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1 Elements of Polymer Physics

1.1 Monomers

Polymers are macromolecules resulting from the polymerization of monomer units. If all
units are identical, the polymer is named homopolymer, if the monomer units are different,
the polymer is named heteropolymer. Polymers can form chains, rings, combs, ladders,
stars, branched structures.

The (chemically) simplest polymer is composed by carbon and hydrogen (hydrocarbons)
It is named polyethylene. The monomer is a CH2 unit,

−CH2−

repeated n times (where n, the degree of polymerization, can be very large (n ∼ 103−105).
The starting and final units of the polyethylene are CH3 groups. Polyethylene is the
material the very cheap plastic bags are made of. Also very common is polypropilene,
in which one of the H atom of the ethylene is substituted with a CH3 group

−CH(CH3)−

Another very much used polymer is polystyrene, in which the H atom is substituted with
a benzene ring. This bulky moiety prevents crystallization of the polymer:

−CH(C6H5)−

Other well known polymers are polyisopropene, polybutadiene, polyethilene oxide.

1.2 Proteins

Most proteins consist of linear polymers built from series of up to 20 different L-α-amino
acids. All proteinogenic amino acids possess common structural features, including an α-
carbon to which an amino group (NH), a carboxyl group, (CO) and a variable side chain
are bonded. The side chains of the standard amino acids, detailed in the list of standard
amino acids, have a great variety of chemical structures and properties; it is the combined
effect of all of the amino acid side chains in a protein that ultimately determines its three-
dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain
are linked by peptide bonds. Once linked in the protein chain, an individual amino acid is
called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as
the main chain or protein backbone.

The Cα is a carbon atom connected to four different atom types (R,C,N,H). Hence it is
chiral. Biological proteins are of the L forms (only rare exceptions are found). This means
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that if you look along the RCα direction and put the N on the top, then the C connected
to the O is always on the right (or left).

The peptide bond has two resonance forms that contribute some double-bond character
and inhibit rotation around the axis connecting the N to the C attached to the O. As a
result, the alpha carbons are roughly coplanar. The other two dihedral angles in the
peptide bond determine the local shape assumed by the protein backbone. The possible
distributions of values of the two dihedral angles (controlled essentially by the excluded
volume interactions) are commonly described in the so-called Ramachandra steric maps.

The end with a free amino group is known as the N-terminus or amino terminus, whereas
the end of the protein with a free carboxyl group is known as the C-terminus or carboxy
terminus (the sequence of the protein is written from N-terminus to C-terminus, from left
to right).

There are two relevant structures for proteins: α−helix and β-sheet. These two struc-
tures are shown in the figure.

1.3 DNA

DNA is a long polymer made from repeating units called nucleotides. The structure of DNA
is dynamic along its length, being capable of coiling into tight loops and other shapes. In
all species it is composed of two helical chains, bound to each other by hydrogen bonds.
Both chains are coiled around the same axis, and have the same pitch of 34 angstroms
(3.4 nanometres). The pair of chains has a radius of 10 angstroms (1.0 nanometre). Al-
though each individual nucleotide is very small, a DNA polymer can be very large and
contain hundreds of millions, such as in chromosome 1. Chromosome 1 is the largest hu-
man chromosome with approximately 220 million base pairs, and would be 85 mm long if
straightened.
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The backbone of the DNA strand is made from alternating phosphate and sugar
residues. The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon) sugar.
The sugars are joined together by phosphate groups that form phosphodiester bonds be-
tween the third and fifth carbon atoms of adjacent sugar rings. These are known as the
3’-end (three prime end), and 5’-end (five prime end) carbons, the prime symbol being
used to distinguish these carbon atoms from those of the base to which the deoxyribose
forms a glycosidic bond. When imagining DNA, each phosphoryl is normally considered
to ”belong” to the nucleotide whose 5’ carbon forms a bond therewith. Any DNA strand
therefore normally has one end at which there is a phosphoryl attached to the 5’ carbon
of a ribose (the 5’ phosphoryl) and another end at which there is a free hydroxyl attached
to the 3’ carbon of a ribose (the 3’ hydroxyl). The orientation of the 3’ and 5’ carbons
along the sugar-phosphate backbone confers directionality (sometimes called polarity) to
each DNA strand. In a nucleic acid double helix, the direction of the nucleotides in one
strand is opposite to their direction in the other strand: the strands are antiparallel. The
asymmetric ends of DNA strands are said to have a directionality of five prime end (5’),
and three prime end (3’), with the 5’ end having a terminal phosphate group and the 3’
end a terminal hydroxyl group. One major difference between DNA and RNA is the sugar,
with the 2-deoxyribose in DNA being replaced by the alternative pentose sugar ribose in
RNA.

2 A first look at the structure of a polymer

In order to understand the multitude of conformations available for a polymer chain, con-
sider an example of a polyethylene molecule. The distance between carbon atoms in the
molecule is almost constant l = 1.54Å. The fluctuations in the bond length (typically
±0.05Å) do not affect chain conformations. The angle between neighbouring bonds θ = 68o
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is also almost constant. The main source of polymer flexibility is the variation of torsion
angles. In order to describe these variations, consider a plane defined by three neighbouring
carbon atoms Ci−2, Ci−1 and Ci. The bond vector ~ri between atoms Ci−1 and Ci defines
the axis of rotation for the bond vector ~ri+1 between atoms Ci and Ci+1 at constant bond
angle θi. The zero value of the torsion angle ψ, corresponds to the bond vector ~ri+1 being
colinear to the bond vector ~ri−1 (Note i− 1) and is called the trans state (t) of the torsion
angle. The trans state of the torsion angle ψi is the lowest energy conformation of the
four consecutive CH2 groups. The changes of the torsion angle ψi lead to the energy vari-
ations shown in Fig. 2.1(d). These energy variations are due to changes in distances and
therefore interactions between carbon atoms and hydrogen atoms of this sequence of four
CH2 groups. The two secondary minima corresponding to torsion angles ψi = ±120o are
called gauche-plus (g+) (see Fig. 1) and gauche-minus (g-). The energy difference between
gauche and trans minima determines the relative probability of a torsion angle being in a
gauche state in thermal equilibrium. In general, this probability is also influenced by the
values of torsion angles of neighbouring monomers. The value of ∆e for polyethylene at
room temperature is ∆e = 0.8kBT . The energy barrier between trans and gauche states
determines the dynamics of conformational rearrangements. Any section of the chain with
consecutive trans states of torsion angles is in a rod-like zig-zag conformation. If all torsion
angles of the whole chain are in the trans state, the chain has the largest possible value
of its end-to-end distance Rmax. This largest end-to-end distance is determined by the
product of the number of skeleton bonds n and their projected length l cos(θ/2) along the
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contour, and is referred to as the contour length of the chain:

Rmax = nl cos
θ

2

Figure 1: Geometric properties of polyethylene

Gauche states of torsion angles lead to flexibility in the chain conformation since each
gauche state alters the conformation from the all-trans zig-zag of Fig. 2.2. In general,
there will be a variable number of consecutive torsion angles in the trans state. Each of
these all-trans rod-like sections will be broken up by a gauche. The chain is rod-like on
scales smaller than these all-trans sections, but is flexible on larger length scales. Typically,
all-trans sections comprise fewer than ten main-chain bonds and most synthetic polymers
are quite flexible.

3 Conformations of a chain

Consider a flexible polymer of n+1 backbone atoms Ai, (with 0 < i < n). The bond vector
~ri goes from atom Ai−1 to atom Ai, The backbone atoms Ai, may all be identical (such
as polyethylene) or may be of two or more atoms [Si and O for poly (dimethyl siloxane)].
The polymer is in its ideal state if there are no net interactions between atoms Ai and Aj
that are separated by a sufficient number of bonds along the chain so that |i− j| � 1.

The end-to-end vector is the sum of all n bond vectors in the chain:

~Ree =

n∑
i=1

~ri.

Different individual chains will have different bond vectors and hence different end-to-
end vectors. The distribution of end-to-end vectors shall be discussed in Section 2.5. It is
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useful to talk about average properties of this distribution. The average end-to-end vector
of an isotropic collection of chains of n backbone atoms is zero:

< ~Ree >= 0

The ensemble average denotes an average over all possible states of the system (accessed
either by considering many chains or many different conformations of the same chain). In
this particular case the ensemble average corresponds to averaging over an ensemble of
chains of n bonds with all possible bond orientations. Since there is no preferred direction
in this ensemble, the average end-to-end vector is zero. The simplest non-zero average is
the mean-square end-to-end distance:

< ~R2
ee >=<

(
n∑
i=1

~ri

)
·

 n∑
j=1

~rj

 >

If all bond vectors have the same length l, the scalar product can be represented in terms
of the angle θij between bond vectors ~ri and ~rj

~ri · ~rj = l2r̂i · r̂j = l2 cos θij

The mean-square end-to-end distance becomes a double sum of average cosines:

< ~R2
ee >= l2

∑
i

∑
j

< cos θij >

3.1 Random Walk Model (freely jointed chain model)

One of the simplest models of an ideal polymer is the freely jointed chain model with a
constant bond length l and no correlations between the directions of different bond vectors.

In this case, when i 6= j

< cos θij >=

∫ π
0 cos θ sin θdθdφ∫ π

0 sin θdθdφ
=
− cos θ2|π0∫ π
0 sin θdθdφ

= 0

When i = j, by definition θii = 0 and cos θii = 1. There are only n non-zero terms in the
double sum. The mean-square end-to-end distance of a freely jointed chain is then quite
simple:

< ~R2
ee >= nl2

3.2 Random walk beyond the persistence length scale: ideal chain

In a typical polymer chain, there are correlations between bond vectors (especially between
neighbouring ones) and < cos θij >6= 0. But in an ideal chain there is no interaction
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between monomers separated by a great distance along the chain contour. This implies
that there are no correlations between the directions of distant bond vectors for |i−j| � 1.

