
1 Liquid Crystals (Doi Chapter 5, Selinger, Soft-Matter)

A liquid crystal is a state of matter which has an intermediate order between liquid and
crystal. While fluid in nature, liquid crystals possess order in molecular orientation. Due
to this ordering, the molecular orientation of liquid crystals is easily controlled by relatively
weak external forces such as electric fields. In usual liquids, a very large electric field (of the
order of MV/mm) is needed to orient the molecules which are vigorously moving by thermal
motion. Once the material is in the liquid crystalline state, the molecular orientation can
be controlled by field strengths of a few tenths of a V/mm. This aspect of liquid crystals
is extensively used in display devices. A liquid crystal is an example that shows that the
collective nature of soft matter is created by phase transitions. The molecules constituting
liquid crystals are not large (their size is ca. 1nm), but in the liquid crystalline state, these
molecules arrange themselves in order, and move collectively. In this chapter, we shall
discuss how the interaction of molecules creates spontaneous ordering in materials. This
phenomenon is generally called an order-disorder transition. The transition from normal
liquid to liquid crystal is an instructive example of order-disorder transition.

There are many types of liquid crystalline order, but here we shall focus on a specific
type, i.e., the nematics. Nematics are the simplest type of liquid crystals, yet it is the most
widely used type. The nematic phase is formed by rod-like molecules. At high temperature,
the orientation of the molecules is completely random, and the system is an isotropic liquid.
With decreasing temperature, the molecules start to orient in a common direction —and
form the nematic phase. The nematic phase is an anisotropic liquid: its optical, electrical,
and magnetic properties are anisotropic like a crystal, yet the system is still in a liquid
state and can flow. Apart from a few exceptions, nematics are uniaxial, i.e., the system
has a rotational symmetry around a certain axis. This axis is called the director, and is
specified by a unit vector ~n.

The most apparent characteristic of the nematic phase is birefringence, i.e., anisotropy
in the transmission of light. Consider a nematic sample sandwiched between two polarizing
films (polarizer and analyser), with their polarization axes set orthogonal to each other,
and incident light directed normal to the film. If the sample is an isotropic liquid, the
intensity of the transmitted light is zero since the polarization axes of the two films are
orthogonal. If the sample is nematic, however, a certain amount of the incident light is
transmitted. The intensity of the transmitted light is a function of the angle θ that the
director ~n makes with the polarizing axis; the transmission is zero when θ is equal to 0
or π/2, and takes a maximum when θ = π/4. Since the director ~n can be changed by an
electric field, the transmission of light can be easily controlled. This is the principle of how
nematics work in display devices.
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1.1 Orientational distribution function

To distinguish the nematic phase from the isotropic phase, let us consider the distribution
of the molecular orientation. Let ~u be a unit vector (|u| = 1) in the direction of the long
axis of the molecule. In the isotropic phase, ~u will be uniformly distributed on a unit
sphere. In the nematic phase, the distribution of ~u becomes non-uniform on the sphere.
Let ψ(~u) be the distribution function of ~u on the unit sphere. It is normalized as∫

d~uψ(~u) = 1

where d~u stands for the surface element of the sphere |u| = 1, and the integral is done
over the entire surface. In the isotropic phase, ψ(~u) is constant, independent of ~u, and
therefore

ψ(~u) =
1

4π

On the other hand, in the nematic phase, ψ(~u) will be oriented toward the direction of
the director ~n (also with unitary modulus) , and ψ(u) becomes anisotropic.

1.2 Order parameter for nematics

Let us consider a parameter which characterizes the anisotropy of ψ(~u) in the nematic
phase. An obvious candidate for such a parameter is the first moment, < uα >, (α =
x, y, z), where < · · · > stands for the average for the distribution function ψ(~u), i.e.,

< · · · >=

∫
d~u · · · ψ(~u)

However, for the symmetric ellipsoidal molecules shown in Fig. 5.1(a), < uα > is always
equal to zero since the states specified by ~u and −~u are identical, and therefore ψ(~u) has
an inversion symmetry ψ(~u) = ψ(−~u).

One could then consider quantities like ~u · ~u or ~u × ~u. Both of them would not work,
giving a trivial one or zero value in all phases.

Let us therefore consider the second moment at tensorial level, T =< ~u ⊗ ~u >, or
equivalently in term of components < uαuβ >.

In the isotropic state, < uαuβ >∼ δαβ since different directions are uncorrelated. Since,
in addition < u2xx >=< u2yy >=< u2zz > and∑

α

< u2αα >= 1

then

< uαuβ >=
1

3
δαβ
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In the isotropic phase, then T appears as

T =

1
3 0 0
0 1

3 0
0 0 1

3


On the other hand, if ~u is completely aligned along ~n (maximum oriented state) and if

we call ẑ the direction of the nematic vector we have

T =

0 0 0
0 0 0
0 0 1


proving that the tensor T is indeed able to discriminate between the isotropic and the

nematic phases. To make T an even more convenient order parameter, one can subtract
the value that T assumes in the isotropic phase. The new T′ = T − 1/3I is such that its
value in the isotropic phase is now zero. In the nematic phase

T′ =

−1
3 0 0

0 −1
3 0

0 0 2
3


Finally, just to make the order parameter to look better, we multiply it by 3/2 (not

everybody does it). The final order parameter tensor, named Q is thus

Q =
3

2
T ′ =<

3

2

(
~u⊗ ~u− 1

3
I

)
>

or in terms of components

Qα,β =<
3

2
uαuβ −

1

2
δα,β > (1)

Qαβ represents the orientational order of the molecules in the nematic phase and is
called the order parameter. It is zero in the isotropic phase and

Q =

−1
2 0 0

0 −1
2 0

0 0 1


(non-zero) in the maximally oriented nematic phase. It is also evident that Q has two
important properties: it is symmetric and it is traceless.

Let’s now consider a case of partial ordering. Let’ us also assume uniaxial symmetry
around the axis of ~n. This means that ~u has equal probability on the the plane perpendic-
ular to ~n. The three components of ~u can be written in spherical coordinates

~u = (sin θ cosφ, sin θ sinφ, cos θ)
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and then

T =<

 (sin θ cosφ)2 sin θ cosφ sin θ sinφ sin θ cosφ cos θ
sin θ sinφ sin θ cosφ (sin θ sinφ)2 sin θ sinφ cos θ

sin θ cosφ cos θ cos θ sin θ sinφ (cos θ)2

 >

Due to the uniaxial property, the average of sinφ and cosφ is zero while the average of
sin2 φ and cos2 φ is 1/2. Then

T =<

1
2 sin2 θ 0 0

0 1
2 sin2 θ 0

0 0 cos2 θ

 >

and

Q =
3

2

(
T− 1

3
I

)
=<

3
4 sin2 θ − 1

2 0 0
0 3

4 sin2 θ − 1
2 0

0 0 3
2 cos2 θ − 1

2

 >=

<

3
4(1− cos2 θ)− 1

2 0 0
0 3

4(1− cos2 θ)− 1
2 0

0 0 1
2(3 cos2 θ − 1)

