
1 Elements of percolation theory: on the way to gels

Percolation addresses the purely geometric problem of the connectivity of a system of points ar-
ranged in space according to a predefined distribution. In the simplest case points are distributed
on a lattice (in d dimensions). Given the points and their distribution, percolation theory requires
a definition of connection between adjacent lattice points. The term site-percolation is used when
two occupied adjacent points are defined as connected, bond-percolation when a link must exists
between the two points.

Figure 1: Example of random-bond percolation on a square lattice for 3 different values of the
probability of existence of a bond. The different clusters are indicated with different colours.

One of the main questions which the theory poses is the evaluation of the value of the control
parameter (the density of sites in site-percolation or the bond-percolation probability) for which
the system reaches a percolating configuration, that is one configuration for which a cluster spanning
the entire system emerges. Equally important is to predict the behavior of observables affected by
connectivity properties in the vicinity of the so-called percolation threshold. Figure 1 shows an
example of a bond-percolation in two dimensions for three different values of the bond probability
p. Adjacent sites connected by links and partitioned into clusters. At low p the clusters are small
and separated. At the critical value pc = 1/2, an infinite cluster is observed even if with tenuous
connections (i.e. such that it is enough to eliminate a few links to disconnect the cluster in several
smaller clusters).

Why should we take care of percolation? There are numerous phenomena in physics that require
concepts of connectivity. Often, to identify the conditions for which an infinite ”cluster” that trans-
mits information on macroscopic dimensions exists is quite important. Let’s think, for example,
of electrical conductivity in a disordered system, to the elasticity in a two-component system with
different mechanical properties, to the spread on disordered systems, for example of diseases, or
the propagation of forest fires.

The percolative approach is of particular relevance in the study of polymeric and colloidal systems,
especially for the study of the gel state. Polymeric systems with molecules that form chemical
cross-links constitute one of the systems in which the formation of a network permanent depends
on the functionality of the polymers and the number of bonds. The gels are divided into two broad
categories: chemical gels and physical gels. In the former the bonds are the result of a chemical
reaction and therefore the energy of the bond, much higher than kT, guarantees the stability of
the bond itself. In physical gels, a temperature increase even modest can melt the gel, since the
energy of the bond is of the order of kT.
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Near the percolation threshold, as in critical phenomena near the critical point, many proper-
ties connected to connectivity show scaling laws (power law), that is they show the absence of a
characteristic length. The characterization of scale exponents allows us to establish the class of
universality of the percolation phenomenon, in close analogy with thermal phenomena.

To start familiarising with percolation, let us first examine the solvable cases of site and bond-
percolation in one dimension, which will allow us to define the quantities used in the description
and their inter-relations.

1.1 1-d site percolation

In this problem, the external control parameter is the probability p of occupation of a site of an
infinite chain. This one-dimensional model is clearly pathological, because the percolation threshold
requires that all sites are present, ie pc = 1. So, in this model, we can only study the behavior for
p < pc.

The random occupation of the sites, with probability p creates a distribution of clusters of different
size. Let’s call Ns the number of clusters of size s found in the system and let’s try to quantify this
distribution.

A cluster of size s requires s occupied sites and 2 unoccupied ones at the end. Then, a part from
a still unknown normalization numerical factor

Ns = A(1− p)2ps

To calculate the prefactor A, we can consider that if we sum over all clusters, the fraction of
occupied sites must be again p. In other words, remembering that a cluster of size s is composed
by s occupied sites
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p =

∑∞
s=1 sNs

N

where N is the total number of lattice sites. Let’s perform the sum

Np =

∞∑
s=1

sNs = A

∞∑
s=1

sps(1− p)2 = A(1− p)2
∞∑
s=1

sps = A(1− p)2
∞∑
s=1

p
d

dp
ps = Ap(1− p)2 d

dp

∞∑
s=1

ps

(1)

= Ap(1− p)2 d
dp

p

1− p
= Ap(1− p)2 1

(1− p)2
= Ap (2)

which shows that A = N . The previous calculation also shows that the first moment of the cluster
size distribution is trivial

∑∞
s=1 sNs = Np. It is more interesting to study the behavior of the

second moment of the distribution Ns, called mean cluster size S and defined as

S =

∑∞
s=1 s

2Ns∑∞
s=1 sNs

=

∑∞
s=1 s

2Ns

Np
(3)

Evaluating S

NpS =
∞∑
s=1

sNs = N(1− p)2
∞∑
s=1

s2ps = N(1− p)2
{
p2
d2

dp2

∞∑
s=1

ps + p
d

dp

∞∑
s=1

ps
}

= (4)