Let now assume that there exist an m-values such that for j > i+m, < cos θij >= 0.
Then the sum

C∞ =

n∑
j=1

< cos θij >=

m∑
j=1

< cos θij >

Therefore,

< ~R2
ee >= l2

n∑
i=1

C∞ = C∞nl
2

where the coefficient C∞ is called Flory’s characteristic ratio. The main property
of ideal chains is that < ~R2

ee > is proportional to the product of the number of bonds n
and the square of the bond length l2

The Flory’s characteristic ratio is larger than unity for all polymers. The physical
origins of these local correlations between bond vectors are restricted bond angles and
steric hindrance. All models of ideal polymers ignore steric hindrance between monomers
separated by many bonds and result in characteristic ratios saturating at a finite value
C∞ for large numbers of main-chain bonds (n→∞). Thus, the mean- square end-to-end
distance can be approximated for long chains:

< ~R2
ee >≈ C∞nl2

The numerical value of Flory’s characteristic ratio depends on the local stiffness of the
polymer chain with typical numbers of 7-9 for many flexible polymers. The values of the
characteristic ratios of some common polymers are listed in Table 2.1 of the Rubinstain-
Colby book. There is a tendency for polymers with bulkier side groups to have higher C∞,
owing to the side groups sterically hindering bond rotation (as in polystyrene), but there
are many exceptions to this general tendency (such as polyethylene).

3.3 Equivalent freely jointed chain

Flexible polymers have many universal properties that are independent of local chemical
structure. A simple unified description of all ideal polymers is provided by an equivalent
freely jointed chain. The equivalent chain has the same mean-square end-to-end distance
< ~R2

ee > and the same maximum end-to-end distance Rmax (the maximum possible value
of ~Ree) as the actual polymer, but has N freely-jointed effective bonds of length b. N and b
are adjustable parameters, fixed to satisfy the equivalence with the contour length and the
mean-square end-to-end distance. The effective bond length b is called the Kuhn length.
The contour length of this equivalent freely jointed chain is

Nb = Rmax
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and its mean-square end-to-end distance is

< ~R2
ee >= Nb2 = C∞nl

2 → bRmax = C∞nl
2

Therefore, the equivalent freely jointed chain has equivalent bonds (Kuhn monomers)
of length

b =
< ~R2

ee >

Rmax
and N = Rmax/b

4 Ideal chain models

Below we describe several models of ideal chains. Each model makes different assumptions
about the allowed values of torsion and bond angles. However, every model ignores inter-
actions between monomers separated by large distance along the chain and is therefore a
model of an ideal polymer. The chemical structure of polymers determines the populations
of torsion and bond angles. Some polymers (like 1,4-polyisoprene) are very flexible chains
while others (like double-stranded DNA) are locally very rigid, becoming random walks
only on quite large length scales.

4.1 Freely rotating chain model

As the name suggests, this model ignores differences between the probabilities of different
torsion angles and assumes all torsion angles −π < φi < π to be equally probable. Thus,
the freely rotating chain model ignores the variations of the potential U(φi). This model
assumes all bond lengths and bond angles are fixed (constant) and all torsion angles are
equally likely and independent of each other. To calculate the mean-square end-to-end
distance the correlation between bond vectors ~ri and ~rj must be determined. This corre-
lation is passed along through the chain of bonds connecting bonds i and j. Let’s start by
considering the case j = i+1. For the freely rotating chain, the component of ~ri normal to
vector ~ri+1 averages out to zero due to free rotations of the torsion angle φi. The parallel
part instead is correlated. Hence

< ~ri · ~ri+1 >= l2 cos θ

where θ = π−φi. This expression can be generalized, by induction, for any |i−j| considering
that the only correlation between the bond vectors that is transmitted down the chain is
the component of vector ~rj along the bond vector ~rj−1. Indeed we can write

~ri+1 = ~ri cos θ + ~vi+1

where ~vi+1 is uniformly distributed over a circle. Analogously

~ri+2 = ~ri+1 cos θ + ~vi+2 = (~ri cos θ + ~vi+1) cos θ + ~vi+2 = ~ri cos θ2 + ~vi+1 cos θ + ~vi+2
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~ri+3 = ~ri+2 cos θ + ~vi+3 = (~ri cos θ2 + ~vi+1 cos θ + ~vi+2) cos θ + ~vi+3

and so on. As a result

~ri+k = ~ri cos θk + ~vi+1 cos θk−1 + ~vi+2 cos θk−2 + ......+ ~vi+k

The vectors ~vl are uniformly distributed on a circle, so that,

< ~ri · ~vi+k >= 0

for all k > 0. As a result bond vector ~r1 passes this correlation down to vector ~r2, but
only the component along ~r2 survives due to free rotations of torsion angle φi. The leftover
memory of the vector ~rj at this stage is l cos θ2. The correlations from bond vector ~ri at
bond vector ~rj are reduced by the factor l cos θ|i−j| due to independent free rotations of
|j − i| torsion angles between these two vectors. Therefore, the correlation between bond
vectors ~ri and ~rj is

< ~ri · ~rj >= l2 cos θ|i−j|

The mean-square end-to-end distance of the freely rotating chain can now be written
in terms of cosines:

< ~R2
ee >=<

(
n∑
i=1

~ri

)
·

 n∑
j=1

~rj

 >=
n∑
i=1

 i−1∑
j=1

< ~ri · ~rj > + < ~r2i > +
n∑

j=i+1

< ~ri · ~rj >



=
n∑
i=1

< ~r2i > +l2
n∑
i=1

 i−1∑
j=1

cos θ|i−j| +
n∑

j=i+1

cos θ|j−i|


and changing variable k = i− j,

= nl2 + l2
n∑
i=1

(
i−1∑
k=1

cos θk +

n−i∑
k=1

cos θk

)

Now... if cos θ < 1, and n is large then

i−1∑
k=1

cos θk ≈
∞∑
k=1

cos θk =
cos θ

1− cos θ

and

< ~R2
ee >= nl2 + l22n

cos θ

1− cos θ
= nl2

1 + cos θ

1− cos θ

It is also useful to observe that the correlation can be also be written as

< ~ri · ~rj >= l2 cos θ|i−j| = l2e|i−j| ln cos θ = l2e−|i−j|lθ
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where we have defined a persistence angle lθ as

lθ = − 1

ln cos θ

Multiplying the persistence angle by l one obtains the persistence length lp = llθ.

4.2 Worm-like chain model

The worm-like chain model (sometimes called the Kratky-Porod model) is a special case
of the freely rotating chain model for very small values of the bond angle. This is a good
model for very stiff polymers, such as double- stranded DNA for which the flexibility is due
to fluctuations of the contour of the chain from a straight line rather than to trans-gauche
bond rotations. For small values of the bond angle

cos θ = 1− θ2

2

and at the same time

ln cos θ = −θ
2

2
lθ =

2

θ2

The Flory characteristic ratio of the worm-like chain is very large:

C∞ =
1 + cos θ

1− cos θ
≈ 4

θ2

The corresponding Kuhn length is twice the persistence length:

b = l
C∞

cos(θ/2)
=

4l

θ2
= 2lp

For example, the persistence length of a double-helical DNA lp ≈ 50 nm and the Kuhn
length is b ≈ 100nm. The combination of parameters l/θ2 enters in the expressions of
the persistence length lp and the Kuhn length b. The worm-like chain is defined as the
limit l→ 0 and θ → 0 at constant persistence length lp and constant chain contour length
Rmax = nl cos(θ/2) ≈ nl.

The mean-square end-to-end distance of the worm-like chain can be evaluated using
the exponential decay of correlations between tangent vectors along the chain

< ~R2
ee >=<

(
n∑
i=1

~ri

)
·

 n∑
j=1

~rj

 >= l2
n∑
i=1

n∑
j=1

< cos θij >= l2
n∑
i=1

n∑
j=1

(cos θ)|j−i|

= l2
n∑
i=1

n∑
j=1

e
− |i−j|

lp
l
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The summation over bonds can be changed into integration over the contour of the
worm-like chain:

l
n∑
i=1

→
∫ Rmax

0
du l

n∑
j=1

→
∫ Rmax

0
dν

so that

< ~R2
ee >=

∫ Rmax

0
du

[∫ Rmax

0
dνe
− |u−ν|

lp
l
]

=

∫ Rmax

0

[
e
− u
lp
l
∫ u

0
dνe

ν
lp
l
+ e

u
lp
l
∫ Rmax

u
dνe
− ν
lp
l
]
du

= lp

∫ Rmax

0

[
e
− u
lp

(
e
u
lp − 1

)
+ e

u
lp

(
−e−

Rmax
lp + e

− u
lp

)]
du =

= lp

∫ Rmax

0

[
2− e−

u
lp − e−

Rmax
lp e

u
lp

]
du = lp

[
2Rmax + lp

(
e
−Rmax

lp − 1

)
− lpe

−Rmax
lp

(
e
Rmax
lp − 1

)]

= 2lpRmax − 2l2p

(
1− e−

Rmax
lp

)
(1)

There are two simple limits of this expression. The ideal chain limit is for worm-like
chains much longer than their persistence length (Rmax � lp). Neglecting l2p compared to
lpRmax

< ~R2
ee >≈ 2lpRmax = bRmax for Rmax � lp

The rod-like limit is for worm-like chains much shorter than their persistence length
(Rmax � lp). The exponential in Eq. 1 can be expanded in this limit:

e
−Rmax

lp ≈ 1− Rmax
lp

+
1

2

(
Rmax
lp

)2

− 1

6

(
Rmax
lp

)3

such that

< ~R2
ee >≈ R2

max −
R3
max

3lp

The mean-square end-to-end distance of the worm-like chain is a smooth crossover between
these two simple limits. The important difference between freely jointed chains and worm-
like chains is that each bond of Kuhn length b of the freely jointed chain is assumed
to be completely rigid. Worm-like chains are also stiff on length scales shorter than
the Kuhn length, but are not completely rigid and can fluctuate and bend. These bending
modes lead to a qualitatively different dependence of extensional force on elongation near
maximum extension, as will be discussed later on.
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4.3 Other models

The interested student may consider more realistic ideal models, accounting for the en-
ergy dependence of the torsional angle, usually named ”Hindered rotation motion” and
”Rotational isomeric state model”.

5 Radius of Gyration

The size of linear chains can be characterized by their mean-square end-to- end distance.
However, for branched or ring polymers this quantity is not well defined, because they either
have too many ends or no ends at all. Since all objects possess a radius of gyration, it
can characterize the size of polymers of any architecture. Consider, for example, branched
polymers. The square radius of gyration is defined as the average square distance between
monomers in a given conformation (position vector ~Rj) and the polymer’s centre of mass

(position vector ~Rcm):

~R2
g ≡

1

N

N∑
i=1

(~Ri − ~Rcm)2.

