent ionic solution. The reduced potential ψ(r) = βqφ(r)

satisfies the PB equation:

1

r

d

dr

[
r
dψ

dr

]
= − 1

λ2
D

sinhψ(r)

to be solved subject to boundary conditions similar to to the one seen in the planar
case but adapted to the cylindrical geometry. For sufficiently low line charge ξ the reduced
potential is small everywhere, so that equation may be linearized by replacing sinhψ by
ψ. The solution for the electrostatic potential is:

φ(r) =
ξ

2πε
K0(r/λD)

where K0 is a modified Bessel function of the second kind; φ(r) goes over to φ0(r) at
short distances, and decays exponentially for r > λD, due to screening.

For sufficiently large line charge, non-linear effects become important and counterion
condensation sets in according to a scenario first proposed by Manning. Close to the
charged rod, the total electrostatic potential φ(r) goes over to φ0(r), within a constant,
so that the distribution of counterions is ρ(r) = ρ0e

−ψ(r) ∼ r−2Γ, where Γ = l/lB is
a dimensionless coupling parameter, equal to the ratio of the Bjerrium length and the
distance between the charges along the line.

The total number of counterions, calculated integrating the density, clearly diverges
at its lower bound when Γ > 1, which corresponds to a high line charge. This diver-
gence signals a strong accumulation or ’condensation’ of the counterions onto the rod or
polyelectrolyte chain. The condensed counterions will partially compensate for the line
charge and reduce its effective value until the radio Γ drops again below 1, and counterion
condensation ceases.

The polyelectrolyte and the sheath of condensed counterions is then equivalent to a
polyelectrolyte with an average distance between its charged segments equal to lB. The
remaining counterions form the ’diffuse’ part of the electric double-layer which, in the
presence of salt, extends radially over a distance of the order of λDH . Counterion con-
densation has a number of measurable consequences; in polyelectrolyte solutions it leads
to a reduction of the osmotic pressure, which is mainly due to the counterions, since the
fraction of the latter which are condensed does not contribute to the pressure. The con-
densed counterions are mobile along the axis of the rod or polyelectrolyte and form a kind
of one-dimensional Coulomb gas. The correlated fluctuations of the counterions condensed
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on two neighbouring parallel rods lead to an effective attraction be- tween equally charged
rods, via a purely classical mechanism reminiscent of the quantum fluctuations of bound
electrons which give rise to the van der Waals attraction between molecules.

2 What are we really doing with PB

Let us assume that the system we want to describe is in thermodynamic equilibrium and
that we can coarse grain the volume in such a way that in each region of space local
equilibrium is reached.

Then, it is natural to write that the free energy of the system can be written as integral
over volume of the local free energy density f(r) = F/V , plus the energetic contribution
originating by the external field.

F [ρ] =

∫
f(r)dr−

∫
ρ(r)ψ(r)dr

The equilibrium ρ(r) is the one that minimize the free energy, satisfying the constraint
that the total number of particles remains constant.

Then
δ
[
F [ρ]− µ(

∫
ρ(r)dr−N)

]
δρ(r)

= 0

which means[
F [ρ+ δρ]− µ(

∫
{ρ(r) + δρ(r)}dr−N)

]
−
[
F [ρ]− µ(

∫
ρ(r)dr−N)

]
= 0

δ

∫
f(r)dr−

∫
δρ(r)ψ(r)dr− µ

∫
δρ(r) = 0

If we take the ideal gas expression as

βf(r) = ρ(r)[ln ρ(r)Λ3 − 1]

then

δβf(r) = (ρ(r) + δρ(r))[ln(ρ(r) + δρ(r))Λ3 − 1]− ρ(r)[ln ρ(r)Λ3 − 1] =

(ρ(r) + δρ(r))[ln{ρ(r)(1 +
δρ(r)

ρ(r)
})Λ3 − 1]− ρ(r)[ln ρ(r)Λ3 − 1] =

to first order in δρ(r))

≈ ρ(r)
δρ(r)

ρ(r)
+ δρ(r))(ln{ρ(r)Λ3} − 1) = δρ(r)) ln{ρ(rΛ3)}
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so that, putting everything together we find that for all possible δρ(r)),∫
δρ(r))

[
kBT ln{ρ(r)Λ3} − ψ(r)− µ

]
dr = 0

which is equivalent to say (where µ, r independent, enforces the particle conservation law).[
ln{ρ(r)Λ3} − ψ(r)− µ

]
= 0

For the case of the electrolitic solutions, one can write expressions like the previous one
for each density species and find, identifying ψ(r) with qφ(r), the PB approximation

ρ±(r) = ρ0
±e
∓βqφ(r)

where the constant ρ0
± is chosen to satisfy the particle conservation law.
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