= N(1− p)2
{
p2
d2

dp2
p

(1− p)
+Np

d

dp

p

(1− p)

}
(5)

and knowing that

d

dp

p

(1− p)
=

1

(1− p)2
(6)

d2

dp2
p

(1− p)
=

d

dp

1

(1− p)2
=

2

(1− p)3
(7)

one finds (simplifying N on both sides)

pS = (1− p)2
{ 2

(1− p)3
+

1

(1− p)2
}

=
p(1 + p)

1− p
(8)
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from which

S =
1 + p

1− p
(9)

The mean cluster size diverges to the percolative transition p = 1 with a power law with an exponent
−1.

Let us now examine the probability P2(r) that a randomly chosen site is connected to a site distant
r on the right side. This probability is given by

P2(r) = pr (10)

In fact connectivity is guaranteed if the r following sites are occupied. We can rewrite the same
probability as

P2(r) = pr = e−r/ξ (11)

where we have defined the connectivity length ξ as

ξ = − 1

ln p
(12)

Close to the transition, p→ pc ≡ 1, and hence we can write

ln p = ln pc + (p− pc) (13)

and close to pc
ln p = ln 1 + (p− pc) ≈ −|p− pc| (14)

and

ξ ∼ 1

|p− pc|
(15)

Therefore the connectivity length diverges to the transition also like a power law.

S and P2(r) are linked by an integral relation. In fact, if we sum P2(r), where the factor 2 account
for positive and negative r

∞∑
−∞

P2(r) = 1 + 2
∞∑
r=1

pr = 1 + 2
p

1− p
=

1 + p

1− p
= S (16)

Finally, let us exam an alternative way to write Ns for |p− pc| << 1.
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Ns = N(1− p)2ps = N(1− p)2esln(p) = N(pc − p)2e−s(p−pc) (17)

and defining a variable x = s(p− pc) we can write

Ns = N
xe−x

s2
= s−2Nxe−x = s−2f(x) (18)

which tells us that Ns near the percolation can be expressed as a power law for a scale function
f(x) of the variable x. We note that a graph of s2Ns vs x would give a complete ”collapse” (date
collapse) of all curves, regardless of the value of p− pc.

In summary, in the vicinity of the critical point in one dimension, the percolation properties follows
power laws and these laws are summarized in the following table.

Table 1: Results 1-d percolation

S ∼ |p− pc|−1
ξ ∼ |p− pc|−1

ns ∼ s−2f [s|p− pc|]
P∞ = 0

1.1.1 bi-functional molecules: a bond-percolation model

Next we move off-lattice, retaining the one-dimensional aspect of the problem. Suppose we have a
molecule with two reactive groups, which we call A and B and suppose that reactive group A links
only to reactive group B.

We call p the fraction of groups that have reacted Nreacted over the total number of A groups,
equal to the number N of molecules). Thus in this case we can define p = Nreacted/N . We can
immediately write that the total number of clusters Nclusters is

Nclusters = N −Nreacted = N −Np = N(1− p)

since each cluster has only one group A that has not reacted. Therefore the average length of the
clusters will be

N

Nclusters
=

1

1− p

The number of clusters composed of n monomers, (with n− 1 reacted sites) will be

Nn = N(1− p)2pn−1
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where the normalization is chosen such that

∞∑
n=1

nNn =
∞∑
n=1

nN(1− p)2pn−1 = N(1− p)2
∞∑
n=1

d

dp
pn =

N(1− p)2 d
dp

∞∑
n=1

pn = N(1− p)2 d
dp

p

1− p
= N(1− p)2 1− p+ p

(1− p)2
= N

1.2 A maximum-entropy approach to the same problem

It is quite instructive to predict the cluster size distribution for a system of N bifunctional particles
dispersed in a volume V , knowing that these particles have formed exactly P bonds. For particles
with valence two, the possible clusters are chains of variable length n. Then, assuming that the
different chains do not interact, the configurational part of the partition function of the system can
be written as the product of the partition functions of the individual clusters Qn, each of them
normalised by an Nn! term which accounts for permutations of identical clusters

Q = e−βPFb
∏
n

QNnn
Nn!