The position vector of the centre of mass of the polymer is the number- average of all
monomer position vectors:

~Rcm =
1

N

N∑
j=1

~Rj

Substituting the definition of the position vector of the centre of mass gives an expres-
sion for the square radius of gyration as a double sum of squares over all inter-monomer
distances:

~R2
g ≡

1

N

N∑
i=1

(~R2
i − 2~Ri ~Rcm + ~R2

cm) =
1

N

N∑
i=1

~R2
i

1

N

N∑
j=1

1− 2~Ri
1

N

N∑
j=1

~Rj +

 1

N

N∑
j=1

~Rj

2
The last term can be rewritten as

1

N

N∑
i=1

 1

N

N∑
j=1

~Rj

2

=

 1

N

N∑
j=1

~Rj

2

=

 1

N

N∑
j=1

~Rj

( 1

N

N∑
i=1

~Ri

)
=

1

N2

N∑
i=1

N∑
j=1

~Ri ~Rj

Therefore, the expression for the square radius of gyration takes the form

~R2
g =

1

N2

N∑
i=1

N∑
j=1

(~R2
i − 2~Ri ~Rj + ~Ri ~Rj)
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This expression does not depend on the choice of summation indices and can be rewrit-
ten in a symmetric form (by duplicating the sum in two identical parts and then swapping
the index in the second term)

~R2
g ≡

1

N2

N∑
i=1

N∑
j=1

(~R2
i − ~Ri ~Rj) =

1

2

 N∑
i=1

N∑
j=1

(~R2
i − ~Ri ~Rj) +

N∑
i=1

N∑
j=1

(~R2
j − ~Ri ~Rj)


=

1

2N2

N∑
i=1

N∑
j=1

(~R2
i +R2

j − 2~Ri ~Rj) =
1

2N2

N∑
i=1

N∑
j=1

(~Ri − ~Rj)
2

Each pair of monomers enters twice in the previous double sum. Alternatively, this
expression for the square radius of gyration can be written with each pair of monomers
entering only once in the double sum:

~R2
g =

1

N2

N∑
i=1

N∑
j>i

(~Ri − ~Rj)
2

The associated mean squared radius of gyration is then

< ~R2
g >=

1

N2

N∑
i=1

N∑
j>i

< (~Ri − ~Rj)
2 >

For non-fluctuating (solid) objects such averaging is unnecessary. The expression with the
centre of mass is useful only if the position of the centre of mass ~Rcm of the object is known
or is easy to evaluate. Otherwise the expression for the radius of gyration in terms of the
average square distances between all pairs of monomers is used.

5.1 Radius of gyration of an ideal linear chain

To illustrate how to calculate ~R2
g , we now calculate the mean-square radius of gyration

for an ideal linear chain. For the linear chain, the summations over the monomers can be
changed into integrations over the contour of the chain, by replacing monomer indices i
and j with continuous coordinates u and v along the contour of the chain:

n∑
i=1

→
∫ N

0
du

n∑
j>i

→
∫ N

u
dν

This transformation results in the integral form for the mean-square radius of gyration

< ~R2
g >=

1

N2

∫ N

0
du

∫ N

u
dν < (~R(u)− ~R(ν))2 >
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where ~R(u) is the position vector corresponding to the contour coordinate u. The mean-
square distance between points u and ν along the contour of the chain can be obtained
by treating each section of u − ν monomers as a shorter ideal chain. The outer sections
of u and of N − ν monomers do not affect the conformations of this inner section. The
mean-square end-to-end distance for an ideal chain of ν − u monomers is given by

< (~R(u)− ~R(ν))2 >= (ν − u)b2

The mean-square radius of gyration is then calculated by a simple integration using the
change of variable ν ′ = ν − u

< ~R2
g >=

1

N2

∫ N

0
du

∫ N

u
dν(ν − u)b2 =

b2

N2

∫ N

0

∫ N−u

0
ν ′dν ′du

=
b2

N2

∫ N

0

(N − u)2

2
du =

and now changing u′ = N − u,

=
b2

2N2

∫ N

0
(u′)2du′ =

b2

2N2

N3

3
=
Nb2

6

Comparing this result with the evaluation of Ree, we obtain the classic Debye result
relating the mean-square radius of gyration and the mean-square end-to-end distance of
an ideal linear chain:

< ~R2
g >=

R2
ee

6

5.2 Radius of gyration of a rod polymer

Consider a rod polymer of N monomers of length b, with end-to-end distance L = Nb. It is
convenient to calculate the radius of gyration of a rod polymer using the original definition,
written in integral form:

R2
g ≡

1

N

∫ N

0

[(
~R(u)− ~Rcm

)2]
du

A rigid rod polymer has only one conformation with the distance between coordinate u
along the chain and its centre of mass (coordinate N/2):[(

~R(u)− ~Rcm

)2]
=

[(
u− N

2

)2
]
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Therefore, no averaging is needed for calculation of the radius of gyration of a rod. The
square radius of gyration of the rod polymer is calculated by a simple integration

R2
g =

b2

N

∫ N

0

[(
u− N

2

)2
]
du =

b2

N

∫ N
2

−N
2

x2dx =
N2b2

12

where the change of variables x = u−N/2 has been used. Note that the relation between
the end-to-end distance Ree = Nb and the radius of gyration for a rod polymer is different
from that for an ideal linear chain

R2
g =

N2b2

12
=
R2
ee

12

5.3 (Kramers theorem) A cute way to calculate Rg for loopless (ideal)
polymers

Kramers theorem refers to an alternative way of expressing the gyration radius, particularly
useful for branched polymers.

Consider an ideal molecule that contains an arbitrary number of branches, but no loops.
This molecule consists of N freely jointed segments (Kuhn monomers) of length b. The
mean-square radius of gyration of this molecule is calculated as

< ~R2
g >=

1

N2

N∑
i=1

N∑
j>i

< (~Ri − ~Rj)
2 >

The vector ~Ri− ~Rj between monomers i and j can be represented by the sum over the
bond vectors ~rk of a linear strand connecting these two monomers:

~Ri − ~Rj =

j∑
k=i+1

~rk

Since we have assumed freely jointed chain statistics with no correlations between dif-
ferent segments,

< ~rk~rk′ >= b2δk,k′

the mean-square distance between monomers i and j can be rewritten:

< (~Ri − ~Rj)
2 >=

j∑
k=i+1

j∑
k′=i+1

< ~rk~rk′ >=

j∑
k=i+1

< ~r2k >= (j − 1)b2

and

< ~R2
g >=

1

N2

N∑
i=1

N∑
j>i

j∑
k=i+1

< ~r2k >
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This way of writing offers an alternative way of looking at the problem. If we focus on
one specific bond, k in the following, this bond will contribute to the double sum with a
term b2 for each of the path connecting any arbitrary selected i and j which passes through
k. Since we assume that there are no loops, this means that the bond k breaks the polymer
into two sub-polymers. For a path of the original polymer to pass by k, it has to originate
from one of the pieces and end in the different piece. It means that the number of paths
going through k is given by N1(N −N1), where N1 is the number of monomers composing
one of the two split polymers and N − N1 the other one. Then, the radius of gyration
can be expressed as the sum over all N molecular bonds, of the product of the number of
monomers of the two branches N1(k) and N−N1(k) that each bond k divides the molecule
into

< ~R2
g >=

b2

N2

N∑
k=1

N1(k)(N −N1(k))

The Kramers theorem express the gyration radius in terms of average over all possible
ways of dividing the molecule into two parts. It also of course applies to linear polymers.
Indeed, for a linear polymer (remembering that

N∑
k=1

k =
1

2
N(N + 1) and

N∑
k=1

k2 =
1

6
N(N + 1)(2N + 1)

) we find

b2

N2

N∑
k=1

N1(k)(N −N1(k)) =
b2

N2

N∑
k=1

k(N − k) =
b2

N2

(
N

N∑
k=1

k −
N∑
k=1

k2

)
=

b2

N2

(
N

1

2
N(N + 1)− 1

6
N(N + 1)(2N + 1)

)
and in the limit of large N

= Nb2
(

1

2
− 1

3

)
=
Nb2

6

6 Distribution of end-to-end distances in an ideal polymer

In one dimension, the end to end distance is

Xee = b
N∑
i=1

x̂i
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dove x̂i = ±1 (randomly). Then the end to end distance is a random variable which, for
large N , is a gaussian with mean equal to the sum of the mean of the xi and with variance
equal to the sum of the xi N variances (times b2).

< Xee >= 0 σ2Xee = Nb2

Thus

P (X) =
1√

2πNb2
e−

X2

2bN2

The same can be obtained by starting from a binomial process. In the hypothesis of an
ideal random walk in one dimension, the number of realization that start from the origin
with Nr steps to the right (and correspondingly N −Nr steps to the left) is given by the
combinatorial term

Ω(Nr) =
N !

(N −Nr)!Nr!

The final position of the walker after the N steps is

Nw = Nr− (N−Nr) = 2Nr−N and hence Nr =
N +Nw

2
and N−Nr =

N +Nw

2

Then

Ω(Nr) =
N !

(N−Nw2 )!(N+Nw
2 )!

