
1 Ripasso: Ising 1d

In alcuni metalli, abbassando la temperatura sotto un valore detto di Temperatura di Curie,
una frazione finita degli spin degli atomi si allinea, dando origine ad una magnetizzazione
del materiale. Il modello di Ising offre una rappresentazione cruda del fenomeno, che
pero’ ha svolto nella storia della meccanica statistica un ruolo cruciale, essendo un modello
risolvibile analiticamenti in una e due dimensioni. Il modello di Ising e’ definito su un
reticolo (lineare, quadrato, cubico...). Su ognuno degli N siti reticolari e’ collocato uno
spin s che puo’ avere solo due orientazioni, up (s = 1) e down (s = −1). Spin adiacenti
interagiscono con un potenziale -εsisj . Valori di ε positivi indicano un ferromagnete, ε
negativi un anti-ferromagnete. L’ Hamiltoniana del modello e’ (indicando con < i, j > le
coppie di spin adiacenti)

H{si} = −
∑
<i,j>

εsisj −H
N∑
i=1

si

La funzione di partizione nel canonico e’ data dalla somma sui 2N stati

Q(H,T ) =
∑
s1

∑
s2

....
∑
sN

e−βH{si}

La magnetizzazione M =<
∑N

i=1 si > la possiamo calcolare come derivata rispetto ad H
di lnQ(H,T )

M =
1

β

∂ lnQ

∂H
= − ∂A

∂H
=

1

Q

∑
s1

∑
s2

....
∑
sN

(
N∑
i=1

si

)
e−βH{si} =<

N∑
i=1

si >

2 Ising 1D

In una dimensione, con condizioni al contorno periodiche (sN+1 = s1),

H{si} = −
N∑
i=1

εsisi+1 −H
N∑
i=1

si

e, simmetrizzando il termine con il campo magnetico

Q(H,T ) =
∑
s1

∑
s2

....
∑
sN

e−β
∑N
i=1(−εsisi+1−H2 (si+si+1)

Se definiamo una matrice P

P =

[
eβ(ε+H) e−βε

e−βε eβ(ε−H)

]
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possiamo riscrivere la funzione di partizione come

Q(H,T ) =
∑
s1

∑
s2

....
∑
sN

< s1|P |s2 >< s2|P |s3 >
.... < sN |P |s1 >

e poiche’
∑

sk
|sk >< sk| = 1,

Q(H,T ) =
∑
s1

< s1|PN |s1 >= TrPN = λN+ + λN−

dove λ+ e λ− sono gli autovalori di P e abbiamo sfruttato la invarianza della traccia. Per
N grandi solo il maggiore tra λ+ e λ− conta.

Per chiarire perche’
∑

sk
|sk >< sk| = 1 considerate un caso specifico, per esempio∑

s2

< s1|P |s2 >< s2|P |s3 >

che riconoscerete come la somma equivalente al prodotto riga per colonna della moltipli-
cazione di P per P, trovando cosi che∑

s2

< s1|P |s2 >< s2|P |s3 >=< s1|P 2|s3 >

2.1 H = 0

Quando H = 0,

P =

[
eβε e−βε

e−βε eβε

]
e il determinante |P − λI] = 0 diviene (indicando x = eβε)

|P − λI] = (x− λ)2 − 1

x2
= 0 → λ± = x± 1

x

e, poiche’ ex + e−x = 2 cosh(x)

λ± = eβε ± e−βε QN = 2N
[
coshN (βε) + sinhN (βε)

]
2.2 H 6= 0

In questo caso, chiamando x = exp(βε) e y = exp(βH)

P =

[
xy 1

x
1
x

x
y

]
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cosi che’

(xy − λ)

(
x

y
− λ
)
− 1

x2
= 0 λ2 − λ(xy +

x

y
) + x2 − 1

x2
= 0

λ± =
1

2

(
(xy +

x

y
)±

√
x2y2 +

x2

y2
+ 2x2 − 4x2 +

4

x2

)

=
x

2

(y +
1

y

)
±

√(
y − 1

y

)2

+
4

x4

 = x

1

2

(
y +

1

y

)
±

√
1

4

(
(y − 1

y

)2

+
1

x4


λ± = eβε

[
cosh(βH)±

√
sinh2(βH) + e−4βε

]
e per grandi N

A = −kBT lnQ = −kBT lnλ+ = −ε− kBT ln

[
cosh(βH) +

√
sinh2(βH) + e−4βε

]
La magnetizzazione per spin la otteniamo derivando A rispetto ad H (cambiando di

segno) trovando

M = − ∂A
∂H

=
kBT[

cosh(βH) +
√

sinh2(βH) + e−4βε

]
β sinh(βH) + β

sinh(βH) cosh(βH)√
sinh2(βH) + e−4βε

 =

=
sinh(βH)[

cosh(βH) +
√

sinh2(βH) + e−4βε

]
1 +

cosh(βH)√
sinh2(βH) + e−4βε

 =
sinh(βH)√

sinh2(βH) + e−4βε

Poiche’ sinh(0) = 0, M(H = 0, T ) = 0. Per nessuna temperatura finita, il sistema in una
dimensione si magnetizza spontaneamente.