with Qn =
Ωn

n!
V,

where Fb is the free energy associated to the existence of one bonds (and being multiplied by P ,
PFb is the free energy associated to the existence of P bonds), Ωn indicates the number of ways n
distinct particles, each with two distinct reactive sites A and B and only AB bonds, can be joined
into a chain of length n. The volume term V , expressed in units of the cube of the thermal length,
accounts for the cluster center of mass entropy. Considering that the first patch in the chain can
be selected in n ways, that the bonded patch of the second particle can be selected in (n− 1) ways
and so on, one finds Ωn = n!. As a result,

Q = e−βPFb
∏
n

V Nn/Nn!. (19)

Apart from the constant contribution associated to the presence of P bonds, e−βPFb , the remaining
free-energy contribution (−kBT lnQ) is purely entropic and coincides with the one of an ideal gas
of chains distributed according to Nn,

S

kB
=

∞∑
n=1

Nn

{
1− ln

Nn

V

}
. (20)

The solution for the most probable distribution of chain lengths Nn can now be calculated by
requiring that entropy assumes the largest possible value, but satisfying the two constraints in the
problem: the conservation of the number of particles (

∑∞
n=1 nNn = N) and the total number of

bonds. Since each chain of length n has n − 1 bonds, the constraint on the number of bonds can
be formulated as

∑∞
n=1(n− 1)Nn = P .
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Defining lnα and lnβ as the Lagrange multipliers associated to the two constraints, the maximiza-
tion of the entropy S with respect to Nn, including the contribution arising from the Lagrange
multipliers, gives

dS

dNn
=

(
1− ln

Nn

V

)
− 1 + n lnα+ (n− 1) lnβ = ln

[
V

Nn
αnβn−1

]
= 0 (21)

or equivalently
Nn

V
= α(αβ)n−1. (22)

Re-defining γ = αβ for simplicity and plugging this result in the equations defining the two con-
straints, it is possible to calculate the exact values of α and β. Indeed

N =
∑

nNn = V α
∞∑
n=1

nγn−1 = V α
d

dγ

∞∑
n=1

γn = V α
d

dγ

γ

1− γ
=

V α

(1− γ)2

such that
V α = N(1− γ)2

The second constraint is

P =
∑
n

(n−1)Nn = N−
∑
n

Nn = N−V α
∞∑
n=1

γn−1 = N−N(1−γ)2
1

γ

∞∑
n=1

γn = N−N(1−γ)2
1

γ

γ

1− γ
= Nγ

In terms of fraction of formed bonds p = P/N , one thus finds αβ = γ = p and αV = N(1 − p2),
such that

Nn = V α(αβ)n−1 = N(1− p2)pn−1 (23)

The equilibrium cluster size distribution Nn is thus exponential, a well known result of equilibrium
polymerization. The result can also be easily interpreted as a chain with two open bonds at the
ends ((1− p)2) times n− 1 bonds between the n particles (pn−1).

1.3 Bond percolation sul reticolo di Bethe

Next we discuss percolation on a lattice, named Bethe lattice, in which many statistical physics
problems can be analitically solved. This lattice expands over the one dimensional case, allowing
for multiple connections at the lattice site, but retains the simplicity of the one-dimensional case
since it neglects the possibility of loops formation.

In the Bethe lattice each site is connected with z neighbours. The absence of cyclical structures
allows the analytical calculation of percolation properties. Let’s start with the calculation of pc
for bond percolation. If we call p the probability of existence of a bond, the average number of
nearest neighbour sites connected to the central site is C1 = zp. The average number of sites of
second generation connected to the central one is C2 = (z−1)pC1. In fact there are z(z−1) distant
sites two and to be connected one needs two bonds (p2). The number of site at generation N will
be CN = (z − 1)pCN−1 = [(z − 1)p]N−1C1. Thus the number of sites after an infinite number of
iterations connected to the central site is zero if (z−1)p < 1 and different from zero if (z−1)p > 1.
The critical value it is therefore given by
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Figure 2: Bethe Lattice

pc =
1

z − 1
(24)

We now estimate the fractions of particles belonging to the infinite cluster.

As a preliminary step, we calculate Q(p), defined as the probability that a site is not connected to
infinity through a specific branch.

If we consider an arbitrary site and a branch, the probability Q(p) for that branch can be written
as

Q(p) = (1− p) + pQ(p)z−1 (25)

since the first bond (the one that starts the branch) is ”empty” with probability 1 − p and ”full”
with probability p. If it is full, it will not go to infinity only if all z − 1 sub-branches are not
connected.

