
We have seen how polymers, in their simplest description (ignoring polymer-solvent and
polymer-polymer interactions), are objects fully controlled by entropy. Their free-energy
is entropic. The important role of entropy on the configuration of the single chain carries
on also to polymer gels. In this section we discuss how to estimate the elastic constant of a
network of ideal polymers. As expected, we will discover that, due to entropy, the network
contracts on heating and expand on cooling.

1 Thermodynamics of rubbers

The first law of thermodynamics states that the change in internal energy of a system,
such as a polymeric network, is the sum of all the energy changes: heat added to the
system TdS, work done to change the network volume −pdV and work done upon network
deformation fdL:

dU = TdS − pdV + fdL

The differential dU represents the change in internal energy that arises if there is an entropy
change dS, a volume change dV , or sample length change dL. The internal energy U is
a thermodynamic state function of variables S, V, and L. The Helmholtz free energy F is
defined as internal energy minus the product of temperature and entropy:

F = U − TS

The change in the Helmholtz free energy is written in differential form:

dF = dU − d(TS) = dU − TdS − SdT = −SdT − pdV + fdL.

The Helmholtz free energy is a thermodynamic state function of variables T, V, and L. The
change in the Helmholtz free energy with the temperature is(

∂F

∂T

)
L,V

= −S

while the change with L can be written as a(
∂F

∂L

)
T,V

= f

The force f , applied to deform a network, consists of two contributions:

f =

(
∂F

∂L

)
T,V

=

[
∂(U − TS)

∂L

]
T,V

=

(
∂U

∂L

)
T,V

− T
(
∂S

∂L

)
T,V

= fE + fS

The two contributions to the force are an energetic term that is the change of internal
energy with sample length

fE =

(
∂U

∂L

)
T,V
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and an entropic term that is the product of temperature and the change of entropy with
sample length:

fS = −T
(
∂S

∂L

)
T,V

Since the second derivative of the Helmholtz free energy does not depend on the order
of differentiation:

∂2F

∂L∂T
=

∂2F

∂T∂L

the entropic force can be rewritten (as one of the Maxwell relations) as

fS = −T
(
∂S

∂L

)
T,V

= T

(
∂f

∂T

)
V,L

In a graph of the force vs T the slope indicates ∂f
∂T . The tangent line with slope ∂f

∂T ,
will intercept the y axis in a point indicating the energetic part of the force. The remaining
part is the entropic one. This construction is called Flory construction.

In typical crystalline solids, such as metals, the energetic contribution dominates the
force because the internal energy increases when the crystalline lattice spacings are dis-
torted from their equilibrium positions. In rubbers, the entropic contribution to the force
is more important than the energetic one. In ’ideal networks’ there is no energetic contri-
bution to elasticity, so fE = 0. The dominance of the entropic part bestows a peculiar tem-
perature dependence to the force at constant extension. While crystalline solids have the
force decrease weakly with increasing temperature, rubbers show the opposite behaviour.
The network strands lose conformational entropy when stretched making dS/dL < 0 and
the, force increases with increasing temperature.

2 Un-entangled gel elasticity

2.1 affine stretching model

Let’s try to describe the elastic properties of an ideal entropic gel, in which the energy of
the gel does not depend on volume or shape. Suppose we make a deformation which leads

Lx = λxLx0 Ly = λyLy0 Lz = λzLz0

In the hypothesis of an affine transformation, the chain ends will all change of the same
factor λx = λy = λz = λ.

Writing the entropy of a polymeric chain composed of N Kuhn segments, each of length
b, as

S(N,R) = −3

2
kB
< R2 >

Nb2
+ S(N, 0)
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we can write the variation of entropy induced by deformation on a single chain like

∆S = −3

2
kB(

(λ2x − 1) < R2
x > +(λ2y − 1) < R2

y > +(λ2z − 1) < R2
z >)

Nb2

In the undeformed state, < R2
x >=< R2

y >=< R2
z >= Nb2

3 . If we sum over all n chains
composing the system

∆Stot = −3

2
kB
n

3
(λ2x + λ2y + λ2z − 3) = −n

2
kB(λ2x + λ2y + λ2z − 3)

and the free energy changes

∆Ftot = −T∆Stot =
n

2
kBT (λ2x + λ2y + λ2z − 3)

Most gels are incompressible, and hence λxλyλz = 1.