Troviamo dunque che in assenza di campo, nonostante ci aspettiamo che spin adiacenti
siano orientati nella stessa maniera, non e’ presente magnetizzazione. Il sistema apparira’
come una sequenza di spin spesso paralleli con un numeri di inversioni di segno che deter-
minano in media magnetizzazione nulla.

↑↑↑↑↓↓↓↓↓↓↓↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓↓↓↓↓↑↑↑↓↓↓↓↓↑↓↓↓↓↑↑↑↑↑↑↑↑↑

Possiamo capire meglio perche’ la magnetizzazione e’ sempre nulla (eccetto che stret-
tamente a T = 0) considerando l’ energia libera in funzione del numero di ”interfacce”,
chiamando interfaccia il luogo dove due spin successivi hanno segno opposto. Lo stato
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fondamentele (l’ unico con M = 1) non ha interfacce ed ha una energia per spin pari a
A(0) = −Nε. Lo stato con una interfaccia ha energia libera A(1) = −Nε + 2ε − T lnN
dove abbiamo aggiunto l’energia associata all’ aver flippato tutto gli spin a destra dell’
interfaccia in modo coerente. Il termine entropico lnN indica gli N luoghi dove possiamo
collocare l’ interfaccia. Continuando troviamo A(3) = −Nε+ 4ε− T ln[N(N − 1)/2] e cosi
via. Un grafico dell’ energia libera in funzione del numero di interfacce vi fa vedere che per
N → ∞ il minimo di A si ha per un numero di interfacce diverso da 0. Lo stato con una
interfaccia (e M = 0 !) diventa infatti piu’ stabile dello stato fondamentale (con M = 1)
gia’ per T = 2ε

lnN

3 Stretching DNA —- Nelson Chapter 9

In this lecture we go back to what we have learned for polymers to attempt to evaluate
the response of DNA in double helix form to an external force. We will investigate several
regimes, from very weak forces where we already know the answer from the ideal polymer
theory to forces able to elongate the polymer significantly, for which one need to develop
better models.

4 The force extension curve can be measured for single DNA
molecules

From the initial studies of Bustamente’s group, we have now a well precise characterization
of DNA behavior. Experimentally one end of the DNA is attached to a surface and the
other end is attached to a gold nanoparticle and driven by an optical trap. In this set-up
forces (in the pN scale) and displacement (in the 100 nm range) can be simultaneously
measured.

Let us look at some of the available experimental data. To get a clear picture, we?d like
to pass from pulling on rubber bands, with zillions of entangled polymer chains, to pulling
on individual polymer molecules with tiny, precisely known forces. S. Smith, L. Finzi,
and C. Bustamante accomplished this feat in 1992; a series of later experiments improved
both the quality of the data and the range of forces probed, leading to the picture shown
in Figure 9.3. Such experiments typically start with a known piece of DNA, for example
lambda-phage DNA with Ltot = 16.5µm and 10416 basepairs. One end is anchored to a
glass slide, the other to a micrometer-sized bead, and the bead is then pulled by optical
or magnetic tweezers. Figure 9.3 shows five distinct regimes of qualitative behavior as the
force on the molecule increases:
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• A. At very low stretching force, f < 0.01pN , the molecule is still nearly a random
coil. Its ends then have a mean-square separation given by

Ree = L0N
1/2

where L0 is the Khun length and N = Ltot/L0 and Ltot the maximum extension of
the double strand molecule

Figure 9.3 shows that for zero applied force, the extension of the DNA is less than
0.3 Ltot, or 1060 nm, so we conclude that

L0

√
Ltot/L0 < 0.3Ltot → L0 < (0.3)2Ltot ≈ 300nm

.

• B. At higher forces the relative extension begins to level off as it approaches unity.
At this point the molecule has been stretched nearly straight.

• C. At forces beyond about 10 pN, the extension actually exceeds the total contour
length of the relaxed molecule: The molecule begins to stretch.

• D. At around f = 65pN we find a remarkable jump, as the molecule suddenly extends
to about 1.6 times its relaxed length. This is called ”overstretching transition”.

• E. Still higher forces again give elastic behavior, until eventually the molecule breaks.