The solution of the preceding equation gives us the dependence on p of Q(p). In the analytically
solvable case of z = 3, we have

Q(p) = 1− p+ pQ(p)2 (26)

which has as a solution

Q(p) =
1± (1− 2p)

2p
(27)

9



The solution Q(p) = 1 is always valid. The other solution

Q(p) =
1− p
p

appears only when Q(p) < 1 i.e. for p > 1/2 = pc. So, for p > pc, 1−Q(p), which is the probability
that an arbitrarily chosen link is connected to infinity becomes different from zero.

Let us now calculate P∞, the probability that a randomly chosen site belongs to the infinite cluster.
Of course P∞ = 0 for p < pc. The site is connected to infinity if none of the branches is connected
to infinity (Q(p)z). Therefore

P∞ = 1−Q(p)z (28)

For p < pc, Q(p) = 1 and hence P∞ = 0. To study the behavior of P∞ around pc let’s look explicitly
to the case z = 3, for which

P∞ =

[
1−

(
1− p
p

)3
]

(29)

Close to pc we can expand P∞ in Taylor series

dP∞
dp

=

[
−3

(
1− p
p

)2 −p− 1 + p

p2

]

P∞ ≈

[
3

(
1− p
p

)2 1

p2

]
p=pc

(p− pc) = 12(p− pc) (30)

Then P∞ = 0 grows with a power law around pc with exponent β = 1, a typical mean field exponent.

Let us now examine the mean cluster size S, defined as the average size of the cluster. S indicates
the average size of the cluster to which an arbitrary site belongs. We call the average size of the
cluster of a branch of the Bethe lattice with T . Even for T it is possible to write one recurrence
relation

T = p(1 + (z − 1)T ) + (1− p)0 (31)

T =
p

1− p(z − 1)
=

ppc
pc − p

(32)

This expression indicates that the cluster size of an arbitrary branch has the same average size as
the cluster size of each sub-branch.
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To calculate S, we choose an arbitrary site and write (replacing z = 1+pc
pc

)

S = 1 + zT = 1 +
1 + pc

��pc

p��pc
pc − p

=
pc − p+ p+ ppc

pc − p
= pc

1 + p

pc − p
∼ (pc − p)−1 (33)

Hence, the mean cluster size diverges with a power γ = −1

Now let’s take a look at the size distribution of the clusters. Here the topology of the Bethe lattice
enters very clearly, because every cluster, regardless of its shape, has the same perimeter (defined
as the number of links bordering the cluster, or number of empty sites bordering the cluster). This
property (which is true in one dimension and in Bethe), allows you to write immediately

ns = gsp
s(1− p)ts (34)

where ts is the perimeter and gs is a combinatorial term that tells in how many ways a cluster of
size s can be built. Considering site percolation, the first site has z perimeters, each added site
consumes a perimeter site but adds z − 1 sites. Then ts = z + (s− 1)(z − 2) = 2 + s(z − 2).

Since gs is difficult to calculate, consider the relationship between ns(p) and ns(pc)

ns(p)

ns(pc)
=

(1− p)2

(1− pc)2
[p(1− p)(z−2)]s

[pc(1− pc)(z−2)]s
(35)

If we Taylor expand y ≡ p(1−p)(z−2)

pc(1−pc)(z−2) near pc we find (substituting z with pc, e.g. z−2 = [1−pc)/pc])

y(pc) = 1
dy

dp
|pc = 0

d2y

dp2
|pc =

1

p2c(pc − 1)

y ≈ 1 +
(p− pc)2

2p2c(pc − 1)
(36)

Then we can write

ns(p)

ns(pc)
≈
(

1 +
(p− pc)2

2p2c(pc − 1)

)s
= e

s log (1+
(p−pc)2

2p2c(pc−1)) = e−cs (37)

with c = (p−pc)2
2p2c(pc−1))

As a result, close to pc,
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ns(p) = ns(pc)e
−cs (38)

where, we remember, ns(pc) includes gs. Instead of calculating (which is possible but long for
Bethe) gs, take the solution for ns(pc) and continue from there. This solution, which for Bethe can
be calculated analytically, it becomes an unsatz for all other cases. We therefore assume that

ns(pc) ∼ s−τ (39)

and hence

ns(p) ∼ s−τe−cs (40)

The exponent τ can be calculated imposing consistency. Indeed, S =
∑

s s
2ns. We can write

S =
∑

s2−τe−cs (41)

and close to pc where

S =

∫ ∞
0

s2−τe−csds (42)

S = cτ−3
∫ ∞
0

(cs)2−τe−csd(cs) ∼ cτ−3 (43)

Since we know that S ∼ (pc − p)−γ ∼ (pc − p)−1 we have to conclude that 2(τ − 3) = −1 , where 2
comes from the fact that c ∼ (p− pc)2. Then we find τ = 5

2 .