2.2 Uniaxial Deformation

In a uniaxial expansion in which we deform the system of λ along x but at constant volume
we have

λx = λ λy = λz =
1√
λ

such that

∆Ftot = −T∆Stot =
n

2
kBT

(
λ2 +

2

λ
− 3

)
The corresponding force, for an uni-axial deformation along z is

fx =
∂∆Ftot
∂Lx

=
1

Lx0

∂∆Ftot
∂λ

=
nkBT

2Lx

(
2λ− 2

λ2

)
=
nkBT

Lx0

(
λ− 1

λ2

)
The stress component xx is calculated by dividing the force by the surface, in this case

LyLz. From here

σxx =
fx
LyLz

=
nkBT

Lx0LyLz

(
λ− 1

λ2

)
=
nkBT

V
λ

(
λ− 1

λ2

)
=
nkBT

V

(
λ2 − 1

λ

)
Finally, a Shear G module is defined as the relationship between stress and deformation.

Is it so

G =
nkBT

V

hence each chain contributes kBT to the shear modulus.
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3 A micro-network approach to polymer-gel elasticity

3.1 Micro-networks

In real networks, the ends of network strands are attached to other strands at crosslinks.
These crosslinks are not fixed in space — they can fluctuate around their average positions.
These fluctuations lead to a net lowering of the free energy of the system by reducing
the cumulative stretching of the network strands. The simplest model that incorporates
these fluctuations is called the phantom network model. To understand the physics of the
phantom network, we first study the elastic properties of micro-networks, networks on a
Caley tree which can be solved analytically. In this model, the boundary sites are stretched
affinely, while the interior sites are free to fluctuate.

The following derivation expands over the original calculation by W. W. Graessley,
Statistical Mechanics of Random Coil Networks, Macromolecules, 8, 186 (1975).
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Figure 1: First two generation of a micro-network. The blue sites are pinned (boundary
sites), the red sites (inner sites) are free to fluctuate.

We solve the first two iteration of the Caley tree and then we generalize the results to
arbitrary iteration. We assume that a polymer is a spring K. We define α2 ≡ K/2kBT ,
such that the energy of a polymer connecting sites i and j can be written as

U =
1

2
K|~ri − ~rj |2 = kBTα

2|~ri − ~rj |2

and the associated Boltzmann factor as exp(−α2|~ri − ~rj |2)
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3.2 Inner and boundary sites in a Caley tree

To evaluate the number of boundary sites in iteration j, P j we can consider that the
number of boundary sites in iteration j is the same as the number of boundary sites of the
previous iteration times the new number of bonds departing from them (f − 1)

Pj = Pj−1(f − 1) with P1 = f

and hence
Pj = f(f − 1)j−1

The total number of strands at iteration j, Nj,strands can be obtained by summing
over all perimeter sites of all previous iterations. The new strands are indeed the one that
connect to the new boundary sites. Then

Nj,strands =

j∑
k=1

Pk =

j∑
k=1

f(f − 1)k−1 = f
(f − 1)j − 1

f − 2

3.2.1 First iteration

In the first iteration the Caley tree is composed by a central site with f strands attached
to it and f boundary sites. We call ~r1, ..., ~rf the position of the boundary sites and ~rp
the central junction position. The position of the vertex sites and of the central site is
controlled by statistical mechanics. Hence we will need to evaluate the partition function
of the system. For each specific position of the vertex sites (each of them with its own
probability to exist) the vertex sites act as an external field for the interior sites. We start
by evaluating the free energy of the system for a fixed position of the vertex sites.

The partition function of the free sites of this j = 1 micro-network is then simply

Z =

∫
d~rpe

−βH

and

βH = α2
f∑
i=1

|~ri − ~rp|2

where |~ri − ~rp|2 = (xi − xp)2 + (yi − yp)2 + (zi − zp)2. Expanding all the squares