4.1 Region A: Independent spin model at work

A simple two-state system qualitatively explains DNA stretching at low force. We wish
to compute the entropic force f exerted by an elastic rod subjected to thermal motion.
This may seem like a daunting prospect. The stretched rod is constantly buffeted by
the Brownian motion of the surrounding water molecules, receiving kicks in the directions
perpendicular to its axis. Somehow all these kicks pull the ends closer together, maintaining
a constant tension if we hold the ends a fixed distance z apart. How could we calculate
such a force?

Let’s start with a very simple model, in which the DNA double helix is described as
a random coil polymer composed by N non-interacting segments. For simplicity we also
work in one dimension. We assume that each link has a two-state variable σ, which equals
+1 if the link points forward (along the applied force), or −1 if it points backward (against
the force). The total extension z is then the sum of these variables:

z = L1d
0

N∑
i=1

σi
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In the polymer-stretching system Uext goes up as the chain shortens:

Uext = const− fz

where f is the applied external stretching force. Neglecting the constant term, the system’s
partition function is

Z =
∑
σ1=±1

∑
σ2=±1

....
∑

σN=±1

e−β(−fL1d
0

∑N
i=1 σi)

and

< z >=

∑
σ1=±1

∑
σ2=±1 ....

∑
σN=±1

(
L1d

0

∑N
i=1 σi

)
e−β(−fL1d

0

∑N
i=1 σi)

Z
=

< z >=

∑
σ1=±1

∑
σ2=±1 ....

∑
σN=±1

(
L1d

0

∑N
i=1 σi

)
eβfL

1d
0

∑N
i=1 σi∑

σ1=±1

∑
σ2=±1 ....

∑
σN=±1 e

βfL1d
0

∑N
i=1 σi

=

∂

∂(βf)
ln
∑
σ1=±1

∑
σ2=±1

....
∑

σN=±1

eβfL
1d
0

∑N
i=1 σi =

∂

∂(βf)
ln

( ∑
σ1=±1

eβfL
1d
0 σ1

∑
σ2=±1

eβfL
1d
0 σ2 ....

∑
σN=±1

eβfL
1d
0 σN

)

=
∂

∂(βf)
N ln(eβfL

1d
0 + e−βfL

1d
0 ) =

= NL1d
0

eβfL
1d
0 − e−βfL1d

0

eβfL
1d
0 + e−βfL

1d
0

Recalling that NL1d
0 is the total length Ltot of the DNA molecule we find

< z >

Ltot
= tanh(βfL1d

0 )

For small applied forces f , tanh(βfL1d
0 ) ≈ βfL1d

0 such that the DNA molecule behaves as
a spring

< z >

Ltot
= βfL1d

0 < z >=
fN(L1d

0 )2

kBT

of (entropic) elastic constant such that kel < z >= f

kel = kBT
1

(L1d
0 )2N

. We thus recover the result we knew already from the physics of an ideal polymer.
But we have now in addition also the possibility to estimate the behavior of the polymer

for large applied forces tanh(βfL1d
0 ) ≈ 1 and

< z >

Ltot
= 1
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4.2 Region A (better model) Ising model at work

The next step is to account for some interaction (cooperativity in biological terminology)
between adjacent segments, still retaining the one dimension approximation. We can add
to the hamiltonian a term

∑
i−γkBTσiσi+1 such that there is a preferential gain in parallel

alignment (2γkBT ) respect to antiparallel one.
This additional contribution transforms the ”non-interacting paramagnet” into a ”1D-

Ising” type model. The partition function is indeed now

Z =
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

e−β(−fL1d
0

∑N
i=1 σi−γkBT

∑
i σiσi+1)

=
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

eα
∑N
i=1 σi+γ

∑N−1
i=1 σiσi+1

where we have defined α = βfL1d
0 . As before we need to compute

< z >= L1d
0

∂

∂α
lnZ

The partition function can be simmetrized

Z =
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

eα
∑N
i=1

σi+σi+1
2

+γ
∑N−1
i=1 σiσi+1eασ1/2eασN/2

To calculate Z we apply the transfer matrix method. If we define a matrix

P =

[
eγ+α e−γ

e−γ eγ−α

]

Z =
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

< σ1|P |σ2 >< σ2|P |σ3 >
.... < σN−1|P |σN > eασ1/2eασN/2

and since
∑

σk
|σk >< σk| = 1,

Z =
∑
σ1=±1

∑
σN=±1

< σ1|PN−1|σN > eασ1/2eασN/2

By calling λ+ and λ− the two eigenvalues of P , and performing the sum using the eigen-
values of P ,

ZN = pλN−1
+ + qλN−1

− ∼ λN−1
max

where p and q are two constants and λmax = max(λ+, λ−). As a result, for large N ,

< z >= L0(N − 1)
∂

∂α
lnλmax
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To evaluate the eigenvalues of P , let’s call x = exp(α) and y = exp(γ) such that