In summary, two exponents inherent in ns (τ and the exponent that controls c) determine the value
of γ (and, it is possible to show, also of P∞.)

2 The soluble Flory-Stockmayer case

In the case of particles with functionality f , where each site can interact with identical sites of
distinct particles (AA bonds), assuming that they aggregate without forming closed loops, it is
possible to show that the distribution of the clusters is given by

Nn = N(1− p)f f(fn− n)!

n!(fn− 2n+ 2)!
[p(1− p)f−2]n−1 (44)
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and that percolation is reached when pc = 1
f−1 . The cluster structure at pc is

Nn(pc) = N

(
f − 2

f − 1

)f f(fn− n)!

n!(fn− 2n+ 2)!

[
1

f − 1

(
f − 2

f − 1

)f−2]n−1

Using Stirling’s approximation

lnm! = m ln(m)−m+
1

2
ln(2πm)

lnNn = lnN+f ln
f − 2

f − 1
+ln f+[(fn−n) ln(fn−n)−(fn−n)+

1

2
ln(2π(fn−n))]−[n lnn−n+

1

2
ln(2πn)]−

[(fn−2n+2) ln(fn−2n+2)−(fn−2n+2)+
1

2
ln(2π(fn−2n+2))]+(n−1) ln

[
1

f − 1

(
f − 2

f − 1

)f−2]

Writing

(fn− 2n+ 2) = n(f − 2)[1 +
2

n(f − 2)
]

the term

(fn− 2n+ 2) ln(fn− 2n+ 2) = n(f − 2)[1 +
2

n(f − 2)
][lnn(f − 2) + ln[1 +

2

n(f − 2)
]] ≈

n(f−2) lnn(f−2)+2 lnn(f−2)−n(f−2)[1+
2

n(f − 2)
]

2

n(f − 2)
] ≈ n(f−2) lnn(f−2)+2 lnn(f−2)−2

and

1

2
ln(2π(fn− 2n+ 2)) =

1

2
ln(2πn(f − 2)) +

1

2
ln [1 +

2

n(f − 2)
] ≈ 1

2
ln(2πn(f − 2))− 1

n(f − 2)

We thus find

lnNn/N = f ln
f − 2

f − 1
+ln f+[n(f−1) lnn+n(f−1) ln (f − 1)−(fn−n)+

1

2
ln(2π(fn−n))]−[n lnn−n+

1

2
ln(2πn)]

−[n(f − 2) lnn+ n(f − 2) ln (f − 2)− n(f − 2) +
1

2
ln(2π(f − 2)n) + 2 ln[n(f − 2)]− 2− 1

n(f − 2)
]

+(n− 1) ln
1

f − 1
+ (n− 1)(f − 2) ln

(
f − 2

f − 1

)

and
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ln(Nn/N) = f ln
f − 2

f − 1
+ln f+[nf lnn−���n lnn+n(f−1) ln (f − 1)−nf+�n+

�
����1

2
ln(2πn)+

1

2
ln(2π(f−1))]

−[���n lnn−�n+
��

���1

2
ln(2πn)]−

[nf lnn−���2 lnn+n(f−2) ln (f − 2)−nf+��2n+
1

2
ln(2πn)+

1

2
ln(2π(f−2))+2 ln[n(f−2)]−2− 1

n(f − 2)
]

+(n− 1) ln
1

f − 1
+ (n− 1)(f − 2) ln

(
f − 2

f − 1

)

ln(Nn/N) = f ln(f−2)−f ln(f−1)+ln f+����nf lnn+n(f−1) ln (f − 1)−��nf+
�
����1

2
ln(2π)+

1

2
ln(f−1))

−����nf lnn−n(f−2) ln (f − 2)+��nf−
1

2
ln(2πn)−

���
��1

2
ln(2π)−1

2
ln(f−2))−2 ln[n(f−2)]+2+

1

n(f − 2)
−(n−1) ln (f − 1)+

(n− 1)(f − 2) ln (f − 2)− (n− 1)(f − 2) ln (f − 1)

Grouping the terms in ln(f − 1) and in ln(f − 2),

ln(Nn/N) = ln(f − 2)[f − n(f − 2)− 1

2
+ (n− 1)(f − 2)− 2]

+ ln(f − 1)[−f + n(f − 1) +
1

2
− (n− 1)− (n− 1)(f − 2)]