βH = α2

(
f∑
i=1

x2i − 2xp

f∑
i=1

xi + fx2p + ......same for y and z

)
If we integrate over ~rp, direction by direction we have to calculate∫

dxp exp

{
−α2

(
f∑
i=1

x2i − 2xp

f∑
i=1

xi + fx2p

)}
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We can re-write the argument of the exponential function as

f(xp −A)2 +B = fx2p − 2Afxp + fA2 +B

with the identification of

A =
1

f

f∑
i=1

xi B =

f∑
i=1

x2i −
1

f

(
f∑
i=1

xi

)2

such that∫
dxp exp(−α2[f(xp −A)2 +B]) =

√
2πσ2 exp(−α2B) =

√
2π

2α2f
exp(−α2B) =

√
π

α2f
e
−α2

[∑f
i=1 x

2
i−

1
f

(∑f
i=1 xi

)2]

Then

Z(~r1, ....~rf ) =

(
π

α2f

)3/2

e
−α2

[∑f
i=1 x

2
i−

1
f

(∑f
i=1 xi

)2]
e
−α2

[∑f
i=1 y

2
i−

1
f

(∑f
i=1 yi

)2]
e
−α2

[∑f
i=1 z

2
i−

1
f

(∑f
i=1 zi

)2]

and the free energy is

βF (~r1, ....~rf ) = −3

2
log

(
π

α2f

)
+α2

 f∑
i=1

x2i −
1

f

(
f∑
i=1

xi

)2
+

 f∑
i=1

y2i −
1

f

(
f∑
i=1

yi

)2
+

 f∑
i=1

z2i −
1

f

(
f∑
i=1

zi

)2


The change in free energy upon stretching this specific configuration of boundary sites is
then

βF (~λ~r1, ....~λ~rf )− βF (~r1, ....~rf ) =

α2

(λ2x − 1)

 f∑
i=1

x2i −
1

f

(
f∑
i=1

xi

)2
+ (λ2y − 1)

 f∑
i=1

y2i −
1

f

(
f∑
i=1

yi

)2
+ (λ2z − 1)

 f∑
i=1

z2i −
1

f

(
f∑
i=1

zi

)2


We now have to average this free energy over all possible configurations of boundary
sites. We need to calculate for each direction

<

 f∑
i=1

x2i −
1

f

(
f∑
i=1

xi

)2
 >=< X2 >

where we have defined implicitly X2 and the average is now over x1, ....xf . Thus we need
to evaluate
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< X2 >=

∫
dx1...dxfX

2Z(~x1, ....~xf )∫
d~x1...d~xfZ(~x1, ....~xf )

where

Z(x1, ....xf ) =

√
π

α2f
e−α

2X2

Expanding X2 one can write with a linear transformation

X2 =
∑
i

∑
j

bijζiζj =

f∑
i=1

ω2
i v

2
i

where among the f eigenvalues one is zero due to the translational invariance of the system
(the one that we would have eliminated by going from x1...xf to x1, x2 − x1, ..xf − x1).
Hence we can change variable and write (eliminating the

√
π
α2f

term from both numerator

and denominator)

< X2 >=
V
∫
v1...vf−1

∑f−1
i=1 ω

2
i v

2
i e
−α2

∑f−1
i=1 ω

2
i v

2
i

V
∫
dv1...dvf−1e

−α2
∑f−1

i=1 ω
2
i v

2
i

which separates in f − 1 factors, each of them equal to∫
dviω

2
i v

2
i e
−α2ω2

i v
2
i∫

vie
−α2ω2

i v
2
i

= ω2
i σ

2 = ω2
i

1

2α2fω2
i

=
1

2α2

Then, summing up each of the f − 1 terms

< X2 >= (f − 1)
1

2α2

and

β∆F = α2

(
(λ2x − 1)

(f − 1)

2α2
+ (λ2y − 1)

(f − 1)

2α2
+ (λ2z − 1)

(f − 1)

2α2

)
β∆F =

(f − 1)

2

(
λ2x + λ2y + λ2z − 3

)
Note that f − 1 = P1 − 1. If we assume that our system is composed by N0 of these

micro-networks (or equivalently by fN0 strands (Nstrands = f N0), we can multiply β∆F
by N0 and, per unit volume

β∆F ∗

V
=
N0

V

(f − 1)

2

(
λ2x + λ2y + λ2z − 3

)
= ν

(f − 1)

2f

(
λ2x + λ2y + λ2z − 3

)
where we have defined ν = Nstrands/V .
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3.2.2 Second iteration

Let’s consider the case of a second iteration network, in a similar way. For simplicity let’s
assume f = 4 so that there are 12 boundary sites (numbered from 1 to 12) and five inner
sites (numbered 13 to 17)

The hamiltonian is (only the x component for simplicity)

βH = α2
[
(x13 − x1)2 + (x13 − x2)2 + (x13 − x3)2 + (x13 − x17)2 + .........