P =

[
eγ+α e−γ

e−γ eγ−α

]
=

[
xy 1

x
1
x

x
y

]
such that

(xy − λ)

(
x

y
− λ
)
− 1

x2
= 0 → λ2 − λ

(
x

y
+ xy

)
+ x2 − 1

x2
= 0

λ± =

(
x
y + xy

)
±
√(

x
y + xy

)2
− 4x2 + 4

x2

2
= x

1

2

(
1

y
+ y

)
±

√
1

4

(
1

y
− y
)2

+
1

x2


= eγ

[
1

2

(
e−α + eα

)
±
√

1

4
(e−α − eα)2 + e−4γ

]
= eγ

[
coshα±

√
(sinhα)2 + e−4γ

]
For small α (small f) (see alpha-wolfram)

∂

∂α
lnλ+ =

∂

∂α

[
ln(e−2γ + 1) +

α2

2e−2γ

]

< z >= N
α

e−2γ
= N

βfL0

e−2γ

hence again an elastic response with elastic constant

kel =
f

< z >
= kBT

e−2γ

NL2
0

4.3 A general formalism

Let’s look at the double helix as a tube structure and let’s look how we can describe the
deformation of the tube and the associated energy cost. For each infinitesima segment ds,
we can define

• the stretch u(s), quantifying the normalised length change: u(s) = ∆(ds)/ds (a scalar
quantity)

• the bend ~β(s), quantifying the change in direction: ~β = dt̂/ds, (a vector quantity)

• the twist ω(s), quantifying the change in rotation of the angle φ in the segment ds:
ω(s) = dφ/ds, (a scalar quantity).
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In the context of DNA, we can think of the stretch as measuring how the contour length
of a short tract of N basepairs differs from its natural (or ”relaxed”) value of (0.34nm)xN .
We can think of the bend as measuring how each basepair lies in a plane tilted slightly from
the plane of its predecessor. To visualize twist density, we first note that the relaxed double
helix of DNA in solution makes one complete helical turn about every 10.5 basepairs. Thus
we can think of the twist density as measuring the rotation δφ of one basepair relative to
its predecessor, minus the relaxed value of this angle. More precisely,

ω = ∆φ− ω0 where ω0 =
2π

10.5b.p.

1b.p.

0.34
≈ 1.8nm−1

.
To write the elastic energy cost E of deforming the tube (or any long, thin elastic rod)

we divide the rod arbitrarily into short segments of length ds. Then E should be the
sum of terms dE(s), coming from the deformation of the segment at each position s. By
analogy to the Hooke relation, we now argue that dE(s) should be a quadratic function of
the deformations, if these are small. The most general expression we can write is

dE =
1

2
kBT

[
A~β2 +Bu2 + Cω2 + 2Duω

]
ds

The phenomenological parameters A, B, and C have dimensions L, L−1, L respectively;
D is dimensionless. The quantities AkBT and CkBT are called the rod’s bend stiffness and
twist stiffness at temperature T , respectively. It is convenient to express these quantities
in units of kBT , which is why we introduced the bend persistence length A and the twist
persistence length C The remaining constants BkBT and DkBT are called the ”stretch
stiffness” and ”twist-stretch coupling”, respectively.

Note that not all possible quadratic terms are found in the expression for dE. The
origin of this is routed in the different properties of the terms. For example, the energy
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must be a scalar, whereas ω~β is a vector; terms of this sort have the wrong geometrical
status to appear in the energy. In some cases we can simplify the energy expression even
further. First, many polymers consist of monomers joined by single chemical bonds. The
monomers can then rotate about these bonds, destroying any memory of the twist variable,
so that there is no twist elasticity: C = D = 0. In other cases, the polymer is free to swivel
at one of its attachment points, again leaving the twist variable uncontrolled; then ω again
drops out of the analysis. A second simplification comes from the observation that the
stretch stiffness kBTB has the same dimensions as a force. If we pull on the polymer with
an applied force much less than this value, the corresponding stretch u will be negligible,
and we can forget about it, treating the molecule as an inextensible rod, that is, a rod
having fixed total length. Making both these simplifications leads us to a one-parameter
phenomenological model of a polymer, with elastic energy

E =
1

2
kBT

∫ Ltube

0
dsA~β2

This equation describes a thin, inextensible, rod made of a continuous, elastic material.
Other authors call it the ”Kratky-Porod” or ”wormlike chain” model (despite the fact that
real worms are highly extensible). It is certainly a simple, ultra-reductionist approach to a
complex molecule. Nevertheless, below will show that it leads to a quantitatively accurate
model of the mechanical stretching of DNA.