 >=<

−S
2 0 0

0 −S
2 0

0 0 S

 >

where

S =<
1

2

(
3 cos2 θ − 1

)
>=

3

2
< (~u · ~n)2 − 1

3
>

is the 2nd order Legendre polynomial. In case of ordering along x or along y we have
correspondingly S 0 0

0 −S
2 0

0 0 −S
2

 or

−S
2 0 0

0 S 0

0 0 −S
2


If the distribution of ~u has a uniaxial symmetry around the axis of ~n, Qαβ can be

written as

Qαβ = S

(
3

2
nαnβ −

1

2
δαβ

)
(2)

This can be seen by explicitly writing Q for ~n along ẑ as

Q = S

3

2

0 0 0
0 0 0
0 0 1

− 1

2

1 0 0
0 1 0
0 0 1

 = S

3

2

0 0 0
0 0 0
0 0 (ẑ)z(ẑ)z

− 1

2

1 0 0
0 1 0
0 0 1


S is a parameter representing how perfectly the molecules are aligned along ~n or along

-~n. If the alignment is perfect, S is equal to 1. If there is no alignment, S is equal to 0.
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Thus S also represents the degree of the order in the nematic phase, and is called the scalar
order parameter. To avoid confusion with S, Q is often called the tensor order parameter.
The tensor order parameter Qαβ includes two pieces of information. One is how strongly
the molecules are aligned; this is represented by the scalar order parameter S. The other
is the direction in which the molecules are aligned; this is represented by the director ~n.
Note that the two other eigenvectors are degenerate, since there is no specific orientation
on the plane perpendicular to ~n (uniaxial nematic). In principle, one could imagine also
bi-axial nematics in which there is a preferential direction in the plane perpendicular to ~n.
Research on bi-axial nematic is underway.

From Q one can calculate S and ~n by diagonalizing the matrix and estimating the three
eigenvalues and the three eigenvectors. S is the largest eigenvalue (the only one positive
in the thermodynamic limit) and ~n is the corresponding eigenvector.

2 Landau-de Gennes theory

2.1 Expression for the free energy near the transition point

Phase transitions which involve changes in the ordering of molecules (or atoms) are gen-
erally called order-disorder transitions. The order-disorder transition is characterized by
the order parameter which is equal to zero in the disordered state, and is non-zero in the
ordered state. The isotropic-nematic transition is an example of an order-disorder tran-
sition. Another example of an order-disorder transition is the magnetic transition. The
magnetic state of ferromagnets changes from an ordered state to a disordered state at a
certain temperature Tc. Below Tc, the magnetic moments of atoms are ordered, and there
is a spontaneous magnetic moment M. Above Tc, the magnetic moments of atoms become
random, and M vanishes. Therefore the magnetic moment M can be regarded as the order
parameter in the magnetic transition. Though the nematic transition looks similar to the
magnetic transition, there is an essential difference. The difference exists in the behaviour
of the order parameter near the phase transition. In the case of the magnetic transition,
the magnetic moment M changes continuously as a function of temperature. The magnetic
moment is zero above Tc, and is non-zero below Tc, but it changes continuously at Tc.
On the other hand, in the case of the nematic transition, the order parameter S changes
discontinuously at Tc.

As we have seen the (restricted) free-energy has the form

F (M,T ) = F (0, T ) +A(T − Tc)M2 +BM4

where the concavity at M = 0 changes at T = Tc.
An order-disorder transition in which the order parameter changes discontinuously at

the transition point is called a discontinuous transition or first-order transition. On the
other hand, a phase transition in which the order parameter changes continuously is called
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a continuous transition or second-order transition. Landau has shown that the distinction
between these transitions has its root in the nature of the ordering that takes place at the
transition. To see this, let us consider a simple case where the order-disorder transition is
characterized by a single order parameter x. We assume that the system is in the disordered
phase above Tc. Therefore the equilibrium value of x is zero above Tc, and becomes non-
zero below Tc. Let F (x, T ) be the free energy (more precisely the restricted free energy)
at temperature T for a given value of the order parameter x. For small x, F (x, T ) can be
expressed as a power series in x:

F (x, T ) = a0(T ) + a1(T )x+ a2(T )x2 + a3(T )x3 + a4(T )x4 + · · ·

Now since the disordered state becomes unstable at temperature Tc, the state of x = 0
changes from a local minimum of F (x, T ) to a local maximum. For this to happen, a1(T )
must be identically zero, and a2(T ) must have the form a2(T ) = A(T − Tc), where A is a
positive constant. Since the important point is that the sign of a2(T ) changes at Tc, we
may assume that a3 and a4 are constants independent of temperature. Therefore

F (x, T ) = A(T − Tc)x2 + a3x
3 + a4x

4

where the constant term a0 has been ignored as it does not affect the behaviour of
the transition. Now in the case of a magnetic transition, the free energy must be an even
function of M since the state of −M is obtained by rotating the system by 180 degrees,
and (if there is no magnetic field) it must have the same free energy as the state of M .
Therefore the coefficient a3 must be zero. Above Tc, the minimum of F (M,T ) is at M = 0,
and below T , the minima of the free energy are at M = ±

√
A(Tc − T )/2a4. The order

parameter M changes continuously at Tc, and the transition is continuous. On the other
hand, in the case of a nematic transition, the state of −S is different from the state of S.
In the state of S > 0, the molecules align in the z-direction, while in the state of S < 0,
the molecules align normal to the z-axis. Hence a3 is not equal to zero. Accordingly, the
transition becomes discontinuous.

The above argument can be made clearer if we go back to the definition of the order
parameter. The order parameter for the nematic phase is a tensor Q, while the free energy
is a scalar. If the free energy is expressed as a power series of the tensor Q, the coefficients
have to satisfy certain constraints. The free-energy does not have to change for rotations
of the system. Hence it must be expressed in term of rotational-invariant quantities. In the
case of a tensor of rank 2, like Q, the rotational invariants are the trace, the determinant
and Tr(Q)2−Tr(Q2), respectively of order S, S3 and S2. Hence, one can immediately see
that there is no linear term in F (Q, T ) since the only scalar constructed from a symmetric
tensor Q is Tr(Q), but Tr(Q) is zero by the definition of Q. By similar reasoning, one can
show that F (Q, T ) must have the following form

F (Q, T ) = a2(T )Tr(Q2) + a3(T )Tr(Q3) + a4a(T )Tr(Q4) + a4b(T )[Tr(Q2)]2
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In this case, there is a third-order term in Q.
Note that Tr(Q2) =

∑
α

∑
β Q

2
α,β. Indeed, if we evaluate the diagonal terms of Q2 we

findQ11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 =

Q2
11 +Q2

12 +Q2
13 .... ....