]
and by evaluating the squares

βH = α2
[
x213 + x21 − 2x13x1 + x213 + x22 − 2x13x2 + x213 + x23 − 2x13x3 + x213 + x217 − 2x17x3 + .........

]
βH = α2

[
fx213 + (x21 + x22 + x23 + x217)− 2x13(x1 + x2 + x3 + x17) + .........

]
βH = α2[f

16∑
i=13

x2j +

12∑
i=1

x2i + fx217 − 2x17

16∑
i=13

xi

−2x13(x1 + x2 + x3)− 2x14(x4 + x5 + x6)− 2x15(x7 + x8 + x9)− 2x16(x10 + x11 + x12)]

and we need to integrate over dx13....dx17 to evaluate the free energy for fixed boundary
sites.

Let’s consider the integration over x13.∫
dx13e

−α2[fx213−2x17x13−2x13(x1+x2+x3)]

The polynomial[
fx213 − 2x17x13 − 2x13(x1 + x2 + x3)

]
= f

[
x213 − 2x13(x1 + x2 + x3 + x17)/f

]
=

f

[(
x13 −

(x1 + x2 + x3 + x17)

f

)2

− (x1 + x2 + x3 + x17)
2

f2

]
which gives∫

dx13e
−α2f

[(
x13− (x1+x2+x3+x17)

f

)2
− (x1+x2+x3+x17)

2

f2

]
= e

α2f
(x1+x2+x3+x17)

2

f2

√
2π

2α2f

and after integrating over dx14....dx16(√
π

α2f

)4

e
α2f

(x1+x2+x3+x17)
2

f2 e
α2f

(x4+x5+x6+x17)
2

f2 e
α2f

(x7+x8+x9+x17)
2

f2 e
α2f

(x10+x11+x12+x17)
2

f2

We can now integrate over x17, after adding the term fx217 which is in the Hamiltonian,

e−α
2fx217e

α2f
(x1+x2+x3+x17)

2

f2 e
α2f

(x4+x5+x6+x17)
2

f2 e
α2f

(x7+x8+x9+x17)
2

f2 e
α2f

(x10+x11+x12+x17)
2

f2 =
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e−α
2fx217e

α2ff
x217
f2 e

α2f
(x1+x2+x3)

2+(x4+x5+x6)
2+(x7+x8+x9)

2+(x10+x11+x12)
2

f2 e
α2f

2x17
∑12

i=1 xi
f2

which gives

e
α2 (x1+x2+x3)

2+(x4+x5+x6)
2+(x7+x8+x9)

2+(x10+x11+x12)
2

f

∫
dx17e

−α2[(f−1)x217−
2x17

∑12
i=1 xi

f
]

and similarly as previously done, completing the square

= e
α2 (x1+x2+x3)

2+(x4+x5+x6)
2+(x7+x8+x9)

2+(x10+x11+x12)
2

f

∫
dx17e

−α2(f−1)[x17−
∑12

i=1 xi
f(f−1)

]2
e
α2[

∑12
i=1 xi

f(f−1)
]2

such that the entire integration over the boundary sites is(√
π

α2f

)4√ π

(f − 1)α2
e
α2 (x1+x2+x3)

2+(x4+x5+x6)
2+(x7+x8+x9)

2+(x10+x11+x12)
2

f e
α2[

∑12
i=1 xi

f(f−1)
]2

To this term one need to add also the contribution

e−α
2
∑12

i=1 x
2
i

which was already included in the Hamiltonian. Then defining

X2 =

12∑
i=1

x2i−
(x1 + x2 + x3)

2 + (x4 + x5 + x6)
2 + (x7 + x8 + x9)

2 + (x10 + x11 + x12)
2

f
−[

∑12
i=1 xi

f(f − 1)
]2

the final result is obtained

=

(√
π

α2f

)4√ π

(f − 1)α2
e−α

2X2

Repeating the same arguments already developed for the iteration one case, one can
now evaluate < X2 > finding as result for the single micro-network (calling P2 the number
of boundary sites at the second iteration)

β∆F =
(P2 − 1)