Using Stirling approximation

lnN ! = N lnN −N +
1

2
ln(2πN)

ln Ω(Nr) = N lnN −N +
1

2
ln(2πN)

−
(
N −Nw

2

)
ln

(
N −Nw

2

)
+

(
N −Nw

2

)
− 1

2
ln

(
2π

(
N −Nw

2

))
−
(
N +Nw

2

)
ln

(
N +Nw

2

)
+

(
N +Nw

2

)
− 1

2
ln

(
2π

(
N +Nw

2

))
and defining x = Nw/N ,
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ln Ω(Nr) = N lnN −��N +
1

2
ln(2πN)

−N
2

(1− x) ln

[
N

2
(1− x)

]
+
��

�
��N

2
(1− x)− 1

2
ln

[
2π(

N

2
(1− x)

]
−N

2
(1 + x) ln

[
N

2
(1 + x)

]
+
��

�
��N

2
(1 + x)− 1

2
ln

[
2π(

N

2
(1 + x)

]
ln Ω(Nr) = N lnN

−N
2

(1− x) ln

[
N

2

]
− N

2
(1− x) ln [(1− x)]− N

2
(1 + x) ln

[
N

2

]
− N

2
(1 + x) ln [(1 + x)]

���
���+

1

2
ln(2πN)−

��
�
��
�1

2
ln(2πN)− 1

2
ln(2πN) +

1

2
ln

[
1

2
(1− x)

]
− 1

2
ln

[
1

2
(1 + x)

]
Expanding

ln(1 + x) = x− x2

2
and ln(1− x) = −x− x2

2

and neglecting ln 1−x
1+x since it does not scale with N

ln Ω(Nr) =���
�

N lnN

−����N lnN −N ln 2− N

2
(1− x)

[
−x− x2

2

]
− N

2
(1 + x)

[
x− x2

2

]
− 1

2
ln(2πN) +

�
��

�
��1

2
ln

1− x
1 + x

so that

ln Ω(Nr) = −N ln 2− N

2

[
−�x−

x2

2
+�x−

x2

2
)

]
− N

2

[
x2 +

�
�
�x3

2
+ x2 −

�
�
�x3

2

]
− 1

2
ln(2πN)

ln Ω(Nw) = −N ln 2− Nx2

2
− 1

2
ln(2πN)

or

Ω(Nw) = 2Ne−
Nx2

2
1√

2πN
= 2N

1√
2πN

e−
N2
w

2N for Nw << N

or, by indicating with X the position of the walker, naming b the unit step and normalizing
by the total number of possibilities 2N ,

P (X) =
1√

2πNb2
e−

X2

2Nb2
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Generalizing to three dimensions (and considering that there are N/3 steps in each direc-
tion)

P (~R,N) =

(
3

2πNb2

)3/2

e−
3(R2

x+R
2
y+R

2
z)

2Nb2 =

(
3

2πNb2

)3/2

e−
3R2

2Nb2

The Gaussian approximation is valid only for end-to-end vectors much shorter than
the maximum extension of the chain. For R > Nb the gaussian expression predicts finite
(though exponentially small) probability, which is physically unreasonable.

7 Free energy of an ideal polymer

The entropy S is the product of the Boltzmann constant kB and the logarithm of the
number of states Ω. Denote Ω(N, ~R) as the number of conformations of a freely jointed
chain of N monomers with end-to-end vector ~R. The entropy is then a function of N and
~R

S(N, ~R) = kB ln Ω(N, ~R)

The entropy of an ideal chain with N monomers and end-to-end vector ~R is thus related
to the probability distribution function:

S(N, ~R) = −3

2
kB

~R2

Nb2
+

3

2
kB ln

(
3

2πNb2

)
+NkB ln 2

The last two terms depend only on the number of monomers N , but not on the end-
to-end vector ~R and can be denoted by S(N, 0) so that

S(N, ~R) = −3

2
kB

R2

Nb2
+ S(N, 0).

The Helmholtz free energy of the chain F is the energy U minus the product of absolute
temperature T and entropy S: The energy of an ideal chain U(N,R) is independent of the
end-to-end vector ~R, since the monomers of the ideal chain have no interaction energy.
The free energy can be written as

F (N, ~R) =
3

2
kBT

R2

Nb2
+ F (N, 0).

where F (N, 0) = −TS(N, 0) is the free energy of the chain with both ends at the same
point. As was demonstrated above, the largest number of chain conformations correspond
to zero end-to-end vector. The number of conformations decreases with increasing end-
to-end vector, leading to the decrease of polymer entropy and increase of its free energy.
The free energy of an ideal chain F (N,R) increases quadratically with the magnitude of
the end-to-end vector ~R. This implies that the entropic elasticity of an ideal chain satisfies
Hooke’s law. To hold the chain at a fixed end-to-end vector ~R, would require equal and
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opposite forces acting on the chain ends that are proportional to ~R. For example, to
separate the chain ends by distance Rx in x direction, requires force fx

fx =
∂F

∂Rx
= 3kBT

Rx
Nb2

The force to hold chain ends separated by a general vector ~R is linear in ~R, like a simple
elastic spring:

~f = 3kBT
~R

Nb2

The coefficient of proportionality 3kT/(Nb2) is the entropic spring constant of an ideal
chain. It is easier to stretch polymers with larger numbers of monomers N , larger monomer
size b, and at lower temperature T . The fact that the spring constant is proportional
to temperature is a signature of entropic elasticity. The entropic nature of elasticity in
polymers distinguishes them from other materials. Metals and ceramics become softer
as temperature is raised because their deformation requires displacing atoms from their
preferred positions (energetic instead of entropic elasticity). The force increases as the
chain is stretched because there are fewer possible conformations for larger end-to-end
distances. The linear entropic spring result for the stretching of an ideal chain [Eq. (2.96)]
is extremely important for our subsequent discussions of rubber elasticity and polymer
dynamics. This linear dependence (Hooke’s law for an ideal chain), is due to the Gaussian
approximation, valid only for ~R < Rmax = Nb. If the chain is stretched to the point where
its end-to-end vector approaches the maximum chain extension, the dependence becomes
strongly non-linear, with the force diverging at ~R = Rmax.

7.1 Scaling argument for chain stretching

The linear relation between force and end-to-end distance can also be obtained by a very
simple scaling argument. The key to understanding the scaling description is to recognize
that most of the conformational entropy of the chain arises from local conformational
freedom on the smallest length scales. For this reason, the random walks that happen
to have end-to-end distance R > bN1/2 can be visualized as a sequential array of smaller
sections of size ξ that are essentially unperturbed by the stretch.

The stretched polymer is subdivided into sections of g monomers each. We assume that
these sections are almost undeformed so that the mean- square projection of the end-to-end
vector of these sections of g monomers onto any of the coordinate axes obeys ideal chain
statistics

ξ2 ≈ b2g

There are N/g such sections and in the direction of elongation they are assumed to be
arranged sequentially:

Rx ≈ ξ
N

g
→ g =

ξN

Rx
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This can be solved for the size ξ of the unperturbed sections and the number of
monomers g in each section:

ξ ≈ Nb2

Rx
g ≈ N2b2

R2
x

The number of monomers g and the size ξ of these sections were specially chosen so that
the polymer conformation changes from that of a random walk on smaller size scales to
that of an elongated chain on larger length scales. Such sections of stretched polymers are
called tension blobs. Being extended on only its largest length scales allows the chain to
maximize its conformational entropy. The physical meaning of a tension blob is the length
scale ξ at which external tension changes the chain conformation from almost undeformed
on length scales smaller than ξ to extended on length scales larger than ξ . The trajectory
of the stretched chain (see figure) shows that each tension blob is forced to go in a particular
direction along the x axis (rather than in a random direction as in an unperturbed chain).
Therefore one degree of freedom is restricted per tension blob and the free energy of the
chain increases by kBT per blob

F ≈ kBT
N

g
≈ kBT

R2
x

N2b2

The scaling method gets the correct result within a prefactor of order unity. This is the
character of all scaling calculations: they provide a simple means to extract the essential
physics but do not properly determine numerical coefficients. The previous equation is the
first of many instances where the free energy stored in the chain is of the order of kBT per
blob, because the blobs generally describe a length scale at which the conformation of the
chain changes and is the elementary unit of deformation. In the case of stretching, the free
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energy is F/N per monomer. On length scales smaller than the tension blob, the thermal
energy kBT that randomizes the conformation is larger than the cumulative stretching
energy, and the conformation is essentially unperturbed. On length scales larger than the
tension blob, the cumulative stretching energy is larger than kBT , and the ideal chain gets
strongly stretched. Similar arguments apply to other problems involving conformational
changes beyond a particular length scale, making the free energy of order kBT per blob
quite general.

The force needed to stretch the chain is given by the derivative of the free energy:

fx =
∂F

∂Rx
≈ kBT

Rx
N2b2

≈ kBT

ξ

The tension blobs provide a simple framework for visualizing the chain stretching and
provide simple relations for calculating the stretching force and free energy. They define
the length scale at which elastic energy is of order kBT . Since the force has dimensions
of energy divided by length, a dimensional analysis shows that the length scale of tension
blob ξ corresponding to kBT of stored elastic energy.

8 Real Chains: Do we need to account for excluded volume
interactions ?

Previously we studied the conformations of an ideal chain that ignore interactions between
monomers separated by many bonds along the chain. In this chapter we study the effect
of these interactions on polymer conformations. To understand why these interactions are
often important, we need to estimate the number of monomer-monomer contacts within
a single coil. This number depends on the probability for a given monomer to encounter
any other monomer that is separated from it by many bonds along the polymer. A mean-
field estimate of this probability can be made for the general case of an ideal chain in
d-dimensional space by replacing a chain with an ideal gas of N monomers in the pervaded
volume of a coil ∼ Rd. The probability of a given monomer to contact any other monomer
within this mean-field approximation is simply the volume fraction φ∗, of a chain inside its
pervaded volume, determined as the product of the monomer ’volume’ bd and the number
density of monomers in the pervaded volume of the coil N/Rd:

φ∗ ≈ bd N
Rd

Ideal chains obey Gaussian statistics in any dimension with R = bN1/2, leading to the
volume fraction:

φ∗ ≈ bd N

bN1/2
≈ N1−d/2
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The volume fraction of long ideal coils is very low in spaces with dimension d greater than
2:

φ∗ ≈ N1−d/2 � 1 for d > 2 and N � 1

The volume fraction of the polymer can also be interpreted as the probability of overlap
between a randomly selected monomer and the chain. In three-dimensional space the
probability of a given monomer contacting another monomer on the same chain is then
φ∗ ∼ N−1/2 � 1.