+ ln f − 1

2
ln(2π)− 1

2
lnn− 2 lnn+

1

n(f − 2)

one finds

ln(Nn/N) = −1

2
ln(f − 2)

−1

2
ln(f − 1)

+ ln f − 1

2
ln(2π)− 5

2
lnn+

1

n(f − 2)

hence a power-law for large n. For large n e
− 1
n(f−2) = 1 and

Nn(pc) = N
f√

(f − 1)(f − 2)2π
n−

5
2
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2.1 Fractal dimension of loop-less clusters

The gyration radius of a loop-less cluster can be calculated using the Kramer theorem, evaluating
the number of ways one can split the cluster in two parts composed by N1 and N −N1 monomers.
The result of the calculation, available on the Rubinstein and Colby gives

< R2
g >=

√
π(f − 1)

8(f − 2)
b2N1/2

corresponding to an unphysical fractal dimension of Df = 4. The cluster of branched polymers is
significantly smaller than the one of a linear polymer with the same number of monomers. The
density of the branched polymers increases with N !

2.2 Another case where only the sol exists: hyperbranched polymers

Consider the case of N molecules with f reactive sites, of which one is of type A and f − 1 of type
B with only possible AB links.

If we define #b the number of bonds in the system, then we can immediately write

pA =
#b

N
pB =

#b

N(f − 1)

where pA and pB are the probabilities that a site A and B has reacted. There exists then a relation
between pA and pB given by, eliminating #b from the two previous expressions,

pA = (f − 1)pB

When all A sites have reacted, pA = 1 = pB(f − 1) = 1, and then pB is 1/(f − 1). This is thus the
largest value pB can assume. The fraction of sites A that have not reacted is 1− pB(f − 1).

Assuming absence of bond loops, each bond decreases by one the number of clusters and hence

Nclusters(p) = N −#b = N [1− pB(f − 1)]

An estimate of the average cluster size dimension is then

N

Nclusters
=

1

1− pB(f − 1)

The average size of the clusters diverges when pB = 1/(f − 1), that is when all A have reacted.
Beyond percolation you can’t go!

Let’s look at how to calculate the cluster size distribution, that is the number of clusters composed
by n monomers. This term has a combinatorial contribution and an ”energetic” contribution,
linked to the number of bonds. A cluster of size n ha only ONE unreacted A site and n− 1 sites B
reacted, out of a total of n(f − 1). Calling an the combinatorial term, the n− 1 sites that reacted
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make a contribution pn−1 and the n(f − 1)− (n− 1) sites that have not reacted to a contribution
(1− p)n(f−1)−(n−1)

Nn = Aanp
n−1(1− p)n(f−1)−(n−1) = Aanp

n−1(1− p)n(f−2)+1 =

where A, n independent, will be fixed by the normalization. Differently from the 1-d case, this time
the prefactor an of the cluster size distribution is size dependent, since the properties of the cluster
perimeter changes with the cluster size.

The degeneration an is the number of ways one can bind n monomers, with n − 1 bonds. Let’s
assume we enumerate the particles (we make them distinct, remembering at the end to divide the
result by n!). Then we select the n− 1 bonds in the system. We can choose the first B in n(f − 1)
modes, the second in n(f − 1) − 1 modes. etc. Also, we have to divide by (n − 1)! since we need
the list of the n− 1 bonded B, independently from their order in the list.

The total number of ways is

n(f − 1)[n(f − 1)− 1]........[n(f − 1)− (n− 2)]

(n− 1)!
=

[n(f − 1)]!

(n− 1)![n(f − 1)− (n− 1)]!

Next we pick the first bonded B and we link it with one of the n− 1 monomers. Then we pick the
second B in the list and we connect it to one of the n − 2 remaining monomers. The last B will
be connected to the last remaining monomer. This adds an additional (n − 1)! number of ways.
Finally we need to divide by n! to eliminate the distinguishability of the particles. Thus

an =
[n(f − 1)]!

[n(f − 2) + 1]!n!

and

Nn = A
[n(f − 1)]!

[n(f − 2) + 1]!n!
pn−1(1− p)n(f−2)+1) =

1− p
p

A
[n(f − 1)]!

[n(f − 2) + 1]!n!
[pn(1− p)f−2]n

It is possible to show that
∞∑
n=1

Nn = A

which leads to the identification of A with the number of clusters in the system, A = Ncluster =
N [1− pB(f − 1)]

To simplify the calculations of the moments of Nn let’s define x ≡ p(1− p)f−2 and

Bn =
[n(f − 1)]!