2

(
λ2x + λ2y + λ2z − 3

)
and for a collection of N0 of them

β∆F ∗

V
= N0

(P2 − 1)

2

(
λ2x + λ2y + λ2z − 3

)
= ν

P2 − 1

2N2,strands

(
λ2x + λ2y + λ2z − 3

)
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3.2.3 Infinite iteration

The previous expression can be generalized at infinite iteration j →∞ defining a quantity
Rj (commonly named front factor) as

Rj =
Pj − 1

Nj,strands

and evaluating its limiting value

limj→∞Rj = limj→∞
f(f − 1)j−1 − 1

f (f−1)j−1
f−2

= neglecting the -1 in both expressions =
f − 2

f − 1

3.2.4 Inner and surface contributions

To separate the contribution to the elastic energy arising from the boundary sites and from
the internal sites one can express R as a sum over the two contributions in the following
way. We define F the fraction of boundary strands

F =
P

Nstrands

and similarly 1− F the fraction of inner strands. Since

R =
P − 1

Nstrands

R = F − 1

Nstrands

Next we want to express R as a function of F and 1−F only, so that we can discriminate
between the contribution of the inner sites from the contribution of the boundary sites.
From the expression of Nstrands and P ,

Nstrands =
f

f − 2
[(f − 1)j − 1] P =

f

f − 1
(f − 1)j

we have

Nstrands =
f

f − 2

[
f − 1

f
P − 1

]
thus, dividing both sides by Nstrands

1 =
f

f − 2

(
f − 1

f
F − 1

Nstrands

)
or

− 1

Nstrands
=
f − 2

f
− f − 1

f
F
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such that

R = F +
f − 2

f
− f − 1

f
F = F +

f − 2

f
(1− F + F )− f − 1

f
F

R =
f − 2

f
(1− F ) + (1 +

f − 2

f
− f − 1

f
)F =

f − 2

f
(1− F ) +

f − 1

f
F

which tells us that f−2
f comes from the internal strands and f−1

f comes from the bound-
ary strands.

Thus, for a real system, made essentially of internal strands, instead of R∞ one need
to use f−2

f . The final expression for the free-energy change upon stretching for a realistic
network is thus

β∆F ∗

V
= ν

f − 2

f

(
λ2x + λ2y + λ2z − 3

)

3.3 Phantom Network Model

The main assumption of the affine network model is that the ends of network strands (the
crosslink junctions) are fixed in space and are displaced affinely with the whole network, as
if they were permanently attached to some elastic background. In real networks, the ends
of network strands are attached to other strands at crosslinks. These crosslinks are not
fixed in space — they can fluctuate around their average positions. These fluctuations lead
to a net lowering of the free energy of the system by reducing the cumulative stretching of
the network strands. The simplest model that incorporates these fluctuations is called the
phantom network model. In a phantom network, the strands are ideal chains with ends
joined at crosslinks. The ends of the strands at the surface of the network are attached to
the elastic non-fluctuating boundary of the network. This attachment fixes the volume of
the phantom network and prevents its collapse that would have been inevitable because
such simple models ignore excluded volume interactions between monomers.

To evaluate the elastic modulus of the phantom network, we will progressively convert
the cross-linked network into a polymer melt of suitable length polymers.

We have seen that an ideal polymer of length N can be considered as an entropic spring
of elastic constant Kp = 3kBT/Nb

2. The network can be considered as composed by nodes
of functionality f connected by springs of strength Kp.

The phantom network model assumes that the distance between two cross-links con-
nected by a ”spring” has a deterministic part (the time average) and a fluctuating part, and
that there is no correlation between the two. In one dimension, calling x0 the equilibrium
distance and ∆x the instantaneous displacement

< x2 >=< (x0 + ∆x)2 >=< x20 > + < ∆x2 >
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The phantom network model assumes that, upon stretching, x0 is affinely deformed,
while < ∆x2 > remains identical.