... Q2
12 +Q2

22 +Q2
23 ....

.... ... Q2
13 +Q2

23 +Q2
33


Similarly Tr(Q3) =

∑
α

∑
β

∑
γ Qα,βQβ,γQγ,α. Since the trace is invariant for rotations,

we can evaluate the value of it in the diagonal basis. Then

Tr(Q2) = Q2
11 +Q2

22 +Q2
33 =

S2

4
+
S2

4
+ S2 =

3

2
S2

Tr(Q3) = Q3
11 +Q3

22 +Q3
33 = −S

3

8
− S3

8
+ S3 =

3

4
S3

Tr(Q4) = Q4
11 +Q4

22 +Q4
33 =

S4

16
+
S4

16
+ S4 =

9

8
S4

Then,

F (Q;T ) =
3

2
a2(T )S2 +

3

4
a3(T )S3 +

[
9

8
a4a(T ) +

9

4
a4b(T )

]
S4

F (Q, T ) may thus be expressed as

F (S, T ) =
1

2
A(T − Tc)S2 − 1

3
BS3 +

1

4
CS4

where A,B,C are positive constants independent of temperature. Note that C has to be
positive if we want a free energy that does not go to minus infinity for large values of S,
consistent with the truncation of the series expansion. B is assumed to be positive for the
time being. Such free energy for nematic forming materials is called the Landau-de Gennes
free energy. The Landau-de Gennes free energy represents the essential feature of the
isotropic-nematic transition, and is often used as a model free energy for the transition. The
coefficients A, B, C can be calculated using mean field theory, and the result is A ≈ NkB,
B ≈ NkBTc, C ≈ NkBTc.

Let’s take a look at F (S, T ). This function has extrema as

∂F

∂S
= A(T − Tc)S −BS2 + CS3 = 0 (3)

and hence has as extrema always S = 0 and

Smin =
B ±

√
B2 − 4AC(T − Tc)

2C
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So, when

B2 − 4AC(T − Tc) > 0 or T − Tc <
B2

4AC

two new solutions appear, beside S = 0. At this T , the free-energy of the new minimum is
still higher than the free energy in S = 0.

Substituting Eq. 3 (dF/dS=0), re-written as

A(T − Tc) = BSmin − CS2
min

in the free energy expression it becomes possible to calculate the value of the free energy
in the minimum (for S = Smin) as

F (Smin) =
1

2
(BSmin−CS2

min)S2
min−

1

3
BS3

min+
1

4
CS4

min = S3
min

[(
1

2
− 1

3

)
B + Smin

(
−1

2
+

1

4

)
C

]

= S3
min

(
1

6
B − Smin

1

4
C

)
The free energy in the minimum is zero when

Smin =
2B

3C
and A(T − Tc) =

2B2

9C

Before concluding, let’s discuss briefly the case B < 0. The only difference is that the
new minimum will appear at negative S. It is a theoretical possibility but it does not
generally takes place in experiments. Hence we will not discuss it further.

2.2 Alignment of nematic molecules by a magnetic field

The Landau-de Gennes free energy is convenient to see the characteristic behaviour of
the system near the transition temperature. As an example, let us consider the effect
of a magnetic field on the molecular orientation. When a magnetic field H is applied
to a nematic forming molecule, a magnetic moment is induced in the molecule. The
induced magnetic moment m depends on the angle that the molecular axis ~u makes with
the magnetic field H (see Fig. 5.6). Let α‖ (and α⊥) be the magnetic susceptibility of
the molecule when the magnetic field ~H is applied parallel (and perpendicular) to the
molecular axis u. A magnetic field H applied to a molecule pointing in the direction ~u can
be split into a parallel and a perpendicular (to ~u) components: (~H · ~u)~u and ~H − (~H · ~u)~u.
Correspondingly, the molecule will have a magnetic moment m = α‖(~H · ~u)~u along ~u, and
a magnetic moment m⊥ = α⊥[~H − (~H · ~u)~u] in the direction normal to ~u. Therefore the
molecule feels a potential energy −~m · ~H

wH(~u) = −1

2
α‖(~H · ~u)2 − 1

2
α⊥[~H − (~H · ~u)~u]2 + terms independent of ~u
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and since [~H − (~H · ~u)~u]2 = |H|2 + (~H · ~u)2 − 2(~H · ~u)(~H · ~u) = |H|2 − (~H · ~u)2

= −1

2
αd(~H · ~u)2 + terms independent of ~u

where αd = α‖ − α⊥. If αd > 0, the magnetic field tends to align the molecule in the
direction of ~H, while if αd < 0, the magnetic field tends to rotate the molecule to the
direction perpendicular to ~H. In what follows, we assume αd > 0. If there are N molecules
in the system, the total potential energy due to the magnetic field is given by

FH = −N
2
αd < (~H · ~u)2 >

Using the definition of Q =< uαuβ − 1/3δαβ >, this can be written as (ignored the terms
which do not depend on Q

FH = −N
2
αd~H ·Q · ~H

Indeed, (~H · ~u)2 = (uxHx + uyHy + uzHz)
2 which is the sum of the same 9 terms you

obtain by calculating ~H ·Q · ~H (ignoring the terms of the type δαβ).
Since Q can be expressed as Q = S < nαnβ−1/3δαβ > in an analogous way (~H ·~n)2 =

(nxHx + nyHy + nzHz)
2

FH = −NαdS(~H · n)2

Therefore the total free energy of the system is

F (Q;T ) =
1

2
A(T − Tc)S2 − 1

3
BS3 +

1

4
CS4 − NαdS

2
(~H · n)2

The order parameter Q in the presence of the magnetic field is given by S and ~n which
minimize the previous expression. The response of Q to the magnetic field is quite different
in the disordered phase and in the ordered phase.

2.2.1 Response to the magnetic field in the disordered phase

In the disordered phase, the order parameter S is zero when there is no magnetic field.
When a magnetic field is applied, S becomes non-zero but is small, and the ordering process
is completely induced by ~H. Then ~n = Ĥ Therefore we may approximate the free energy
as

F (Q;T ) =
1

2
A(T − Tc)S2 − NαdS

2
H2

where we have used the fact that ~n is parallel to ~H . Minimization of this with respect to
S gives

S =
NαdH

2

2A(T − Tc)
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This equation indicates that as we approach Tc, the order parameter S increases, and
diverges at T = Tc. The divergence of S at Tc is due to the appearance of some locally
ordered region in the disordered phase. In the disordered phase, there is no macroscopic
order, but the tendency that neighbouring molecules align in the same direction increases
as T approaches Tc. Accordingly, near Tc, the system is divided into regions within which
the molecules align in the same direction. The size of such ordered regions increases as
T approaches Tc, and therefore S diverges at Tc. The phenomenon that the response to
external fields in the disordered phase diverges at Tc is seen quite generally in order-disorder
transitions and is called a critical phenomenon. In a continuous transition, the divergence
is always seen since the system remains in the disordered phase as long as T is larger than
Tc. In a discontinuous transition, the divergence may not be seen since the transition to
the ordered phase can take place before the factor 1/(T − Tc) becomes dominant. In the
isotropic-nematic transition, the temperatures Tc1, Te, and Tc2 are close to each other, and
the divergence has been observed.