[n(f − 2) + 1]!n!
xn
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such that Nn = Bn
1−p
p Ncluster. The successive moments of the distribution Bn are defined as

Σk ≡
∞∑
n=1

nkBn

Note that, taking the derivative with respect to p

d

dp
Σk =

d

dp

∞∑
n=1

nkBn =
d

dp

∞∑
n=1

nk
[n(f − 1)]!

[n(f − 2) + 1]!n!
xn =

∞∑
n=1

nk
[n(f − 1)]!

[n(f − 2) + 1]!n!

d

dp
xn

=
∞∑
n=1

nk
[n(f − 1)]!

[n(f − 2) + 1]!n!

[
xn

d

dp
xn
]

=
∞∑
n=1

nk
[n(f − 1)]!

[n(f − 2) + 1]!n!

d

dp
xn =

∞∑
n=1

nk
[n(f − 1)]!

[n(f − 2) + 1]!n!
nxn−1

dx

dp
= Σk+1

1

x

dx

dp

which gives the following recurrent relation

Σk = x
∂Σk−1
∂p

∂p

∂x
.

The derivative ∂p
∂x can be calculated as

∂p

∂x
=

1

∂x/∂p
=

1

(1− p)f−2 − p(f − 2)(1− p)f−3
=

multiplying numerator and enumerator by p(1− p) and remembering that x ≡ p(1− p)f−2

=
p(1− p)

p(1− p)f−1 − p2(f − 2)(1− p)f−2
=

p(1− p)
x[1− p(f − 1)]

We know already that Σ0 = p
1−p . Then, using the recurrence expression

Σ1 = x
∂Σ0

∂p

∂p

∂x
= x

1

(1− p)2
p(1− p)

x[1− p(f − 1)]
=

p

(1− p)[1− p(f − 1)]

Then, as expected∑
n

nNn =
1− p
p

NclusterΣ1 =
1− p
p

Ncluster
p

(1− p)[1− p(f − 1)]
= N

The average cluster size N̄ , defined as N/Ncluster is

N̄ =
Σ1

Σ0
=

1

1− p(f − 1)

The second moment S can be calculated analogously. Since

Σ2 = x
∂Σ1

∂p

∂p

∂x
= x

1− p2(f − 1)

(1− p)2[1− p(f − 1)]2
p(1− p)

x[1− p(f − 1)]
=

17



(1− p2(f − 1))p

(1− p)[1− p(f − 1)]3

then

S =
Σ2

Σ1
=

1− p2(f − 1)

[1− p(f − 1)]2

S diverges at the percolation transition p = 1
f−1 with exponent −2.

It is also very interesting to look at the shape of the cluster size distribution close to percolation.
Nn develops a power-law behavior with exponent −1.5 and an exponential cut-off. Indeed, if we
express

N ! ≈
√

2πNNNexp(−N) (Stirling)

then

an =
1

(f − 2)n+ 1

[(f − 1)n]!

n![(f − 2)n]!
≈ 1

(f − 2)n+ 1

√
2π(f − 1)n[(f − 1)n][(f−1)n]exp(−[(f − 1)n])

√
2πnnnexp(−n)

√
2π[(f − 2)n][(f − 2)n][(f−2)n]exp(−[(f − 2)n])

=

1

(f − 2)n+ 1

√
(f − 1)n[(f − 1)n][(f−1)n]

√
nnn

√
2π[(f − 2)n][(f − 2)n][(f−2)n]

=
1

(f − 2)n+ 1

√
f − 1

2π(f − 2)n

(f − 1)(f−1)n

(f − 2)(f−2)n

Defining with ε the relative distance from the percolation point

ε =
p− pc
pc

= (f − 1)p− 1 → p =
1 + ε

f − 1
and 1− p =

f − 2− ε
f − 1

=
f − 2

f − 1

(
1− ε

f − 2

)
.