Then
< x2λ >=< (λx0 + ∆x)2 >= λ2 < x20 > + < ∆x2 >

The difference in elastic energy before and after stretching is thus

∆E =
1

2
Kp(< x2λ > − < x2 >) =

1

2
Kp < x20 > (λ2 − 1)

The phantom network model assumes also (see next subsection) that

< ∆x2 >=
2

f
< x2 >

which implies, since < x20 >=< x2 > − < ∆x2 >

< x20 >=< x2 >

(
1− 2

f

)
Then

∆E =
1

2
Kp(λ

2 − 1) < x2 >

(
1− 2

f

)
Here comes the delicate point. If we assume that we create the cross-links instanta-

neously, then the distribution of x2 will be identical to the one just before cross-linking.
But before cross-linking

1

2
Kp < x2 >=

1

2
kBT

and than we can write that the change of energy per strand is

∆E =
1

2
kBT (λ2 − 1)

(
1− 2

f

)
which coincides with the micro-network expression in the limit of infinite iteration and for
internal bonds.

Note that, from an energetic point of view, assuming 1
2Kp < x2 >= 1

2kBT means that
before cross-linking the energy in the system was

1

2
kBTNstrands

and it was essentially all in < ∆x2 >, since in the absence of cross-links, x0 = 0 and
< x2 >=< ∆x2 >. After cross-linking, this energy is splitted in two parts, a reference
energy (the one associated to the average positions) which is in 1

2KP < x20 > and an
additional energy which is associated to the fluctuations 1

2KP < ∆x2 >. This energy,
summed over all strands, must be equal to 1

2kBT time the number of sites, being after
cross-linking nothing more than the energy of the Nsites phonon modes (in1 d, see next
subsection).
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3.4 How to explain < ∆x2 >= 2
f
< x2 >

The phantom network model assumes that

< ∆x2 >=
2

f
< x2 >

Consider that the network has N sites. We expand the potential energy around the
average positions, such that the energy is a sum of a constant piece (the energy when there
are no fluctuations) E0 and a vibrational contribution. Being an harmonic system, the
potential energy of this vibrational contribution is (3d).

U =
3

2
kBTN

Then the energy per strand (associated to the vibration) is, since we have Nstrands = Nf/2,

U

Nstrand
=

3

2
kBT

2

f

Then
1

2
Kp < ∆x2 >=

1

2
kBT

2

f

or

< ∆x2 >=
1

Kp
kBT

2

f
.

We have discussed previously that assuming cross-linking does not modify the equilibrium
properties,

1

2
Kp < x2 >=

1

2
kBT

such that
1

Kp
kBT =< x2 > → < ∆x2 >=

2

f
< x2 >

4 Balloon inflation (Doi)

As an example of the nonlinear analysis of the deformation of rubbers, we consider the
inflation of a rubber balloon. We assume that the balloon is a thin membrane arranged
as a spherical shell (see Fig. 2). Let h be the thickness of the membrane and let R be the
radius of the sphere in the force free state. Suppose that we inflate the balloon and make
the pressure inside the balloon higher than that outside by ∆P . We will calculate the
balloon radius R′ as a function of ∆P .

If the radius is changed by a factor λ = R′/R, the rubber membrane is stretched by a
factor λ in each orthogonal direction in the plane, and compressed by a factor λ−2 along
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Figure 2:
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the direction normal to the plane due to the incompressible condition. Therefore the free
energy of deformation per unit volume is (G/2)(2λ2 + λ−4 − 3), and the total free energy
of the system is given by

Ftot(λ) = 4πR2hG(2λ2 + λ−4 − 3)− 4π

3
R3∆P (λ3 − 1)

The second term represents the work needed to change the air volume in the balloon (recall
that ∆P is the difference of pressure between inside and outside). The equilibrium value
of λ is given by the condition ∂Ftot/∂λ = 0. This gives

4πR2hG(4λ− 4λ−5)− 4π

3
R3∆P3λ2 = 0

Figure 2(b) shows the relation between λ and ∆P . The curve denoted by (i) in the figure
indicates the previous equation. According to this equation, ∆P takes a maximum ∆Pc at
λc = 71/6 ≈ 1.38. If ∆P is less than ∆Pc, λ increases with the increase of ∆P . However if
∆P exceeds ∆Pc, there is no solution. If a pressure higher than ∆Pc is applied, the balloon
will expand indefinitely and will rupture. In real rubbers, this does not happen due to the
finite extensibility of the chain. If the effect of finite extensibility is taken into account, the
relation between λ and ∆P becomes as shown by curves (ii) or (iii) in Fig. 2(b). In the
case of (ii), the balloon radius changes discontinuously at a certain pressure. In the case
of (iii), there is no discontinuity, but the balloon radius changes drastically at a certain
pressure. Such phenomena are indeed seen in real balloons.