If we now multiply the probability of overlap between a randomly selected monomer
and the chain for the number of monomers in the chain we get an estimate of the number
of monomer-monomer contacts between pairs of monomers that are far away from each
other along the chain, but yet close together in space

Nφ∗ ≈ N2−d/2

In spaces with dimension above 4, this number is small and monomer- monomer contacts
are extremely rare. Therefore, linear polymers are always ideal in spaces with dimension
d > 4. In spaces with dimension less than 4 (in particular, in three-dimensional space
relevant to most experiments), the number of monomer-monomer contacts for a long ideal
chain instead scales as N1/2 since

Nφ∗ ≈ N1/2 � 1 for d = 3 and N � 1

It is important to understand how the energy arising from these numerous contacts
affects the conformations of a real polymer chain. The effective interaction between a
pair of monomers depends on the difference between a monomer’s direct interaction with
another monomer and with other surrounding molecules. An attractive effective interac-
tion means that the direct monomer-monomer energy is lower and monomers would rather
be near each other than in contact with surrounding molecules. In the opposite case of
repulsive effective interactions, monomers ’do not like’ to be near each other and prefer
to be surrounded by other molecules. In the intermediate case, with zero net interac-
tion, monomers ’do not care’ whether they are in contact with other monomers or with
surrounding molecules. In this case there is no energetic penalty for monomer- monomer
contact and the chain conformation is nearly ideal. In the next section, this qualitative
description of the monomer-monomer interaction is quantified.

9 Second virial coefficient

Starting from the partition function (for a system of pairwise additive interactions, assum-
ing λ = 1)

Z =
1

N !

∫
e−β

∑
ij v(rij)dr1...rN =

1

N !

∫ ∏
ij

e−βv(rij)dr1...rN
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and summing and subtracting one to e−βv(rij)

Z =
1

N !

∫ ∏
ij

(
e−βv(rij) − 1 + 1

)
dr1...rN =

1

N !

∫ ∏
ij

(fij + 1) dr1...rN

where we have defined the Mayer function fij ≡ e−βv(rij)−1. The Mayer function vanishes
beyond the interaction range and is equal to minus 1 when v(r) diverges.

Expanding the product one can now write Z as

Z =
1

N !

∫
dr1...rN [1 + (f12 + f13 + ......) + (f12f13 + f12f14 + .....) + ....]

If the density is small, then the probability that in the same region of space distinct Mayer
functions are different from zero is negligible and one can stop the sum to the first term
obtaining

Z =
1

N !

∫
dr1...rN+

N(N − 1)

2

∫
dr1dr2f12

∫
dr3....

∫
drN =

1

N !

[
V N + V N−2N(N − 1)

2

∫
dr1dr2f12

]
=

1

N !

[
V N + V N−1N(N − 1)

2

∫
dr12f12(r12)

]
=
V N

N !

(
1 +

N(N − 1)

2V

∫
dr12f12(r12)

)
Defining B2, named second virial coefficient, as

B2(T ) = −1

2

∫
dr12f12(r12) = −4π

2

∫
r212dr12f12(r12) = −2π

∫
r212dr12f12(r12),

taking the log and expanding around one

lnZ = N lnV −N lnN +N +
N(N − 1)

V
B2(T ) (2)

The free energy per particle becomes

βf(T ) = − lnZ

N
= 1− ln ρ+ ρB2(T ) = βfideal−gas + ρB2(T )

so that ρB2(T ) provides the first correction to the free-energy over the ideal gas case. When
B2(T ) is negative, the free energy will favour states of higher density (attraction), while
when B2(T ) is positive, the gas phase is stabilized.

For the case of HS, the second virial coefficent can be easily calculated, considering
that the Mayer function is -1 for r < σ and 0 elsewhere. Then

BHS
2 = −2π

∫
r212dr12f12(r12) = 2π

∫ σ

0
r2dr = 2π

σ3

3
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which coincides with the excluded volume assumed by van der Waals.
To evaluate the equation of state

βP = −∂βF
∂V

=
∂ lnZ

∂V
=
N

V
− N(N − 1)

2V 2

∫
dr12f12(r12)

which for large N gives
βP

ρ
= 1 + ρB2

One simple way to account for the monomer monomer interaction is to assume that the
free energy of the polymer includes also a contribution coming from pair-wise interactions
(virial expansion). In this case one can write for the interaction free-energy per unit volume
(indicating with ρn the monomer number density)

Finteraction
V

= kBT (B2(T )ρ2n +B3(T )ρ3n + ....
)

Since the interaction between the monomers is mediated also by the solvent quality,
different possibilities exist for the value of B2(T ). The polymer nomenclature includes (in
order of decreasing B2(T ), or equivalently going from repulsion to attraction)

• (A) Athermal solvents (hard-sphere like). In the high-temperature limit, B2(T ) has a
contribution only from hard-core repulsion. The excluded volume becomes indepen-
dent of temperature at high temperatures, making the solvent athermal. An example
is polystyrene in ethyl benzene (essentially polystyrene’s repeat unit). The excluded
volume in athermal solvent

B2(T ) ≈ b2d

where we have assumed that the monomer is a cylinder with a diameter d and a
length coincident with the Kuhn distance b. Note that the excluded volume between
two cylinders is not the volume of a cylinder.

• (B) Good solvents (mostly repulsive). In the a-thermal limit, the monomer makes no
energetic distinction between other monomers and solvent. In a typical solvent, the
monomer-monomer attraction is slightly stronger than the monomer- solvent attrac-
tion because dispersion forces usually favour identical species. Benzene is an example
of a good solvent for polystyrene. The net attraction creates a small attractive well
U(r) < 0 that leads to a lower excluded volume than the a-thermal value. Still, the
net effect is repulsive

0 < B2(T ) < b2d

• (C) Theta solvents (attraction compensates repulsion). At some special temperature,
called the θ-temperature, the contribution to the excluded volume from the attractive

25



well exactly cancels the contribution from the hard-core repulsion, resulting in a net
zero excluded volume:

B2(T ) = 0

The chains have nearly ideal conformations at the θ-temperature because there is no
net penalty for monomer-monomer contact. Polystyrene in cyclohexane at T = 34.5
oC is an example of a polymer-solvent pair at the θ-temperature.

• (D) Poor solvents (mostly attraction). At temperatures below θ, the attractive well
dominates the interactions and it is more likely to find monomers close together. In
such poor solvents the excluded volume is negative signifying an effective attraction:

−b2d < B2(T ) < 0

Ethanol is a poor solvent for polystyrene.

• (E) Non-solvents (extreme attraction). The limiting case of the poor solvent is called
non- solvent:

B2(T ) < −b2d

In this limit of strong attraction, the polymer’s strong preference for its own monomers
compared to solvent nearly excludes all solvent from being within the coil.

9.1 Flory theory of a polymer in a good solvent

The conformations of a real chain in an athermal or good solvent are determined by the
balance of the effective repulsion energy between monomers that tends to swell the chain
and the entropy loss due to such deformation. One of the most successful simple models
that captures the essence of this balance is the Flory theory, which makes rough estimates
of both the energetic and the entropic contributions to the free energy. Consider a polymer
with N monomers, swollen to size R > R0 = bN1/2. Flory theory assumes that monomers
are uniformly distributed within the volume R3 with no correlations between them. The
probability of a second monomer being within the excluded volume v of a given monomer
is the product of excluded volume v and the number density of monomers in the per-
vaded volume of the chain N/R3. The energetic cost of being excluded from this volume
(the energy of excluded volume interaction) is kBT per exclusion or kBTB2(T )N/R3 per
monomer. For all N monomers in the chain, this energy is N times larger [see the first
term in the virial expansion with V ≈ R3:

Fint
V
≈ kBTB2(T )c2n = kBTB2(T )

N2

V 2
→ Fint ≈ kBTB2(T )

N2

R3
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The Flory estimate of the entropic contribution to the free energy of a real chain is the
energy required to stretch an ideal chain to end-to-end distance

Fent ≈ kBT
R2

Nb2

The total free energy of a real chain in the Flory approximation is the sum of the energetic
interaction and the entropic contributions:

F = Fint + Fent ≈ kBTB2(T )
N2

R3
+ kBT

R2

Nb2

The minimum free energy of the chain (obtained by setting dF/dR = 0) gives the optimum
size of the real chain in the Flory theory RF

∂F

∂R
= 0 = kBT

(
−3B2(T )

N2

R4
F

+ 2
RF
Nb2

)
R5
F ≈ B2(T )b2N3 RF ≈ B2(T )1/5b2/5N3/5

For positive B2(T ), the size of long real chains is much larger than that of ideal chains
with the same number of monomers, as reflected in the ratio between RF and Rideal ( the
swelling ratio)

RF
Rideal

=
RF

bN1/2
≈ B2(T )1/5b2/5N3/5

bN1/2

=

(
B2(T )

b3
N1/2

)1/5

When the argument is larger than 1, i.e. for B2(T )
b3

N1/2 > 1 the chain sensibly swell.
If the total interaction energy of a chain in its ideal conformation Fint(R0) is less than

kBT , the chain will not swell. In this case, B2(T )
b3

N1/2 < 1 and the chain’s conformation
remains nearly ideal. Thus, excluded volume interactions only swell the chain when the
chain interaction parameter,

z ≡ B2(T )

b3
N1/2 >> 1

In these conditions (z >> 1) the interaction free energy, evaluated in the ideal conforma-
tion, is significantly larger than the thermal energy

Fint(R0)

kBT
>> 1

Indeed
Fint(Rideal)

kBT
≈ B2(T )

N2

R3
ideal

≈ B2(T )

b3
N1/2
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The Flory estimate for RF is therefore only valid for chain interaction parameters that are
larger than some number of order unity. The predictions of the Flory theory are in good
agreement with both experiments and with more sophisticated theories (renormalization
group theory, exact enumerations and computer simulations). However, the success of
the Flory theory is due to a fortuitous cancellation of errors. The repulsion energy is
overestimated because the correlations between monomers along the chain are omitted. The
number of contacts per chain is estimated to be b3N2/R3 ≈ N1/5. Computer simulations of
random walks with excluded volume show that the number of contacts between monomers
that are far apart along the chain does not grow with N . Hence, Flory overestimated the
interaction energy. The elastic energy is also overestimated in the Flory theory because
the ideal chain conformational entropy is assumed. The conformations of real chains are
qualitatively different from the ideal chains as will be demonstrated in the remainder of
this chapter. Simple modifications of the Flory theory that take into account only some
of these effects usually fail. However, Flory theory is useful because it is simple and
provides a reasonable answer. Mean-field estimates of the energetic part of the free energy,
ignoring correlations between monomers, are used with entropy estimates based on ideal
chain statistics. We will refer to such simple calculations as ’Flory theory’ and will hope
that the errors will cancel again. It is important to realise that Flory theory leads to a
universal power law dependence of polymer size R on the number of monomers N

R ∼ Nν

(where now the symbol ν reflect the scaling exponent). The quality of solvent, reflected
in the excluded volume ν, enters only in the prefactor, but does not change the value of
the scaling exponent. The Flory approximation of the scaling exponent is ν = 3/5 for a
swollen linear polymer. For the ideal linear chain the exponent ν = 1/2. In the language
of fractal objects, the fractal dimension of an ideal polymer is D = 2 , while for a swollen
chain it is lower D = 5/3. More sophisticated theories lead to a more accurate estimate of
the scaling exponent of the swollen linear chain in three dimensions:

ν = 0.588

While the ideal chain has a random walk conformation, the real chain has additional
correlations because two monomers cannot occupy the same position in space. The real
chain’s conformation is similar to that of a self-avoiding walk, which is a random walk on
a lattice that never visits the same site more than once.