4.4 A is the persistence length

Let’s now demonstrate that A is indeed the persistence length of the tube. To do so, we
will evaluate the correlation function of the directions along the tube

< t̂(s1) · t̂(s2) >

and demonstrate that is decays as an exponential, whose scale is the persistence length.
Let’s call the point at s1 the A point, the point in s2 the C point and B an intermediate

point between s1 and s2.
If we consider the tangent vectors t̂(A), this can be split into the component parallel to

t̂(B) and a perpendicular component t̂⊥(A). Similarly, t̂(C) can be split into a component
parallel to t̂(B) and a perpendicular component t̂⊥(C).

Then
t̂(A) · t̂(C) = (t̂(A) · t̂(B))(t̂(C) · t̂(B)) + t̂⊥(A) · t̂⊥(C)

where we have split the scalar product in two contributions: first the product of the com-
ponents in the direction t̂(B) and second the scalar product of the remaining perpendicular
components.

If we use t̂(B) as z-axis, and defining θ and φ the polar angles respect to t̂(B) we can
rewrite

t̂(A) · t̂(C) = cos θ(A) cos θ(C) + sin θ(A) sin θ(C) cosφ(C)
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(it is equivalent to select as reference system the directions t̂(B) and t̂⊥(A) and their vector
product).

The energy of bending does not depend on φ. Hence the angle φ has to be randomly
distributed between 0 and 2π, resulting in a null thermodynamic averaging of cosφ(C).
Then

< t̂(A) · t̂(C) >=< cos θ(A) cos θ(C) >

Considering that the energy expression does not couple distinct segments (E = 1
2kBT

∫ C
A dsA~β2 =

1
2kBT

∫ B
A dsA~β2 + 1

2kBT
∫ C
B dsA~β2) there will be no correlations between θ(A) and θ(C)

and thus
< t̂(A) · t̂(C) >=< cos θ(A) >< cos θ(C) >

The fact that the correlation function factorises implies that

< t̂(sA) · t̂(sC) >=< t̂(sA) · t̂(sB) >< t̂(sB) · t̂(sC) >= eq(SB−sA)eq(SC−sB) = eq(sC−sA)

and for very small sC − sA,

< t̂(s) · t̂(s+ ds) >= 1 + qds

We now consider a reference system (ζ, η, ξ) in which t̂(s) = ζ̂. Then after a small ds
(considering only bending, e.g. changes in the orthogonal directions)

t̂(s+ ds) =
ζ̂ + ψξ ξ̂ + ψηη̂√

1 + ψ2
ξ + ψ2

η

and

< t̂(s) · t̂(s+ ds) >=<
1√

1 + ψ2
ξ + ψ2

η

>= 1− 1

2
< ψ2

ξ > −
1

2
< ψ2

η >

which implies that

qds = −1

2
(< ψ2

ξ > + < ψ2
η >)

The associated energy cost is, being

~β =
t̂(s+ ds)− t̂(s)

ds
=

1

ds

(
1−

√
1 + ψ2

ξ + ψ2
η

)
ζ̂ + ψξ ξ̂ + ψηη̂√

1 + ψ2
ξ + ψ2

η

The norm of ~β is then

~β2 =
1

ds2

(
1−

√
1 + ψ2

ξ + ψ2
η

)2
+ ψ2

ξ + ψ2
η

1 + ψ2
ξ + ψ2

η
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which for small angles gives (calling ψ2
ξ + ψ2

η = y2)

~β2 =
1

ds2

(
1−

√
1 + y2

)2
+ y2

1 + y2
≈ 1

ds2

[1− (1− y2/2)]2 + y2

1 + y2
≈ y2

ds2
≈
ψ2
ξ + ψ2

η

ds2

Then the energy associated to the infinitesimal bend deformation

dE =
1

2
kBTA~β

2ds =
1

2
kBTA(ψ2

ξ + ψ2
η)

1

ds

Since the energy is quadratic in the two terms, each will in average contribute kBT/2,
and hence

kBT =
1

2
kBTA(< ψ2

ξ > + < ψ2
η >)

1

ds
or

< ψ2
ξ + ψ2

η >=
2ds

A

As we had seen before < ψ2
ξ + ψ2

η >= −2qds, proving that

q = − 1

A

or equivalently that A is indeed the persistence length.