5 Swelling a gel (Doi)

A polymer gel is a mixture of a polymer network and a solvent. Such a gel is elastic like
a rubber, but unlike rubber, gel can change its volume by taking in (or expelling) solvent.
For example, when a dried gel is placed in a solvent, the gel swells by absorbing the solvent
from the surroundings. This phenomenon is called swelling. Conversely, if the gel is placed
in air, the solvent evaporates, and the gel shrinks. The volume change of a gel can also be
caused by external forces. If a weight is placed on top of a gel, solvent is squeezed out from
the gel, and the gel shrinks. To discuss the equilibrium state, we define the deformation
free energy fgel(λi) for a gel. This is defined as follows.

We consider a gel which has a cubic shape of volume Vg0 in the reference state. Suppose
that this gel is immersed in a pure solvent of volume Vs0 (same solvent as the one in which
the gel was made for simplicity), and is stretched along three orthogonal directions by
factors λ1, λ2, and λ3. The volume of the gel is now λ1λ2λ3Vg0 , and the total volume
of the system is Vg0 + Vs0 . The deformation free energy density fgel(λi) is defined as the
difference in the free energy between the final and initial state divided by Vg0 . As in the
case of rubber, the equilibrium state of the gel under external forces can be calculated
if fgel(λi) is known. Let us consider the actual form of fgel(λi). The deformation free
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energy of a gel consists of two parts. One is the elastic energy fela(λi), the energy needed
to deform the polymer network, and the other is the mixing energy fmix(λi), the energy
needed to mix the polymer and solvent: fgel(λi) = fela(λi) + fmix(λi). The elastic energy
fela(λi) has the same origin as that of rubber and can be written as

fela(λi) =
G0

2
(λ21 + λ22 + λ23 − 3)

where G0 is the shear modulus of the gel in the reference state. The mixing energy
fmix(λi) has the same origin as that of polymer solutions, and may be written in the same
form. If the volume fraction of polymer in the reference state is φ0, the volume fraction in
the swollen state is

φ =
φ0

λ1λ2λ3
When the volume fraction changes from φ0 to φ, a polymer solution of concentration φ0
and volume Vg0 is mixed with pure solvent of volume ( λ1λ2λ3 − 1)Vg0 , and becomes a
solution of concentration φ and volume λ1λ2λ3Vg0.

Calling fsol(φ) the free energy density of the polymer solution of concentration φ, the
change in the free energy of the gel

∆Fgel = λ1λ2λ3Vg0fsol(φ)− Vg0fsol(φ0)

to which we have to add the loss of free energy of the pure solvent which has entered in
the gel (and it is now included in fsol(φ))

∆Fsol = −[λ1λ2λ3 − 1]Vg0fsol(0)

Then,

∆Fgel + ∆Fsol = Vg0fmix(λi) = λ1λ2λ3Vg0fsol(φ)− Vg0fsol(φ0)− (λ1λ2λ3 − 1)Vg0fsol(0)

Then

fmix(λi) =
φ0
φ

[fsol(φ)− fsol(0)]− [fsol(φ0)− fsol(0)]

The last term does not depend on λi, and will be dropped in the subsequent calculation.
The free energy of the polymer solution fsol(φ) is given by the Flory-Hugging free

energy. Since the number of polymer segments, N , in the polymer network can be regarded
as infinite, fsol(φ) can be written as

fsol(φ) =
kBT

vc
[(1− φ)ln(1− φ) + χφ(1− φ)]

We note that fsol(0) = 0. Therefore, the free energy density of the gel is given by

fgel(λi) =
G0

2
(λ21 + λ22 + λ23 − 3) +

φ0
φ
fsol(φ)

We shall now study the equilibrium state of the gel using this expression.
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5.1 Swelling equilibrium

Consider the equilibrium state of the gel. If there is no force acting on the gel, the gel
expands isotropically, so we may set λ1 = λ2 = λ3 = λ. Now λ can be expressed by φ and
φ0 as λ = (φ0/φ)1/3. Therefore,

fgel(φ) =
3G0

2

((
φ0
φ

)2/3

− 1

)
+
φ0
φ
fsol(φ)

The equilibrium state of the gel is obtained by minimizing this expression with respect to
φ. The condition ∂fgel/∂φ = 0 gives