10 Just for fun: two regular fractals

As the first example of a self-similar object, consider a regular fractal, called a triadic Koch
curve. We start from a section of straight line and divide it into three equal subsections
(hence the name triadic). On the top of the middle subsection we draw an equilateral
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triangle and erase its bottom side (the original middle subsection of the line). Thus, we
end up with four segments of equal length instead of the three original ones. We repeat
the above procedure for each of these four segments?divide each of them into three equal
subsections and replace the middle subsections with the two opposite sides of equilateral
triangles. At the end of the second step, we obtain a line with each of the four sections
consisting of four smaller subsections. This process can continue as long as your patience
allows. It is usually limited by the resolution of the computer screen or of the printer. In
order to calculate the dependence of the mass of the triadic Koch curve on the length scale,
let us draw circles of diameter 2r equal to the lengths of the segments of two consecutive
generations. As we compare circles drawn around the segments of the consecutive genera-
tions of the curve, the radius of the circles changes by the factor of 3, while the mass m of
the section of the curve inside these circles changes by the factor of 4. We are looking for
an exponent defined by the relation

M = Ardf

The exponent df is called the fractal dimension. The fractal dimension for a triadic Koch
curve can be determined from the fact that we have two ways to calculate m in terms of
r2,

M1 = Ar
df
1 and M2 = Ar

df
2

Since r2 = 3r1 and M2 = 4M1, then

M2

M1
=
r
df
2

r
df
1

4 = 3df

or

df =
ln 4

ln 3
≈ 1.26

The self-similar nature of the Koch curve is clear from the fact that if a small piece of
the curve is magnified, it looks exactly like the larger piece.

Another example of a regular fractal is a Sierpinski gasket. Start with a filled equilateral
triangle, draw the three medians that divide it into four smaller equilateral triangles and
cut out the middle one, In the second step, repeat the same procedure with each of the
three remaining equilateral triangles, obtaining nine still smaller ones, and so on. The
fractal dimension of this Sierpinski gasket is calculated by the same method as for the
Koch curve above. As the radius of the circle around a section of the Sierpinski gasket
doubles, the number of triangles (the mass of the gasket inside the circle) triples.

Repeating the previous calculations, defining r1 and r2 = 2r1 two successive iterations

M1 = Ar
df
1 M2 = Ar

df
2 = A(2r1)

df = 2dfM1

and since M2 = 3M1

df =
ln 3

ln 2
≈ 1.58
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11 Thermodynamics of mixing

Mixtures are systems consisting of two or more different chemical species. Binary mix-
tures consist of only two different species. An example of a binary mixture is a blend of
polystyrene and polybutadiene. Mixtures with three components are called ternary. An
example of a ternary mixture is a solution of polystyrene and polybutadiene in toluene. If
the mixture is uniform and all components of the mixture are intermixed on a molecular
scale, the mixture is called homogeneous. An example of a homogeneous mixture is a poly-
mer solution in a good solvent. If the mixture consists of several different phases (regions
with different compositions), it is called heterogeneous. An example of a heterogeneous
mixture is that of oil and water. Whether an equilibrium state of a given mixture is ho-
mogeneous or heterogeneous is determined by the composition dependence of the entropy
and energy changes on mixing. Entropy always favours mixing, but energetic interactions
between species can either promote or inhibit mixing.

11.1 Entropy of binary mixing - From Flory book

We calculate here the total configurational entropy of the polymer solution arising from
the variety of ways of arranging the polymer and solvent molecules on a lattice. Hence
the initial, or reference, states will be taken as the pure solvent and the pure, perfectly
ordered polymer; i.e., the polymer chains will be taken to be initially in a perfect crystal-like
arrangement.

The lattice contains n0 cells, n1 of them occupied by the solvent, and n2L2 occupied by
monomers. Here L2 indicates the length of the polymer. Let z be the lattice coordination
number or number of cells which are first neighbours to a given cell.

As done when evaluating the mixing entropy on a lattice, we need to evaluate first the
total number Ω of arrangements, the number of ways in which each polymer chain may be
inserted in the lattice will be estimated. Let’s start our calculation by assuming an empty
lattice and positioning the polymers in the lattice. At the end we will insert the solvent
molecules.

Assume that i polymer molecules have been inserted previously at random. There
remains a total of n0 − iL2 vacant cells in which to place the first segment of molecule
i+ 1. The second segment could be assigned to any of the z neighbors of the cell occupied
by the first segment. To account for the fact that possibly some of the neighbouring sites
are occupied, we will evaluate a (mean-field) estimate of the probability that a site is full.
For the time being we call fi the probability that a cell is occupied after the insertion of i
polymers. Hence, zfi of the neighbour cells are occupied and then the second monomer can
be put in z(1−fi) cells. The expected number of cells available to the third segment will be
(z−1)(1−fi) since one of the cells adjacent to the second segment is occupied by the first.
For each succeeding segment the expected number of permissible alternative assignments
can be taken also as (z − 1)(1− fi), disregarding those comparatively infrequent instances
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in which a segment other than the immediately preceding one of the same chain occupies
one of the cells in question. Hence the expected number νi+1 of sets of L2 contiguous sites
available to the molecule is

νi+1 = (n0 − iL2)z(z − 1)L2−2(1− fi)L2−1

If each of the n2 polymer molecules to be added to the lattice were distinguishable from
every other, the number of ways in which all of them could be arranged in the lattice would
be given by the product of the νi for each molecule added consecutively to the lattice, i.e.,
by

n2∏
i=1

νi

Arrangements in which the sets of L2 contiguous lattice cells chosen for occupation by
polymer molecules are identical but which differ only in the permutation of the polymer
molecules over these sets would be counted as different in this enumeration scheme. Since
the polymer molecules actually are identical, it is appropriate to eliminate this redundancy
and write

Ω =
1

n2!

n2∏
i=1

νi

To estimate fi, we apply the standard mean-field rule that space-correlations are ig-
nored. Thus we can write

fi =
iL2

n0

Substituting fi and replacing the lone factor z with z − 1, we obtain

νi+1 = (n0 − iL2)z(z − 1)L2−2
(
n0 − iL2

n0

)L2−1
= (n0 − iL2)

L2

(
z − 1

n0

)L2−1

which may be further approximated for convenience, and with an error which will be
imperceptible, by

νi+1 =
(n0 − iL2)!

(n0 − L2(i+ 1))!

(
z − 1

n0

)L2−1

Indeed, consider the ratio between two factorials, when one (n∗) is large and the other
one differ from the previous one for a small quantity (m). Then

n∗!

(n∗ −m)!
=

n∗(n∗ − 1)(n∗ − 2)....1

(n∗ −m)(n∗ −m− 1)....1

and simplifying

n∗!

(n∗ −m)!
= n∗(n∗ − 1)(n∗ − 2)...(n∗ −m) ≈ (n∗)m
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One can also obtain the same result looking at the log of the two expressions:

ln(n0 − iL2)
L2 and ln

(n0 − iL2)!

(n0 − L2(i + 1))!

The right expression can be transformed by Stirling

(n0 − iL2) ln(n0 − iL2)− (n0 − iL2)− (n0 − L2(i + 1)) ln(n0 − L2(i + 1)) + (n0 − L2(i + 1)) =

(n0 − ix) ln(n0 − iL2)− (n0 − L2(i + 1)) ln(n0 − L2(i + 1)) + L2

≈ (n0 − iL2) ln(n0 − iL2)− (n0 − L2(i + 1)) ln(n0 − iL2) + L2 ≈ L2 ln(n0 − iL2) + L2 ≈ L2 ln(n0 − iL2) = ln(n0 − iL2)
L2

—
As a result

Ω =

(
z − 1

n0

)n2(L2−1) 1

n2!

n2∏
i=1

(n0 − iL2)!

(n0 − L2(i+ 1))!

and since

n2∏
i=1

(n0 − iL2)!

(n0 − L2(i+ 1))!
=

(n0 − L2)!(n0 − 2L2)!(n0 − 3L2)!....(n0 − n2L2)!

(n0 − 2L2))!(n0 − 3L2)!.....(n0 − n2L2 − L2))!
=

(n0 − L2)!

(n0 − n2L2 − L2))!

where we have simplified the equal factorials in the numerator and denominator. If we now
make use of the following approximate relation

n0! ≈ (n0 − L2)!(n0 − L2)
L2 (n0 − n2L2)! ≈ (n0 − n2L2 − L2)!(n0 − n2L2)

L2

and the further approximation

n0! = (n0 − L2)!n
L2
0 (n0 − n2L2)! = (n0 − n2L2 − L2)!n

L2
0

Ω =

(
z − 1

n0

)n2(L2−1) 1

n2!

(n0 − L2)!

(n0 − n2L2 − L2))!
≈ n0!

(n0 − n2L2)!n2!