Converting to ε

pn−1(1− p)(f−2)n+1 =

(
1 + ε

f − 1

)n−1 [f − 2

f − 1

(
1− ε

f − 2

)](f−2)n+1

=
f − 2

1 + ε

(
1− ε

f − 2

)[(
1 + ε

f − 1

)
(f − 2)f−2

(f − 1)f−2

(
1− ε

f − 2

)f−2]n

The small negative values of ε can be neglected outside the square bracket and we can approximate
1 + ε = 1 and 1− ε/(f − 2) = 1. Since the square bracket is taken to a large power n it dominates
the ε-dependence. Expanding [1− ε/(f − 2)]f−2 ≈ 1− ε to the lowest power in ε we find a simple
form:

pn−1(1−p)(f−2)n+1 ≈ (f−2)

[
(f − 2)f−2

(f − 1)f−1
(1 + ε)

(
1− ε

f − 2

)f−2]n
≈ (f−2)

(f − 2)n(f−2)

(f − 1)n(f−1)
[(1+ε)(1−ε)]n

=
(f − 2)n(f−2+1)

(f − 1)n(f−1)
(1− ε2)n ≈ (f − 2)n(f−2+1)

(f − 1)n(f−1)
e−ε

2n

As a result
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Nn(p) = anp
n−1(1− p)(f−2)n+1 ≈

√
f − 1

2π(f − 2)
n−3/2e−ε

2n

This number fraction distribution has a form of a power law with an exponential cutoff at the
characteristic degree of polymerization N∗ = ε−2 and

Nn(p) ≈ n−3/2e−n/N∗

Just as for linear condensation polymers, the simple statistics presented above assume there are
no intramolecular reactions. This assumption is never really correct. For linear polymers, the
assumption gets progressively better for longer chains. However, for hyperbranched polymers it
gets worse for species with large degrees of polymerization, since most of the unreacted B groups
near an unreacted A will be on the same polymer. Properly including intramolecular reactions is
a difficult and important problem. The molar mass distribution of hyperbranched polymers does
not follow the simple statistics presented here because of intramolecular reactions.

3 Ipotesi di scaling

Quanto abbiamo imparato in una dimensione ed in Bethe suggerisce una validita’ generale di ns(p)
vicino pc. La teoria della percolazione postula che ns(p) sia scrivibile vicino pc come

ns(p) ∼ s−τf [sσ(p− pc)] (45)

dove f [z] e’ una funzione di scala, dipendente dal modello, con delle opportune proprieta’. Vediamo
come dal cluster size distribution cosi definito (esponenti τ e σ) nascano le relazioni con gli esponenti
β e γ. La relazione con γ si ottiene ripetendo quanto fatto per il calcolo di S si trova

γ = (τ − 3)/σ (46)

Senza alcuna pretesa di eccessiva formalita’, possiamo ricavare la relazione per P∞ a partire dal
fatto che P∞ +

∑
sns = p. Poiche a’ pc, P∞ = 0 possiamo scrivere, sottraendo l’ espressione

valutata a p = pc,

P∞ +
∑

s(ns − ns(pc)) = p− pc (47)

o, nell’ipotesi di scaling, trascurando termini in O(p− pc) (che se del caso possono essere aggiunti
a posteriori)

P∞ =

∫
s1−τ (f [0]− f [z])ds (48)
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Passando da ds a dz con dz = σsσ−1(p− pc)ds = z/sds

P∞ =

∫
s2−τ (f [0]− f [z])dz/z = (p− pc)−

2−τ
σ

∫
z(2−τ)/σ(f [0]− f [z])dz/z (49)

P∞ ∼ (p− pc)−β ∼ (p− pc)−(2−τ)/σ (50)

da cui

β =
2− τ
σ

(51)

4 The cluster distribution close to pc

Near pc the system is composed of clusters of all sizes. These clusters have a radius of giration Rs
that scales with the size of the cluster s. If they were compact clusters we would already know
that Rs ∼ s

1
d . But in principle, branched objects such as percolation clusters they can scale with

different exponents D < d. In general we assume Rs ∼ s
1
D . The fractal dimension D of the clusters

controls the critical exponent for the divergence of the connectivity length. In fact, connectivity
measures the average size of clusters.

We define the connectivity length as

ξ2 =

∑
sR

2
ss

2ns∑
s s

2ns
(52)

where each size s cluster contributes with s2 distances. We are therefore calculating the average
distance (squared) of all connected pairs). Immediately we see, with the same techniques as before,
that

ξ2 =
(p− pc)−

2/D+3−τ
σ

(p− pc)−
3−τ
σ

(53)

from which
ξ ∼ (p− pc)−ν = (p− pc)−

1
Dσ (54)

giving

ν =
1

Dσ
(55)
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4.1 Summary of the exponents

Bethe: τ = 5/2, σ = 1/2, D = 4.

3-d τ = 2.18, σ = 0.45, D = 2.53.

Connections between geometric and percolation exponents

γ =
3− τ
σ

(56)

β =
τ − 2

σ
(57)

ν =
1

Dσ
(58)
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