5 Small and large deformation regimes. (from Physical Bi-
ology of the cell)

Now that we have learned how to write the energy of the tube, we can write the parti-
tion function over a sum of all possible tube conformation, each of them weighted by the
Boltzmann factor

Z =

∫
Dt(s)

∫
exp(−ξp

2

∫ L

0
β2ds)

In the present of an external force pulling on the tube, the partition function becomes

Z(f) =

∫
Dt(s)

∫
exp

[
−ξp

2

∫ L

0
β2ds+ f

∫ L

0
tz(s)

]
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5.1 small forces

In the limit of small forces, one can expand the force part

Z(f) =

∫
Dt(s)

∫
exp

[
−ξp

2

∫ L

0
β2ds

](
1 + f

∫ L

0
tz(s)ds+

[f
∫ L

0 tz(s)ds]
2

2

)
obtaining, (since

1

Z(0)

∫
e−βE(s)f(s)ds =< f(s) >0

where the average < ... >0 is over the f = 0 ensemble)

Z(f) = Z(0)

(
1 +

1

2
<

∫ L

0

∫ L

0
tz(s)tz(s

′)dsds′ >0

)
Since in equilibrium < tz(s)tz(s

′) >= 1
3 < t(s) · t(s′) >= exp[−|s− s′|/ξp one gets

<

∫ L

0

∫ L

0
tz(s)tz(s

′)dsds′ >0=
1

3

∫ L

0

∫ L

0
exp[−|s− s′|/ξp]dsds′ =

and splitting the integral to eliminate the absolute value∫ L

0

∫ L

0
exp[−|s−s′|/ξp]dsds′ = ξ2

p

∫ L/ξp

0
dy

[∫ y

0
dx exp[−(y − x)] +

∫ L/xi

y
dx exp[−(x− y)]

]

= ξ2
p

[∫ L/ξp

0
e−ydy

∫ y

0
dxex +

∫ L/ξp

0
eydy

∫ Lξ

y
dxe−x

]
e

= ξ2
p

[∫ L/ξp

0
e−ydy(ey − 1) +

∫ L/ξp

0
eydy(−e−L/ξ + e−y)

]

= ξ2
p

∫ L/ξp

0
dy
[
1− e−y − e−L/ξey + 1

]
= ξ2

p

[
2
L

ξ
− e−L/ξ1 − 1 + e−L/ξ

]
= 2Lξp

Thus

Z(f) = Z(0)(1 +
f2

2

1

3
2Lξp) = Z(0)

(
1 +

f2Lξp
3

)
Finally exploiting the relation between the derivative of the log of the partition function

with f one finds
< z >

L
=

2fξp
3

that confirms that the displacement is linear in the force. This result is identical to the
one we have derived before with the Ising model with the proper association of ξp with the
Kuhn segment.
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5.2 Large forces

The limit of large forces can also be calculated analytically. In the case of large forces,
t is essentially oriented in the direction of the force. Then tz ≈ 1 and tx and ty are
approximatively small. Then

t = (tx, ty, (1− t2x − t2z)0.5) =

(
tx, ty, 1−

t2x + t2y
2

)

with tx and ty small. In this limit,

< z >=

∫ L

0
tz(s)ds =

∫ L

0

(
1−

t2x + t2y
2

)
ds = L−

∫ L

0

(
t2x + t2y

2

)
ds

and (
dt

ds

)2

=

(
dtx
ds

)2

+

(
dty
ds

)2

+

(
−1

2

d(t2x + t2y)

ds

)2

≈

≈
(
dtx
ds

)2

+

(
dty
ds

)2

Then the energy can be written as:

Etot =

∫ L

0

[
kBTξ

2

(
dt

ds

)2

− fz(s)

]
=

ξpkBT

2

∫ L

0
ds

[(
dtx
ds

)2

+

(
dty
ds

)2
]
− fkBT

∫ L

0
ds

(
1−

t2x + t2y
2

)
If we expand each component of the rod profile in Fourier series, (where ωn = 2π

L n, but
we drop the index n for simplicity)

tα(s) = R
∑
ω

eiωstα(ω)

where the symbol R indicates the real part. Then∫ L

0
tα(s)ds =

∫ L

0
ds
∑
ω

∑
ω′

eiωse−iω
′stα(ω)t∗α(ω′) =

∑
ω

∑
ω′

δ(ω − ω′)tα(ω)t∗α(ω′) =
∑
ω

|tα(ω)|2

and

15



∫ L

0

(
dtα
ds

)2

ds =

∫ L

0

∣∣∣∣∣(iω)
∑
ω

eiωstα(ω)

∣∣∣∣∣
2

ds = ω2
∑
ω

|tα(ω)|2

With the Fourier series expression, the energy can be written as or

Etot =
ξpkBT

2

[
ω2

(∑
ω

(|tx(ω)2|+ |ty(ω)2|)

)]
− fkBTL+ fkBT

∑
ω

[|tx(ω)2|+ |ty(ω)2|]

=
kBT

2

[
(f + ξpω

2)

(∑
ω

[tx(ω)2 + ty(ω)2]