(
z − 1

n0

)n2(L2−1)

If each solvent molecule may occupy one of the remaining lattice sites, and in only one
way, Ω represents also the total number of configurations for the solution, from which it
follows that the configurational entropy of mixing the perfectly ordered pure polymer and
the pure solvent is given by Sc = kB ln Ω. Introduction of Stirling’s approximations for the
factorials occurring in Ω, one gets

ln Ω = n0 lnn0 − n0 − n1 lnn1 + n1 − n2 lnn2 + n2 + n2(L2 − 1) ln(z − 1)− n2(L2 − 1) lnn0

and rewriting n0 = n1 + n2L2 = n1 + n2 + n2(L2 − 1)

= n1 lnn0+n2 lnn0+((((
((((n2(L2 − 1) lnn0−n1 lnn1−n2 lnn2+(n1+n2−n0)+n2(L2−1) ln(z−1)((((

((((
(

−n2(L2 − 1) lnn0
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ln Ω = −n1 ln
n1
n0
− n2 ln

n2
n0
− n2(L2 − 1) + n2(L2 − 1) ln(z − 1)

and replacing n0 with n1 + L2n2,

Sc = −kB
{
n1 ln

(
n1

n1 + L2n2

)
+ n2 ln

(
n2

n1 + L2n2

)
− n2(L2 − 1) ln

[
z − 1

e

]}

This configurational entropy includes both the mixing entropy and the entropy associ-
ated to the polymer disorder. To evaluate this last term we can estimate the value of Sc
when there is no solvent, or equivalently evaluating Sc with n1 = 0. This gives

∆Sdisorientation = −kB
{
n2 ln

(
1

L2

)
− n2(L2 − 1) ln

[
z − 1

e

]}
Then, we can write, joining the n2 ln

(
1
L2

)
term with the previous one

∆Smix = Sc −∆Sdisorientation = −kB
{
n1 ln

(
n1

n1 + L2n2

)
+ n2 ln

(
n2L2

n1 + L2n2

)}
The result reduces, defining φ1 = n1

n1+L2n2
and φ2 = n2L2

n1+L2n2
(the volume fractions of

solvent and solute)
∆Smix = −kB(n1 lnφ1 + n2 lnφ2)

The mixing entropy per lattice site can also be written as

∆Smix
n1 + L2n2

= −kB
(
φ1 lnφ1 +

φ2
L2

lnφ2

)
11.2 Considerations

A regular solution has NA = NB = 1 and a large entropy of mixing:

∆S̃mix = −kB(φA lnφA + φB lnφB)

A polymer solution has NA = N and NB = 1:

∆S̃mix = −kB
(
φA
N

lnφA + φB lnφB

)
The previous equations predict enormous differences between the entropies of mixing

for regular solutions, polymer solutions, and polymer blends.
Typically N is large, making the first term negligible compared to the second term. For

solutions with φA = φB = 0.5, the entropy of mixing for the polymer solution is roughly half
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of that for the regular solution. For polymer blends, both NA and NB are typically large,
making the entropy of mixing very small. For this reason, polymers have stymied entropy
(styme=ostacolare in italian). Connecting monomers into chains drastically reduces the
number of possible states of the system. Despite the fact that the mixing entropy is small
for polymer blends, it is always positive and hence promotes mixing. Mixtures with no
difference in interaction energy between components are called ideal mixtures. Let us
denote the volume fraction of component A by φ and the corresponding volume fraction
of component B becomes 1 − φ. The free energy of mixing per site for ideal mixtures is
purely entropic:

∆Fmix = −T∆S̃mix = kBT

(
φ

NA
lnφ+

1− φ
NB

ln(1− φ)

)
Ideal mixtures are always homogeneous (the concavity of ∆Fmix vs φ is always positive).

The mixing entropy calculated above includes only the translational entropy that results
from the many possible locations for the centre of mass of each component. The calculation
assumes that the conformational entropy of a polymer is identical in the mixed and pure
states. This assumption is very good for polymer blends, where each chain is nearly ideal in
the mixed and pure states. However, many polymer solutions have excluded volume that
changes the conformation of the polymer in solution, as discussed previously. Another
important assumption in the entropy of mixing calculation is no volume change on mixing.
Real polymer blends and solutions have very small, but measurable, volume changes when
mixed.

11.3 Energy of binary mixing

Interactions between species can be either attractive or repulsive. In most experimental sit-
uations, mixing occurs at constant pressure and the enthalpic interactions between species
must be analysed to find a minimum of the Gibbs free energy of mixing. In the simplified
lattice model (Flory-Huggins theory) discussed in the present chapter, components are
mixed at constant volume and therefore we will be studying the energy of interactions
between components and the change in the Helmholtz free energy of mixing. The energy
of mixing can be either negative (promoting mixing) or positive (opposing mixing). Reg-
ular solution theory allows for both possibilities, using the lattice model. To estimate the
energy of mixing this theory places species into lattice sites randomly, ignoring any corre-
lations. Thus, for all mixtures, favourable or unfavourable interactions between monomers
are assumed to be small enough that they do not affect the random placement. Worse
still, the regular solution approach effectively cuts the polymer chain into pieces that are
the size of the solvent molecules (the lattice size) and distributes these pieces randomly.
Such a mean-field approach ignores the correlations between monomers along the chain
(the chain connectivity). Here, for simplicity, it is assumed that in polymer blends the
monomer volumes of species A and B are identical. Regular solution theory writes the en-
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ergy of mixing in terms of three pairwise interaction energies (uAA, uAB, and uBB) between
adjacent lattice sites occupied by the two species. A mean field is used to determine the
average pairwise interaction UA of a monomer of species A occupying one lattice site with
a neighbouring monomer on one of the adjacent sites. The probability of this neighbour
being a monomer of species A is assumed to be the volume fraction φA of these molecules
(ignoring the effect of interactions on this probability). The probability of this neighbour
being a monomer of species B is φB = 1 − φA. The average pairwise interaction of an
A-monomer with one of its neighbouring monomers is a volume fraction weighted sum of
interaction energies:

UA = uAAφA + uABφB

The corresponding energy of a B-monomer with one of its neighbours is similar:

UB = uABφA + uBBφB

Each lattice site of a regular lattice has z nearest neighbours, where z is the coordination
number of the lattice. For example, z = 4 for a square lattice and z = 6 for a cubic lattice.
Therefore, the average interaction energy of an A monomer with all of its z neighbours
is zUA. The average energy per monomer is half of this energy (zUA/2) due to the fact
that every pairwise interaction is counted twice (once for the monomer in question and
once for its neighbour). The corresponding energy per site occupied by species B is zUB.
The number of sites occupied by species A (the number of monomers of species A) is nφA,
where n is the total number of sites in the combined system. The number of sites occupied
by monomers of species B is nφB. Summing all the interactions gives the total interaction
energy of the mixture:

U =
zn

2
[UAφA + UBφB]

Denoting the volume fraction of species A by φ the total interaction energy of a binary
mixture with n lattice sites is expressed as

U =
zn

2
[(uAAφA + uABφB)φA + (uABφA + uBBφB)φB]

=
zn

2
[uAAφ

2 + uBB(1− φ)2 + 2uABφ(1− φ)]

The interaction energy per site in a pure A component before mixing is zuAA/2, because
each monomer of species A before mixing is only surrounded by species A. We ignore the
boundary effects because of the very small surface-to-volume ratio for most macroscopic
systems. The total number of monomers of species A is nφA and therefore the total energy
of species A before mixing is

zn

2
uAAφ

and the total energy of species B before mixing is

zn

2
uBB(1− φ)
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The total energy of both species before mixing is the sum of the energies of the two pure
components:

U−U0 =
zn

2
[uAAφ

2+uBB(1−φ)2+2uABφ(1−φ)−uAAφuBB(1−φ) =
zn

2
[φ(1−φ)(2uAB−uAA−uBB]

It is convenient to study the intensive property, which is the energy change on mixing
per site:

∆Ũmix =
U − U0

n
=
z

2
φ(1− φ)(2uAB − uAA − uBB)

The Flory interaction parameter χ is defined to characterize the difference of interaction
energies in the mixture:

χ ≡ z

2

2uAB − uAA − uBB
kBT

Defined in this fashion, χ is a dimensionless measure of the differences in the strength of
pairwise interaction energies between species in a mixture (compared with the same species
in their pure component states). Using this definition, we write the energy of mixing per
lattice site as

∆Ũmix = χφ(1− φ)kBT

This energy equation is a mean-field description of all binary regular mixtures: regular
solutions, polymer solutions, and polymer blends.

Combining with the expression for the entropy of mixing, we arrive at the Helmholtz
free energy of mixing per lattice site:

∆F̃mix = ∆Ũmix − T∆S̃mix = kBT

[
φ

NA
lnφ+

1− φ
NB

ln(1− φ) + χφ(1− φ)

]
The free energy of mixing per unit volume is ∆F̃mix/v0. This equation was first cal-

culated by Huggins and later independently derived by Flory, and is commonly referred
to as the Flory-Huggins equation. For non-polymeric mixtures with NA = NB = 1, this
equation was developed earlier by Hildebrand and is called regular solution theory:

∆F̃ regularmix = [φ lnφ+ 1− φ ln(1− φ) + χφ(1− φ)]

For polymer solutions, NA = N and NB = 1, reducing to the Flory-Huggins equation for
polymer solutions:

∆F̃mix = ∆Ũmix − T∆S̃mix = kBT

[
φ

N
lnφ+ (1− φ) lnφ+ χφ(1− φ)

]
The first two terms in the free energy of mixing have entropic origin and always act to

promote mixing, although with blends of long- chain polymers these terms are quite small.
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The last term has energetic origin, and can be positive (opposing mixing), zero [ideal mix-
ture], or negative (promoting mixing) depending on the sign of the interaction parameter
χ. If there is a net attraction between species (i.e. they like each other better than they
like themselves), χ < 0 and a single-phase mixture is favourable for all compositions. More
often there is a net repulsion between species (they like themselves more than each other)
and the Flory interaction parameter is positive χ > 0. We will show that in this case the
equilibrium state of the mixture depends not on the sign of the free energy of mixing at
the particular composition of interest, but on the functional dependence of this free energy
on the composition φ for the whole range of compositions. This functional dependence
∆F̃mix depends on the value of the Flory interaction parameter χ as well as on the degrees
of polymerization of both molecules NA and NB. It is very important to know the value of
the Flory interaction parameter χ for a given mixture. Tables of χ parameters are listed
in many reference books.

One of the major assumptions of the Flory-Huggins theory is that there is no volume
change on mixing and that monomers of both species can fit on the sites of the same
lattice. In most real polymer blends, the volume per monomer changes upon mixing.
Some monomers may pack together better with certain other monomers. The volume
change on mixing and local packing effects lead to a temperature-independent additive
constant in the expression of the Flory interaction parameter. In practice, these effects
are not fully understood and all deviations from the lattice model are lumped into the
interaction parameterχ, which can display non-trivial dependences on composition, chain
length, and temperature. Empirically, the temperature dependence of the Flory interaction
parameter is often written as the sum of two terms:

χ = A+
B

T

The temperature-independent term A is referred to as the ’entropic part’ of χ while B/T
is called the ’enthalpic part’. The parameters A and B have been tabulated for many
polymer blends.