2.2.2 Response in the ordered phase

In the ordered phase, S has a non-zero value Seq in the absence of a magnetic field. If a
magnetic field is applied, S changes slightly from Seq, but the deviation S − Seq is very
small (being of the order of αdH

2/kBTc) Therefore the magnetic field has little effect on
the scalar order parameter S. On the other hand, the magnetic field has a crucial effect on
the tensor order parameter Q since the director ~n is strongly affected by the magnetic field.
In the disordered phase, the rotation of molecules is essentially independent of each other.
Therefore if one wants to align the molecules, one needs to apply a very large magnetic
field which satisfies αdH

2 > kBT . On the other hand, in the ordered phase, N molecules
move together as a single entity. Therefore if one applies a magnetic field which satisfies
SeqNαdH

2 > kBT , one can rotate all molecules in the system. Since N is a macroscopic
number (N ≈ 1020), the necessary magnetic field is very small. This is another example of
the principle that molecular collectivity produces a very large response to external fields.

3 Mean field theory for the isotropic-nematic transition

Free energy functional for the orientational distribution function Let us now study the
phase transition from the isotropic state to the nematic state. Theories for phase transitions
usually become approximate, involving some kind of mean field approximation. In the case
of the isotropic-nematic transition of rod-like molecules, Onsager showed that rigorous
theory can be developed in the limit of large aspect ratio. This beautiful theory is for the
phase transition in lyotropic liquid crystals (liquid crystals formed in solutions by a change
of concentration). It is discussed at the end of this chapter. Here, we present another
classical theory due to Maier and Saupe. It is a mean field theory for thermotropic liquid
crystals (liquid crystals formed by a change of temperature). The basic assumption of the
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Maier-Saupe theory is that nematic forming molecules have an interaction potential which
forces them to align in the same direction. Let w(~u, ~u′) be the interaction potential acting
between two neighbouring molecules each pointing along the ~u and ~u′ directions. The
interaction potential w(~u, ~u′) has the property that it decreases with decrease of the angle
θ between ~u and ~u′, and becomes smallest when two molecules align in the same direction.
For molecules which do not have polarity (such as ellipsoidal or rod-like molecules), the
interaction potential should not change under the transformation ~u → −~u The simplest
form of such a potential is

w(~u, ~u′) = −U(~u · ~u′)2

where U is a positive constant. Note that the interaction potential generally depends not
only on the orientation vectors ~u and ~u′, but also on the vector r which joins the centres
of the two molecules. Here w(~u, ~u′) represents the effective potential in which the average
for r has already been taken.

Now if the system consists of N such molecules, and if their orientational distribution
is given by ψ(~u), the average energy of the system is given by

E[ψ] =
zN

2

∫
d~u

∫
d~u′w(~u, ~u′)ψ(~u)ψ(~u′)

where z is the mean number of neighbouring molecules (i.e., the coordination number).
The interaction potential tends to align the molecules in the same direction, but this is
opposed by thermal motion which tends to randomize the molecular orientation. For a
given orientational distribution ψ(~u), the orientational entropy can be estimated as

S[ψ] = −NkB
∫
d~uψ(~u) lnψ(~u)

To grasp this expression consider that the surface of the unit sphere |u| = 1 is divided
into M small cells of area du = 4π/M , each pointing to the direction ~ui (i = 1, 2, ...,M).
If their orientational distribution function is ψ(~u), the number of molecules in region i is
Ni = Nψ(~ui)du (N being the total number of molecules in the system). The number of
ways of putting the molecules in such a state is W = N !/(N1!N2!...NM !). Therefore the
entropy is given by

S = kB lnW = kB(lnN !−
M∑
i=1

lnNi!) = kB

[
N(lnN − 1)−

M∑
i=1

Ni(lnNi − 1)

]
=

kB

[
N lnN −

M∑
i=1

Ni lnNi

]
= kB

[
M∑
i=1

Ni(lnN − lnNi)

]
= −kB

[
M∑
i=1

Ni ln
Ni

N

]
and therefore the free energy of the system is given by

F [ψ] = E[ψ]− TS[ψ] = N

[
−zU

2

∫
d~u

∫
d~u′(~u · ~u′)2ψ(~u)ψ(~u′) + kBT

∫
d~uψ(~u) lnψ(~u)

]
(4)
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The orientational distribution at equilibrium is determined by the condition that Eq.4
be a minimum with respect to ψ(~u), i.e., by the condition

δ

δψ

[
F [ψ]− λ

∫
d~uψ(~u)

]
= 0

where δ
δψ stands for the functional derivative with respect to ψ. The second term on

the left-hand side is introduced to account for the normalization condition for ψ.

3.0.1 Functional derivative

To evaluate the functional derivative of a generic functional G =
∫
dxf(ψ(x)) one need to

calculate the change in the functional when the function changes of a small quantity in all
points δψ(x)

δG[ψ] ≡ G[ψ + δψ]−G[ψ] =

∫
dxf(ψ(x) + δψ(x))−

∫
dxf(ψ(x))

This is formally written, considering only terms linear in ψ(x) as∫
dx

δG

δψ(x)
δψ(x)

where δG
δψ(x) is named functional derivative.

For the term
∫
d~uψ(~u) lnψ(~u)

δ

∫
d~uψ(~u) lnψ(~u) =

∫
d~u(ψ(~u) + δψ) ln(ψ(~u) + δψ))−

∫
d~uψ(~u) lnψ(~u)∫

d~u(ψ(~u) + δψ) ln[ψ(~u)(1 + δψ/ψ(~u))]−
∫
d~uψ(~u) lnψ(~u)∫

d~u(ψ(~u) + δψ)[lnψ(~u) + δψ/ψ(~u))]−
∫
d~uψ(~u) lnψ(~u) =∫

d~u(δψ + δψ lnψ(~u) + δψ2/ψ(~u))] =

∫
d~u[1 + lnψ(~u)]δψ

such that the functional derivative is

δ
∫
d~uψ(~u) lnψ(~u)

δψ(x)
= [1 + lnψ(~u)]

For the term
∫
d~u
∫
d~u′(~u · ~u′)2ψ(~u)ψ(~u′)

δ

∫
d~u

∫
d~u′(~u·~u′)2ψ(~u)ψ(~u′) =

∫
d~u

∫
d~u′(~u·~u′)2[(ψ(~u)+δψ(~u)][ψ(~u′)+δψ(~u′)]−

∫
d~u

∫
d~u′(~u·~u′)2ψ(~u)ψ(~u′) =

12



∫
d~u

∫
d~u′(~u · ~u′)2[(ψ(~u)δψ(~u′) + ψ(~u′)δψ(~u) + δψ(~u′)δψ(~u)]

and neglecting the term quadratic in δψ

2

∫
d~u

∫
d~u′(~u · ~u′)2ψ(~u)δψ(~u′) = 2

∫
d~u

∫
d~u′(~u · ~u′)2ψ(~u′)δψ(~u)

where the last equality arises from the symmetry of the integrand.
Finally, the term