)]
− fkBTL

Now, in the calculation of the partition function, we need to sum over all possible
contours. This is equivalent to sum over all possible values of tx(ω) and ty(ω). Then
making use of the equipartition theorem stating that each quadratic contribution to the
Hamiltonian originates an average energy contribution equal to kBT/2, one can thus write

kBT

2
< (f + ξpω

2)|tx(ω)|2 >=
kBT

2

such that (similarly for ty)

|tx(ω)|2 =
1

f + ξpω2

< z >

L
= 1− 1

L

∫ L

0

(
|tx|2 + |ty|2

2

)
ds = 1− 1

L

∑
ω

[|tx(ω)|2 + |ty(ω)|2] = 1− 1

L

∑
ω

2

f + ξpω2

Transforming the sum into an integral (and remembering that
∫∞

0
1

1+x2
dx = π

2 )∑
ω

1

f + ξpω2
=

L

2π

∫ ∞
0

dω

f + ξpω2
=

L

2π

π

2
√
fξp

one obtains

< z >

L
= 1− 2

L

L

2π

π

2
√
fξp

= 1− 1

2

1√
fξp

(1)

5.3 Asymptotic and interpolation

The results in the low and high force limit can be ”merged” in an empirical expression by
the following form

ξf =
< z >

L
+

1

4(1− < z > /L)2
− 1

4

16



Indeed, from Eq. 1, (< z >

L
− 1
)2

=
1

4

1

fξp

and

fξp =
1

4

(< z >

L
− 1
)−2

The merged expression, in the limit of < z >≈ L is composed only of the divergent
term 1

4(1−<z>/L)2
. Instead for < z >� L, we can expand

ξf =
< z >

L
+

1

4

(
1 + 2

< z >

L

)
− 1

4
=
< z >

L
+

1

2

< z >

L
=

3

2

< z >

L

recovering the result for small forces.

6 Elastic rod in 3 dimensions

Even though we found that the 1d cooperative chain fit the experimental data slightly
better than the one-dimensional ideal chain, still it is clear that this is physically a very
unrealistic model: We assumed a chain of straight links, each one joined to the next at
an angle of either zero or 180! Really, each basepair in the DNA molecule is pointing in
nearly the same direction as its neighbour. We did, however, discover one key fact, that the
effective segment length L0 is tens of nanometers long, much longer than the thickness of a
single basepair (0.34 nm). This observation means that we can use the phenomenological
elastic energy formula as a more accurate Hamiltonian. Thus, ”all” we need to do is to
evaluate the partition function, to get the force-extension relation of the three-dimensional
elastic rod model. The required analysis was begun in the 1960’ s by N. Saito and coauthors,
then completed in 1994 by J. Marko and E. Siggia, and by A. Vologodskii. (For many more
details see Marko & Siggia, 1995.) Unfortunately, the mathematics needed to carry out the
program just sketched is somewhat involved. But when faced with such beautifully clean
experimental data as those in the figure, and with such an elegant model we really have
no choice but to go at least some distance and compare them carefully. We will treat the
elastic rod as consisting of N discrete links, each of length l . Our problem is more difficult
than the one-dimensional chain because the configuration variable is no longer the discrete,
two-valued σ = ±1, but instead the continuous variable ti describing the orientation of link
number i. Thus the transfer matrix T has continuous indices.

First of all let’s see how we can write the Hamiltonian of the continuum elastic model

E =
1

2
kBT

∫ Ltube

0
dsA~β2

for a chain of N segments of length l
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H =
∑
i

Ei =
1

2
kBT lA

(
t̂i+1 − t̂i

l

)2

=
1

2
kBTA

1

l
[2(1−t̂i+1·t̂i)] =

1

2
kBTA

1

l
[2(1−cos(Θi,i+1))]

=
1

2
kBTA

1

l
Θ2
i,i+1

where Θi,i+1 is the angle between two successive versors.
Adding now the force (in the direction of ẑ)

Hext = fl
N∑
i=1

cosθi

and then write the partition function as a function of the applied force f

Z(f) =

∫
dt̂1..dt̂Ne

−β(H+Hext)

Z(f) =

∫
dt̂1..dt̂Ne

−A
2l

Θ2
i,i+1eβfl

∑N−1
i

cosθi+cosθi+1
2 eβfl

cos θ1+cos θN
2

The < z > vs f for this partition function has been evaluated by Marko and Siggia
in 1995 with a generalization of the transfer matrix method, resulting in a prediction
depending only on one fit parameter A,

The transfer matrix is now a function

T (t̂, n̂) = exp

{
βfl

2
(t̂ · ẑ + n̂ · ẑ) +

A

l
(n̂ · t̂− 1)

}
The theoretical result can be compared (successfully) with experimental data as shown

in the figure
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Figure 1: Comparison between experimental data and theoretical predictions at different
level of complexity

6.1 Overstratching DNA - D - transition from B-form

Overstretching DNA DNA in its ordinary state adopts a conformation called the ?B? form
(Figure 2.17), in which the two chains of bases each stack on each other like the steps of a
spiral staircase. The sugar-phosphate backbones of the two chains then wind around the
center line. That is, the two backbones are far from being straight. The distance traveled
along the molecule?s axis when we take one step up the staircase is thus considerably
shorter than it would be if the backbones were straight. It suggests that pulling on the
two ends could alter the equilibrium between B-DNA and some other, ”stretched”, form,
in which the backbones are straightened. Figure 9.3 shows this overstretching transition
as region ”D” of the graph. At a critical value of the applied force, DNA abandons the
linear-elasticity behavior and begins to spend most of its time in a new state, about 60%
longer than before. A typical value for fcrit in lambda phage DNA is 65 pN. The sharpness
of this transition implies that it is highly cooperative.