∂fgel
∂φ

=
3G0

2

(
−2

3

)
φ
2/3
0 φ−5/3 − φ0

φ2
fsol(φ) +

φ0
φ

dfsol(φ)

dφ
= 0

and multiplying by φ2/φ0,

G0

(
φ0
φ

)1/3

= φ
dfsol(φ)

dφ
− fsol(φ)

which, by defining Πsol(φ) as the right site can be written

Πsol(φ) = G0

(
φ0
φ

)1/3

We note on passing that Πsol(φ) is exactly the (osmotic) pressure. Indeed

F = V f(φ) P = −∂F
∂V

= −f(φ)− V ∂f

∂V
= −f(φ) + φ

∂f

∂φ

Then, the left-hand side of the equation represents the force that drives polymers to
expand and mix with the solvent, while the right-hand side represents the elastic restoring
force of the polymer network which resists the expansion. The equilibrium volume of the
gel is determined by the balance of these two forces. If the mixing free energy fsol is given
by the Flory Huggins free-energy, Πsol(φ) is given by

Πsol(φ) =
kBT

vc
[−ln(1− φ)− φ− χφ2]

The parameter χ on the right-hand side is a function of temperature T . Therefore in
the following, we shall discuss the volume change of the gel when χ is changed.

Figure 3(a) illustrates the graphical solution of the previous equation. The figure shows
the right-hand side and the left-hand side of the equation as a function of φ for various
values of χ. The solution is given by the intersection of the two curves. Figure 3(b) shows
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Figure 3:

the solution φ as a function of χ . As χ increases, i.e., as the affinity between the polymer
and solvent decreases, the polymer concentration φ increases, and the gel shrinks.

An analytical solution can be obtained in the case of φ << 1. In this case, Πsol(φ) may
be approximated as

Πsol(φ) =
kBT

vc

(
1

2
− χ

)
φ2

such that φ

φ = φ0

[
G0vc
kBTφ20

1

(1/2− χ))

]3/5
If 1/2−χ is large, φ is small, i.e., the gel is swollen. The gel starts to shrink quickly as

χ approaches 1/2. Notice that the critical χ value χc = 1/2 is equal to the critical χ value
in polymer solutions. In the case of polymer solutions, if the affinity between polymer and
solvent gets worse, phase separation takes place. In the case of gels, rapid shrinking of the
gel takes place.

5.2 Volume transition

When phase separation takes place in solutions, Πsol(φ) has a local maximum and local
minimum as shown in Figure 3(c). If Πsol(φ) has such a form, the equilibrium volume of
the gel can change discontinuously as shown in Fig. 3(d). This phenomenon is called a
volume transition. The volume transition of a gel is a phenomenon similar to the gas-liquid
transition of a simple liquid: the volume of a liquid changes discontinuously at the boiling
temperature. However, there is an essential difference between the two phenomena. The
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difference comes from the fact that the usual gas-liquid transition is a phenomenon taking
place in a fluid, while the volume transition of a gel is a phenomenon taking place in an
elastic material. The difference can be seen in the transient states occurring during the
phase transition. When a material changes from a liquid phase to a gas phase, there is
an intermediate state where the two phases coexist. At this state, there is a cost of free
energy for the coexistence of the two phases. In the case of a fluid, this cost is the interfacial
energy (the energy which is proportional to the interfacial area, which is negligibly small
compared with the bulk free energy. On the other hand, in the case of a gel, the cost of
the coexistence is the elastic energy of the material. For example, consider the situation
that a swollen phase of a gel coexists with a shrunken phase. Since the gel is a continuum,
the phases cannot coexist keeping their shapes in the force free state; both phases must be
deformed from the force free state (see Fig. 4). This cost is the elastic energy of deformation
and is proportional to the volume of the material. Therefore the cost of coexistence cannot
be ignored in the case of elastic materials. This affects the phase transition behaviour. For
example, even if the bulk free energy of the swollen gel is equal to that of the shrunken
gel at a certain temperature, the phase transition cannot take place at this temperature
since for the transition to take place, a large free energy cost is needed. As a result, the
temperature at which the shrunken phase turns into the swollen phase is different from
the temperature at which the swollen phase turns into the shrunken phase. Therefore the
volume transition of gels shows strong hysteresis.

19



Figure 4:
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