∫
d~uψ(~u) gives

δ

∫
d~uψ(~u) =

∫
d~u(ψ(~u) + δψ)−

∫
d~uψ(~u) =

∫
d~uδψ

such that
δ
∫
d~uψ(~u)

δψ
= 1

As a result,
δ

δψ

[
F [ψ]− λ

∫
d~uψ(~u)

]
= 0

becomes {
kBT [1 + lnψ(~u)]− U

∫
d~u′(~u · ~u′)2ψ(~u′)− λ

}
= 0

This gives

ψ(~u) = Ce−βwmf (~u)

where C is a normalization constant, and wmf (~u) is given by

wmf (~u) = −U
∫
d~u′(~u · ~u′)2ψ(~u′)

This equation indicates that at equilibrium, the distribution of ~u is given by the Boltz-
mann distribution in the mean field potential wmf (~u). Equations (5.17) and (5.18) form
an integral equation for ψ(~u). This integral equation can be solved rigorously as we shall
see in the next section.

3.1 Self-consistent equation

The mean field potential can be written as

wmf (~u) = −U
∫
d~u′(

∑
α

uαu
′
α)2ψ(~u′) = −U

∫
d~u′(

∑
α

∑
β

uαu
′
αuβu

′
β)ψ(~u′)

13



wmf (~u) = −U
∑
α

∑
β

uαuβ < u′αu
′
β >

where we have used the fact that the distribution of ~u′ is the same as that of ~u. The
average can be expressed by the scalar order parameter S. Let us take the z-axis in the
direction of ~n. Then

S =
3

2
< u2z −

1

3
>

Since the distribution of ~u has uniaxial symmetry around the z-axis, < uαuβ >= 0 for
α 6= β and the other components are calculated as

< u2z >=
1

3
(2S + 1)

< u2x >=< u2y >=
1

2
(1− < u2z >) =

1

3
(−S + 1)

Hence the mean field potential

wmf (~u) = −U
∑
α

∑
β

uαuβ < u′αu
′
β >= −U(u2x < u2x > +u2y < u2y > +u2z < u2z >=

−U(u2x + u2y)
1

3
(−S + 1) + u2z

1

3
(2S + 1) = −U(1− u2z)

1

3
(−S + 1) + u2z

1

3
(2S + 1) =

= −USu2z + constant

Therefore the equilibrium distribution function is given by

ψ(~u) = CeβUSu
2
z

Now that we know ψ(~u), we can evaluate S, using the definition S = 3/2 < u2z−1/3 >.
One then obtain the following self-consistent equation for S

S =

∫
d~uψ(~u)32

(
u2z − 1

3

)∫
d~uψ(~u)

=

∫
d~ueβUSu

2
z 3
2

(
u2z − 1

3

)∫
d~ueβUSu2z

=

∫
duze

βUSu2z 3
2

(
u2z − 1

3

)∫
duzeβUSu

2
z

We introduce the parameter x = βUS and define t ≡ uz. The previous equation is then
written as

kBT

U
x = I(x)

where (being the integrand even in ux)

I(x) =
3

2

∫ 1
0 dt

(
t2 − 1

3

)
ext

2∫ 1
0 dte

xt2

14



Note that I(0) = 0, and hence x = 0 is always a solution.
The equation kBT

U x = I(x) can be solved by a graphical method: the solution is given
by the intersection between the line y = (kBT/U)x and the curve y = I(x). This shown in
the figure. At high temperature, there is only one solution at x = 0 which corresponds to
the isotropic phase (S = 0). With decreasing temperature, two non-zero solutions appear
below the temperature Tc1 defined in the figure. With decreasing the temperature further,
one solution increases, while the other solution decreases, crossing zero at the temperature
Tc2. Part (b) of the figure summarizes this behaviour of the solution S plotted against the
temperature T .

3.2 Free energy function for the order parameter

In order to identify the transition temperature, we consider the free energy F (S, T ) of the
system for a given value of the order parameter S. F (S, T ) represents the free energy of
a system in which the order parameter is hypothetically constrained at S. If the system
consists of N molecules each pointing the direction ui (i = 1, 2, ..., N), F (S, T ) is defined
as the free energy of the system under the constraint

1

N

∑
i

3

2

(
u2iz −

1

3

)
= S

In general, the free energy under certain constraints is called the restricted free energy.
F (S, T ) is an example of the restricted free energy. If the free energy F (S, T ) is known, the
equilibrium value of S is determined by the condition that F (S, T ) becomes a minimum at
equilibrium, i.e.,

∂F

∂S
= 0

In the mean field approximation, F (S, T ) can be calculated by minimizing the free
energy functional with respect to ψ under the constraint∫

~uψ(~u)
3

2

(
u2z −

1

3

)
= S

Alternatively, if the temperature dependence of the solution of eq. (5.29) is known, the
qualitative form of F (S, T ) can be inferred from the fact that the solution corresponds to
the extremum of the function F (S, T ) . This is shown in Fig. 5.4. For example, since there
is only one solution at S = 0 for T > Tc1, F (S, T ) should have only one minimum at S = 0

for T > Tc1. This corresponds to the curve (i) in Fig. 5.4. Below Tc1, the equation ∂F
∂S

= 0
has three solutions. This corresponds to two local minima and one local maximum. The
solution S = 0 corresponds to the isotropic state, and the other solutions correspond to
the nematic state. Therefore, below Tc1, F (S, T ) behaves as shown by curve (iii) in Fig.
5.4. At temperature Tc2, the local minimum at S = 0 now becomes a local maximum, i.e.,
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the isotropic state becomes an unstable state. Therefore F (S, T ) behaves as shown by the
curve (vii) in Fig. 5.4. The free energy of the isotropic state becomes equal to that of
the nematic state at a certain temperature Te between Tc1 and Tc2. The temperature Te
corresponds to the equilibrium transition temperature.