6.2 Unzipping DNA

Unzipping DNA It is even possible to tear the two strands of DNA apart without breaking
them. F. Heslot and coauthors accomplished this in 1997 by attaching the two strands at
one end of a DNA duplex to a mechanical stretching apparatus. They and later workers
found the average force needed to ”unzip” the strands to be about 10-15 pN.
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7 Helix-Coil: another application of the Ising model

Some similar approaches can be also applied to describe the helix-coil transition of polypep-
tide chains. The simplest proposed model is again a one-dimensional chain model in which
σi = ±1 indicates the state (helix or coil) of the monomer. In the case of a polypeptide,
being in helix (σ = 1) means the presence of an hydrogen-bond between peptide i and
peptide i + 4. If we assume that the energy Ecoil of the coil and the energy Ehelix of the
helix conformation are different (a new HB is formed, but some HBs with the solvent are
lost), then

∆Ebond ≡ Ehelix − Ecoil
Associated to this energetic change there is also an entropic contribution ∆Sbond, an entropy
change that sum up all entropic contributions associated to the cross-over from coil to helix.
Indeed, the entropy changes both for the restriction of the molecular orientations in the
helix state ( ∆S < 0) and for the change in solvent entropy (∆S > 0). What bias one state
respect to the other is the change in free energy

∆Fbond = ∆Ebond − T∆Sbond

In the bio-litterature, α ≡ −∆Fbond/2kBT is called the propagation parameter. Similarly,
the melting temperature Tm is defined as Tm ≡ ∆Ebond/∆Sbond, such that when T = Tm,
∆Fbond = 0 and hence both states have the same free-energy.

7.1 Simplest model for melting (non-interacting spins)

In the simples model, all units are independent. Hence the partition function is easily
written as

Z =
∑
σ1=±1

∑
σ2=±1

....
∑

σN−4=±1

e−β
∑N−4
i=1 ∆Fbond(σi+1)/2

and we can estimate the fraction of monomers in helix conformation as

fhelix =
1

N − 4
<

N−4∑
i=1

(σi + 1)/2 >

7.2 Some special energy for initiating the helix: Ising model in 1d again

The formation of the first helix piece in a sequence otherwise random is associated to a
different change in free energy, since four different monomers need to acquire a specific
orientation to form a double helix. Extending a helical section requires the immobilization
of two flexible bonds, but creating a helical section in the first place requires that we
immobilize all the bonds between units i and i+ 4. That is, the polymer must immobilize
one full turn of its nascent helix before it gains any of the benefit of forming its first H-bond.
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This can be empirically quantified in a quantity γ ≡ ∆Finitiation/4kBT , commonly called
the cooperativity parameter. Note that this ”initiator” energy is requested every time a
coil segment turns into a helix segment. If we indicate with σi the status of monomer
i, then every time σiσi+1 = −1 this free-energy cost has to be added. As a result, the
partition function of this model is

Z = e−(N−1)βγ
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

e−β(α
∑N
i=1 σi+

∑N−1
i=1 γσiσi+1)

To double check this way of expressing the Hamiltonian, consider a case in which all σi
are −1, which we could consider the ground state with energy Egs = −Nα. Now, if we
change one site we have a new energy Efirstexcitedlevel = −(N − 1)α + α + 4γ, since there
are 2 interfaces created by the change σi = −1→ σi = +1 end each interface changes from
σiσi+1 = 1 to σiσi+1 = −1, contributing with eγ to e−γ .

The change in energy of creating one helix is thus Efirstexcitedlevel − Egs = 2α + 4γ.
The change of sign of another σ next to the interface does produces only the 2α change.

To calculate the degree of helicity

< σ >≡ 1

N
<

N∑
i=1

σi >

it is now sufficient to calculate

< σ >=
1

N

d

dα
lnZ(α)

Since the partition function is identical to the one we have studied with the transfer
matrix method previously we can immediately conclude that

< σ >∼ sinhα√
sinh2 α+ e−4γ

This expression properly fit the data for very long polypeptide. For short polypeptide
one can not limit the calculation to the largest eigenvalues. One need to keep both α+ and
α− to account for end-effects.
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