12 Stability of polymer solutions

Ideal mixtures with ∆Ũmix = 0 have their free energy of mixing convex over the entire
composition range. To understand why it is convex, we differentiate the entropy of mixing
expression with respect to composition

∂∆F̃mix
∂φ

= −T ∂∆S̃mix
∂φ

= kBT

[
lnφ

NA
+

1

NA
− ln(1− φ)

NB
− 1

NB

]
Notice that this purely entropic contribution diverges at both extremes of composition.
This divergence means that a small amount of either species will always dissolve even
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if there are strong unfavourable energetic interactions. Differentiating the free energy of
mixing a second time determines the stability of the mixed state for ideal mixtures

∂2∆F̃mix
∂φ2

= −T ∂
2∆S̃mix
∂φ2

= kBT

[
1

NAφ
+

1

(1− φ)NB

]
> 0

Homogeneous ideal mixtures are stable for all compositions because entropy always
acts to promote mixing, and the ideal mixture does not have any energetic contribution
to its free energy. The opposite case where the energy dominates is found at T = 0 K
because the entropic contribution vanishes. The free energy only has an energetic part.
Differentiating the free energy at T = 0 K twice with respect to composition determines
whether the blend is locally stable at 0 K

∂2∆F̃mix
∂φ2

=
∂2∆Ũmix
∂φ2

= −2χkBT = −2BkB − 3AkBT

where in the last step we have written χ = A+B/T . At T = 0 K

∂2∆F̃mix
∂φ2

= −2BkB

If the components of the mixture like themselves more than each other

uAB >
uAA + uBB

2
or B > 0

the free energy of mixing is concave and homogeneous mixtures are unstable for all com-
positions at T = 0K because the second derivative of the free energy of mixing is negative.
Any mixture phase separates into the two pure components at T = 0K since entropy makes
no contribution at this special T . This case corresponds to positive Flory interaction pa-
rameter χ. If the components like each other better than themselves

uAB <
uAA + uBB

2
or B < 0

the free energy of mixing is convex and homogeneous mixtures of any composition are
stable at T = 0 K. This case corresponds to negative Flory interaction parameter χ.

Real mixtures have both energetic and entropic contributions to their free energy of
mixing. The local stability of the mixture is determined by the sign of the second derivative
of the free energy with respect to composition:

∂2∆F̃mix
∂φ2

=
∂2∆Ũmix
∂φ2

− T ∂
2∆S̃mix
∂φ2

= kBT

[
1

NAφ
+

1

(1− φ)NB

]
− 2χkBT

At finite temperatures, ∆F̃mix is convex at both ends of the composition range because
its second derivative is positive due to the diverging slope of the entropy of mixing ∆S̃mix.
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For example, consider a polymer blend with NA = 200 and NB = 100, for which
χT = 5K . At high temperatures the entropic term of the mixing free energy dominates,
and all blend compositions are stable (Draw figure). As temperature is lowered the entropic
term diminishes, allowing the repulsive energetic term to start to be important at inter-
mediate compositions. Entropy always dominates the extremes of composition (due to the
divergent first derivative) making those extremes stable. Below some critical temperature
Tc (defined in detail later on), a composition range with concave free energy appears, which
makes intermediate compositions unstable. Below Tc there is a range of compositions for
which there are phase separated states with lower free energy than the homogeneous state.
Many demixed states have lower free energy than the homogeneous state, but the lowest
free energy state defines the equilibrium state. Straight lines connecting the two phase
compositions determine the free energy of the phase separated state. In order to mini-
mize the free energy, the system chooses the compositions that have the lowest possible
straightjine, which is a common tangent. The phases present are thus determined by the
common tangent rule. This common tangent minimization of the free energy of mixing
effectively requires that the chemical potential of each species in both phases are balanced
at equilibrium. The two equilibrium compositions φI and φII correspond to a common
tangent line. For any overall composition in the miscibility gap between φI and φII , the
system can minimize its free energy by phase separating into two phases of composition
φI and φII . The amounts of each phase are determined by the lever rule outlined above.
The composition ranges 0 < φ < φI or φII < φ < 1 are outside the miscibility gap and the
homogeneously mixed state is the stable equilibrium state for these blend compositions.
Within the miscibility gap there are unstable and metastable regions, separated by inflec-
tion points at which the second derivative of the free energy is zero. Between the inflection
points, the second derivative of the free energy is negative and the homogeneously mixed
state is unstable. Even the smallest fluctuations in composition lower the free energy,
leading to spontaneous phase separation (called spinodal decomposition). Between the
infection points and the equilibrium phase separated compositions, there are two regions
that have positive second derivative of the free energy of mixing. Even though the free
energy of the homogeneous state is larger than that of the phase-separated state (on the
common tangent line) the mixed state is locally stable to small composition fluctuations.
Such states are metastable because large fluctuations are required for the system to reach
thermodynamic equilibrium. Phase separation in this metastable regime occurs by nucle-
ation and growth. The nuclei of the more stable phase must be larger than some critical size
in order to grow in the metastable region because of the surface tension between phases.
The new phase can grow only when a sufficiently large fluctuation creates a domain larger
than the critical size.
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13 Phase diagrams

By considering the temperature dependence of the free energy of mixing, a phase diagram
can be constructed to summarize the phase behaviour of the mixture, showing regions of
stability, instability, and metastability. Recall the free energy of mixing for a polymer
blend

∆F̃mix = kBT

[
φ

NA
lnφ+

1− φ
NB

ln(1− φ) + χφ(1− φ)

]
The phase boundary is determined by the common tangent of the free energy at the

compositions φI and φII corresponding to the two equilibrium phases(
∂∆F̃mix
∂φ

)
φ=φI

=

(
∂∆F̃mix
∂φ

)
φ=φII

This derivative of the free energy of mixing per site with respect to volume fraction of
component A is(

∂∆F̃mix
∂φ

)
= kBT

[
lnφ

NA
+

1

NA
− ln(1− φ)

NB
− 1

NB
+ χ(1− 2φ)

]

13.1 Symmetric polymer blend

For the simple example of a symmetric polymer blend with NA = NB = N it is particularly
easy to evaluate the coexistence curve, since the common tangent line is horizontal(

∂∆F̃mix
∂φ

)
φ=φI

=

(
∂∆F̃mix
∂φ

)
φ=φII

= kBT

[
lnφ

N
− ln(1− φ)

N
+ χ(1− 2φ)

]
= 0

The above equation can be solved for the interaction parameter corresponding to the
phase boundary — the binodal of a symmetric blend:

χbinodal =
1

2φ− 1

[
lnφ

N
− ln(1− φ)

N

]
Since the model is by construction symmetric, the critical packing fraction is φ = 0.5.

This allows us to evaluate the critical χ. Expanding around φ = 0.5 one finds

χcritical =
1

N

1

2φ− 1
ln(

φ

1− φ
−1+1) =

1

N

1

2φ− 1

φ

1− φ
−1 =

1

N

1

2φ− 1

φ− 1 + φ

1− φ
=

1

N

1

1− φ
=

2

N

which suggests that binary mixture of polymers of similar length always phase separate
(since χcritical ≈ 0).
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Using the phenomenological temperature dependence of the interaction parameter (χ =
A + B/T ), this relation can be transformed to the binodal of the phase diagram in the
space of temperature and composition.

The binodal for binary mixtures coincides with the coexistence curve, since for a given
temperature (or Nχ) with overall composition in the two-phase region, the two compo-
sitions that coexist at equilibrium can be read off the binodal. Any overall composition
at temperature T within the miscibility gap defined by the binodal has its minimum free
energy in a phase-separated state with the compositions given by the two coexistence curve
compositions φI and φII .

13.2 A-Symmetric polymer blend

Returning to the general case of an asymmetric blend, the inflection points can be found
by equating the second derivative of the free energy to zero:

∂2∆F̃mix
∂φ2

= kBT

[
1

NAφ
+

1

(1− φ)NB

]
− 2χkBT = 0

The curve corresponding to the inflection point is the boundary between unstable and
metastable regions and it is called the spinodal

χspinodal =
1

2

[
1

NAφ
+

1

(1− φ)NB

]
This spinodal can also be transformed to a phase diagram in the temperature-composition

plane by using the experimentally determined χ(T ).
In a binary blend the extreme point on the spinodal curve corresponds to the critical

point:

∂χspinodal
∂φ

=
1

2

[
− 1

NAφ2
+

1

(1− φ)2NB

]
= 0

The solution of this equation gives the critical composition:

φc =

√
NB√

NA +
√
NB

Substituting this critical composition back into the equation of the spinodal determines
the critical interaction parameter:

χc =
1

2

(
√
NA +

√
NB)2

NANB
=

1

2

(
1√
NA

+
1√
NB

)2
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13.3 Symmetric blends again - they do not like to stay homogeneous

For a symmetric polymer blend (NA = NB = N), the whole phase diagram is symmetric
with the critical composition

φc =
1

2

and very small critical interaction parameter

χc =
2

N

Since this critical interaction parameter is very small for blends of long chains, most polymer
blends have χ > χc and thus are phase separated over some composition range (within the
miscibility gap). Only blends with either very weak repulsion (0 < χ < χc), or a net
attraction between components of the mixture (χ < 0) form homogeneous (single-phase)
blends over the whole composition range.

13.4 Polymer solutions - the critical packing density goes to zero !

In polymer solutions (NA = N and NB = 1), the phase diagram is strongly asymmetric
with low critical composition

φc =
1√
N + 1

≈ 1√
N

and critical interaction parameter close to 1/2

χc =
1

2
+

1√
N

+
1

2N

Note that the spinodal and binodal for any binary mixture meet at the critical point. For
interaction parameters χ below the critical one (for χ < χc the homogeneous mixture is
stable at any composition For higher values of the interaction parameter (for χ > χc) there
is a miscibility gap between the two branches of the binodal. For any composition in a
miscibility gap, the equilibrium state corresponds to two phases with compositions φI and
φII located on the two branches of the coexistence curve at the same value of χ.

43



44