4 Effect of a spatial gradient on the nematic order

4.1 Free energy functional for a non-uniformly ordered state

So far, we have been assuming that the order parameter does not depend on position,
i.e., the system is spatially uniform. Let us now consider the situation that the order
parameter Q varies with position. This situation has practical importance since the order
parameter of nematics contained in a cell is strongly influenced by the constraints imposed
by the cell walls. To discuss the equilibrium of a non-uniformly ordered state, we con-
sider the free energy functional Ftot[Q(~r)] that is representative of the system in which the
order parameter at position ~r is Q(~r). If there are no external fields, and no boundaries,
the equilibrium state should be the uniform state in which the order parameter Q(~r) is
independent of position ~r. If the order parameter varies with position, the free energy of
the system must be larger than that of the uniform state. Therefore Ftot[Q(~r)] should be
written as follows

Ftot =

∫
d~r[f(Q(~r)) + fel(Q(~r),∇Q(~r))]

17



The first term f(Q(~r)) is the free energy density for a uniform system, and is essentially
the same studied previously. (A small letter f is used to emphasize that it is a free energy
per unit volume.) The second term fel(Q(~r),∇Q(~r))] is the excess free energy due to the
spatial gradient of Q. If ∇Q(~r)) is small, fel can be expanded as a power series of ∇Q(~r)).
Since the free energy is a minimum in the uniform state (the state of ∇Q(~r)) = 0), the
lowest term must be written as

fel(Q(~r),∇Q(~r)) =
1

2
Kαβγ,α′β′γ′∇αQβγ∇α′Qβ′γ′

Since this is an expansion with respect to ∇Q(~r)), the coefficient Kαβγ,α′β′γ′ does not
depend on ∇Q(~r)), but can depend on Q. It represents the component of a positive definite
symmetric tensor. We shall now discuss the explicit form of fel(Q(~r),∇Q(~r)) for the
isotropic and nematic states.

4.1.1 Effect of the gradient terms in the disordered phase

In the isotropic state, we may assume that Kαβγ,α′β′γ′ is independent of Q since Q is small
in the isotropic state. Hence fel is a scalar constructed by a quadratic form of ∇Q(~r)).
Using the properties Qαβ = Qβα and

∑
αQαα = 0, we can show that fel is written in the

following form:

fel(Q(~r),∇Q(~r)) =
1

2
K1∇αQβγ∇αQβγ +

1

2
K2∇αQαγ∇βQβγ

where K1 and K2 are positive constants. Thus the free energy functional in the isotropic
state is written as

Ftot =

∫
d~r

[
1

2
A(T − Tc)S2 +

1

2
K1∇αQβγ∇αQβγ +

1

2
K2∇αQαγ∇βQβγ

]
where we have ignored higher order terms in Q.

Note that the scalar ∇αQβγ∇βQαγ is not included since it is transformed to the second
term on the right-hand side fel by integration by parts.

As an application, let us consider the local ordering induced by a wall of solid sub-
strate. The molecules near the wall feel the potential of the wall, and their orientational
distribution is not isotropic even in the isotropic state. Consider the situation shown in
Fig. 5.7(a), where the molecules tend to align in the direction normal to the wall. If we
take the x, y, z coordinates as in Fig. 5.7(a), the order parameter Qαβ(x) can be written
as follows

Qxx = S, Qyy = Qzz = −1

2
S, Qxy = Qyz = Qzx = 0

18



Substituting this for Qαβ(x), we have that the only non zero contributions are the one
arising from the d/dx terms. Then

∇αQβγ∇αQβγ =
∑
α

∑
β

∑
γ

∇αQβγ∇αQβγ =
∑
β

∑
γ

(∇xQβγ)2 = (∇xQxx)2+(∇xQyy)2+(∇xQzz)2 =

=

(
dS

dx

)2(
1 +

1

4
+

1

4

)
=

3

2

(
dS

dx

)2

and

∇αQαγ∇βQβγ =
∑
α

∑
β

∑
γ

∇αQαγ∇βQβγ =
∑
γ

∇xQxγ∇xQxγ = (∇xQxx)2

where we have imposed that both α β and γ have to be x to obtain a non-zero result. Then

∇αQαγ∇βQβγ =

(
dS

dx

)2

resulting in

Ftot =

∫
dx

[
1

2
A(T − Tc)S2 +

3

4
K1

(
dS

dx

)2

+
1

2
K2

(
dS

dx

)2
]

=
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1

2
A(T − Tc)

∫
dx

[
S2 + ξ2

(
dS

dx

)2
]

where ξ is defined by

ξ =

√
(3K1 + 2K2)

2A(T − Tc)
(5)

To calculate δFtot we write

(S + δS)2 + ξ2
(
d(S + δS)

dx

)2

−

[
S2 + ξ2

(
dS

dx

)2
]

=

S2 + δS2 + 2SδS + ξ2
(
dS

dx

)2

+

(
dδS

dx

)2

+ 2
dδS

dx

dS

dx
−

[
S2 + ξ2

(
dS

dx

)2
]

=

and neglecting higher orders in δS,

= 2SδS + 2ξ2
dδS

dx

dS

dx

So that

δFtot = A(T − Tc)
∫
dx

(
SδS + ξ2

dδS

dx

dS

dx

)
and integrating by part and neglecting the boudary value (assuming δS = 0 at x = 0 (S(0)
is fixed by the boundary) and dS/dx = 0 at x =∞)

δFtot = A(T − Tc)
∫
dx

(
S − ξ2d

2S

dx2

)
δS

Thus the condition that minimize the free energy is

ξ2
d2S

dx2
= S

Therefore
S = S0e

−x/ξ

where S0 is the value of S at the wall.
The previous equation indicates that the wall affects the molecular orientation up to

the distance ξ from the wall. Notice that the wall effect is intrinsically short ranged:
only the molecules close to the wall feel the wall potential. However, the effect of the
wall propagates into the bulk due to the tendency of the local ordering of the molecules.
The length ξ represents how far this effect persists, and is called the correlation length.
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The correlation length ξ can be regarded as the size of the locally ordered region in the
disordered phase. As indicated by eq. 5, ξ diverges as T approaches Tc. Therefore, near the
transition temperature, a large number of molecules move collectively. This is the reason
why the response of the order parameter diverges at the transition temperature Tc.

4.1.2 Effect of the gradient terms in the ordered phase

As previously discussed when an external field is applied to the ordered phase, the scalar
order parameter S changes little, while the director ~n changes drastically. Therefore we
may assume that in the ordered phase the tensor order parameter Q can be written as

Q(~r) = Seq

[
n(~r)n(~r)− 1

3
I

]
where Seq is the equilibrium value of S in the absence of an external field. If this expression
for Q is used, f(Q) becomes constant, and may be dropped in the subsequent calculation.
On the other hand, fel can be written as a quadratic form of∇~n. The coefficient Kαβγ,α′β′γ′

may depend on ~n. Repeating the same argument as in the previous section, it is possible
to show that fel can be written in the following form

fel =
1

2
K1(∇ · ~n)2 +

1

2
K2(~n · ∇ × ~n)2 +

1

2
K3(~n×∇× ~n)2

where K1, K2, K3 are constants having dimension of [J/m], and are called the Frank elastic
constants. Note that in this way all contributions are quadratic in the gradient of ~n and are
thus equal for positive or negative changes in ~n. Each constant represents the resistance
of the nematics to the spatial variation of ~n (see figure). The constants K1, K2, and K3

are called the splay, twist, and bend constants, respectively.
Note that in the Figure 10.11 the gradient is always in the same direction (z direction).

The three cases differ for having

• Splay
dn ‖ ẑ n ⊥ ẑ

• Twish
dn ⊥ ẑ n ⊥ ẑ

• Bend
dn ⊥ ẑ n ‖ ẑ

To be precise, there is also one additional mode, called saddle-splay, describing a surface
elastic term, which is irrelevant when ~n is pinned at the interface.
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4.1.3 Fredericks transition

As an application of the above theory, let us consider the problem illustrated in Fig. 5.9(a).
A nematic liquid crystal is sandwiched between two plates. We take the z-axis normal to
the plate. At the wall of the plate, we assume that the director is in the x-direction.
Suppose that we apply a magnetic field H in the z-direction. Then the molecules tend to
orient along the z direction, but this is not compatible with the boundary conditions at
x = 0 and x = L. What will be the equilibrium configuration in this situation? We can
call x the direction of ~n at z = 0 and assume that ~n is in x − z plane, and only depends
on the z-coordinate. Hence the x, y, z components of ~n are given by

nx(z) = cos θ(z)

ny(z) = 0

nz(z) = sin θ(z). (6)

In this case, ~n ∇ · ~n and ∇× ~n are given by

~n = (cos θ, 0, sin θ)

∇ · ~n =
∂nz
∂z

= cos θ
dθ

dz

∇× ~n =

(
0,
∂nx
∂z

, 0

)
=

(
0,− sin θ

dθ

dz
, 0

)
Since ~n · (∇× ~n) = 0, there is no twist (K2 = 0) and the free energy is given by the sum
of the elastic and of the magnetic terms

Ftot =

∫
dz(fel + fH) =

∫
dz

[
1

2
K1 cos2 θ

(
dθ

dz

)2

+
1

2
K3 sin2 θ

(
dθ

dz

)2

− 1

2
∆χH2 sin2 θ

]
θ(z) has to satisfy the following boundary condition θ(0) = θ(L) = 0. The equilibrium
solution is given by the θ(z) which minimizes the free-energy under the condition imposed
by the boundary conditions at x = 0 and x = L [ θ(0) = θ(L) = 0]. If the magnetic field
H is weak, the solution is given by θ(z) = 0. As the magnetic field increases, the solution
becomes unstable, and a new solution appears. Therefore the structure of the problem is
the same as that in the order-disorder transition. To pursue this resemblance, we assume
that the solution has the following functional form

θ(z) = θ0 sin
πz

L

and express the free energy Ftot as a function of θ0. If θ0 is small, then cos2 θ ≈ 1 and
sin2 θ ≈ θ20 sin2 πz

L so that Ftot can be calculated analytically to order θ20, and it is given,
piece by piece, by (remembering that

∫ π
0 dxcos

2(x) = π
2 )
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• ∫
dz

1

2
K1 cos2 θ

(
dθ

dz

)2

≈
∫
dz

1

2
K1

(
dθ

dz

)2

=
1

2
K1

∫ L

0
dz
(
θ0
π

L
cos

πz

L

)2
=

1

2
K1θ

2
0

π

L

∫ L

0

π

L
dz cos2

πz

L
=

1

2
K1

π

L
θ20
π

2

• ∫
dz

1

2
K3 sin2 θ

(
dθ

dz

)2

≈ 1

2
K3

∫
dzθ20 sin2 πz

L

(
θ0
π

L
cos

πz

L

)2
≈ 0

which can be neglected being order θ40.

• ∫
dz

1

2
∆χH2 sin2 θ ≈ 1

2
∆χH2L

π

∫ π

0
sin2ydy =

1

2
∆χH2L

2

Thus to order θ20,

Ftot =
1

4

[
K1π

2

L
−∆χH2L

]
θ20 =

1

4
∆χL(H2

c −H2)θ20

where

Hc =

√
K1π2

∆χL2

Therefore if H < Hc, the solution θ0 = 0 is stable, and if H > Hc the solution is unstable.
Notice that the transition taking place at Hc is continuous, since the free energy is an
even function of θ0. Such a transition is called the Fredericks transition. The Fredericks
transition is important in the application of nematics to displays since the light transmission
across the nematic layer changes sharply at the critical field.

5 Onsager’s theory

5.1 Nematic ordering in hard cylinders

While HS crystallisation, in two and three dimensions, shows the power of the entropy
associated to particle center of mass position, the nematic transition provides evidence of
the important entropic contributions arising from particle orientation. Interestingly, the
possibility that entropy could act as an ordering force was already evident in Onsager’s
theory on the effect of shape in colloidal solutions, a contribution which had appeared in
the Annales of the New York Academy of Science already in 1949, several years before the
debate on hard-sphere crystallization.
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Let’s assume that particles can be considered distinct according to the orientation of
their principal axis a. The idea is to write the configurational part of the partition function
Zig(V ) of an ideal gas of particles oriented according to some pre-defined distribution {Ni},
where Ni is the number of particles oriented in the solid angle ∆Ωi. If the {Ni} are chosen
to be equally probable (isotropic distribution of orientations), then lnZig(V ) will provide
the appropriate free energy (the entropy) of the isotropic phase. If the {Ni} are chosen in
such a way that one particular orientation is preferred, then the calculated lnZig(V ) will
provide the entropy of the nematic phase described by {Ni}. This exercise can be repeated
for several {Ni} distributions to identify the most probable one (the one with the highest
entropy). By comparing the entropy of the isotropic phase and the entropy of the most
disordered nematic phase, Onsager predicted the existence of a first-order phase transition.

For a set of orientations {Ni}, with Ni = Nf(a)∆Ω (where f(a) is the probability that
the molecule is oriented along a in the solid angle ∆Ω = da) Zig(V ) can be written as
(using the thermal wavelength as unit of length)

Zig(V ) =
∏
i

1

Ni!

[
∆Ω

4π

∫
dr

]Ni
(7)

corresponding, using Stirling’s approximation, to an entropy S(V ) ≡ kB lnZ(V )

Sig(V )

kB
=
∑
i

Ni

[
1 + ln

(
V ∆Ω

4πNi

)]
. (8)

With a little bit of math,

Sig(V )

kB
=
∑
i

Ni

[
1 + ln

(
V

4πf(a)N

)]
= N

[
1 + ln

(
V

N

)]
+

∫
Nf(a)da ln (4πf(a))

where we recognize the translational entropy of the center of mass of each particle and
the orientational entropy associated to the distribution f(a). Naturally,∫

f(a)dΩ = 1. (9)

If we add the virial contribution, therefore going beyond the ideal gas approximation,
we obtain

S(V )

kB
= N

[
1 + ln

(
V

N

)]
+

∫
Nf(a)da ln (4πf(a)) +

1

2V

∑
i,j

β(ai,aj)NiNj , (10)

where β(ai,aj) is the virial coefficient (the excluded volume) between two particles oriented
as ai and aj. The virial contribution is strongly dependent on the relative orientation of
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the two particles, as shown in Fig. 1-(a-b). Parallel cylinders can be packed much more
efficiently than perpendicular cylinders.

For cylinders of length L and diameter D, indicating with γ the angle between ai and
aj

−β(γ) =
π

2
D3 sin γ +

π

2
LD2 +

π

2
LD2| cos γ|+ 2LD2E(sin γ) + 2L2D| sin γ|, (11)

where

E(sin γ) =

∫ π
2

0
(1− sin2 γ sin2 φ)1/2dφ. (12)

In the limit of elongated particles, L� D,

β(γ) = −2L2D| sin γ|. (13)

Hence, in this limit, parallel cylinders do not exclude volume (| sin γ| = 0), while perpen-
dicular ones exclude the largest possible volume 2L2D.

In the isotropic phase all orientations are equally probable and f(a) = 1
4π .

In the nematic phase we do not know a priori f(a). As commonly done by physicists,
Onsager postulated a reasonable functional form for f(a) based on a free parameter α, a
form for which he was able to solve all integrals requested in the calculation of S(V ). The
parameter α was then evaluated as the one that maximizes the resulting nematic entropy.

The functional form chosen by Onsager was based on the physical intuition that in
the nematic phase all particles are essentially oriented around the nematic direction (as
in matches or spaghetti in their boxes). f(a) should then be peaked around θ = 0 and
θ = π, indicating with θ the angle between a and the nematic direction. For mathematical
convenience he chose the function

f(θ) =
( α

4π sinhα

)
cosh(α cos θ), (14)

whose angle dependence is reproduced in Fig. 1-(c). In the limit of α � 1 this functional
form is indeed peaked around θ = 0 and θ = π.

The entropy at the ideal gas level, for either the isotropic or the nematic phase is

−Sig(V )

kB
=
∑
i

Ni

[
1 + ln

(
V ∆Ωi
4πNi

)]
= (15)

N

[
1 + ln

(
V

N

)]
−N

∫
f(a) ln (4πf(a)) dΩ

The first contribution is the entropy associated to the center of mass of the particles, the
standard ideal gas contribution. The second contribution depends only on the distribution
of orientations and defines the orientational entropy of the system.
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In the isotropic case, the orientational contribution vanishes since f(a) = 1
4π and∫

f(a) ln [4πf(a)] dΩ. = 0 (16)

In the nematic phase the ideal gas orientational entropy is not zero. For the functional
form postulated by Onsager (Eq. 14) the orientational entropy can be calculated for large
α resulting in ∫

f(a) ln (4πf(a)) dΩ = logα− 1 +
2

3α
. (17)

This contribution diverges to minus infinity on growing α, as expected by localization in
classical physics.

The entropy associated to the excluded volume of course depends on the inter-particle
orientation. Fig. 1-(a-b) shows the different excluded volume between pairs of cylinders
perpendicularly or parallelely oriented. For the isotropic case, always in the limit L� D,
(using

∫ π
0 sin2 γdγ = π/2 and

∫ 2π
0 dφ = 2π) the virial contribution to entropy can be

expressed as

∑
i,j

β(ai,aj)NiNj = 2L2D

∫ ∫
β(γ)

N2

(4π)2
dΩdΩ′ = (18)

N2 1

4π

∫
β(γ)sinγdγdφ = −π

2
L2DN2.

The corresponding expression for the nematic case (see Onsager article)

∑
i,j

β(ai,aj)NiNj = N2

∫
β(γ)f(Ω)f(Ω′)sinγdγdφ ≈ −2L2DN2

√
π

α
. (19)

For each value of α, Onsager was than able to estimate the system entropy. By taking
the derivative of the nematic entropy with respect to α and equating it to zero, he was
also able to evaluate the value αmax for which the total entropy, sum of the ideal gas and
of the virial term, is largest. Substitution of αmax in Eq. 19 and Eq. 17 provides the best
approximation (based on the selected functional form Eq. 14) to the nematic free energy.

Fig. 1-(d) shows, for cylinders with L = 5 and D = 1, the orientational and virial
contributions to the entropy. A significant volume dependence of the entropy is present
in the virial component of the isotropic phase (due to the change in the available volume
accessible to the center of mass) and in the orientational component of the nematic phase
(due to progressive reduction of the particle orientation).

The resulting final expressions for the entropy in the isotropic and nematic phase as
predicted by the Onsager theory for cylinders are (defining ρ = N/V )

SOnsageriso = N

[
−1 + ln(ρ) + ρ

πL2D

4

]
(20)
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and

SOnsagernematic = N

[
ln

(
ρ3D3L6π

2

16

)]
. (21)

Fig. 1-(e) shows SOnsageriso and SOnsagernematic (per particle) for L/D = 5 and again the
ordered phase has a larger entropy at large densities. As in the previous HS case, the
common tangent line to the expressions S vs V (equal P and µ) selects the densities of the
two coexisting phases. For L� D one finds for the two coexisting packing fractions

φisotropic =
3.3D

L
φnematic =

4.5D

L
.

Note that for very long cylinders, the nematic transition will be observed for very small
packing fractions.

As a matter of terminology, if the isotropic-nematic transition is controlled by concen-
tration, the system is called a lyotropic liquid crystal. By contrast, if the isotropic-nematic
transition is controlled by temperature, the system is called a thermotropic liquid crystal.
Hence, Onsager theory for hard rods in solution is an example of a lyotropic liquid crystal,
and Maier-Saupe theory for interacting molecules is an example of a thermotropic liquid
crystal.

The theory of Onsager, despite its approximations, has the strong merit of highlighting
the important role of orientational entropy in the ordering process of colloidal anisotropic
particles. Indeed, this theory has become the starting approach for understanding more
and more complex mesophases (smectic, biaxial nematic, twist-bend nematic) progressively
accompanying the synthesis of colloidal particles of more and more complex geometry,
including ellipsoids, disks, helices and bent-shaped particles. It also provides a relevant
framework for interpreting the self-assembly of colloidal particles aggregating in persistent
one dimensional structures.
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Figure 1: Isotropic-Nematic phase for hard cylinders. (a) Excluded volume between two
coaxial cylinders. The center of mass of the red cylinder can not explore the volume πD2L,
where D is the diameter and L the length. (b) Excluded volume between two perpendicular
cylinders. The center of mass of the red cylinder can not explore the volume ≈ 2DL2. (c)
The functional form for the probability of orientation θ with respect to the nematic vector
selected by Onsager for the case α = 10. (d) The volume V dependence of the different
entropic contributions. (e) The entropy of the isotropic and of the nematic phase calculated
according to the Onsager theory for cylinders of diameter D = 1 and L = 5. The dashed
line is tangent to both the isotropic and the nematic entropy. Hence, since P = TdS/dV ,
the two tangent points indicate two volumes Visotropic and Vnematic for which temperature,
pressure, and chemical potential are identical.

30


