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Abstract

Using dynamically available volume (DAV) as an order parameter, we study the ideal dy-
namical arrest for some simple lattice glass models. For these models the dynamically available
volume is expressed as holes, or vacant sites into which particles can move. We 8nd that on
approach to the arrest the holes, which are the only mediators of transport, become increasingly
rare. Near the arrest, dynamical quantities can be expanded in a series of hole density, in which
the leading term is found to quadratic, as opposed to unfrustrated systems which have a lin-
ear dependence. Dynamical quantities for the models we have studied show universal behaviour
when expressed in terms of the hole density. The dynamically available volume is shown to be
a useful characterisation of the slow aging in lattice glasses.
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1. Introduction

Many systems in nature pass from the liquid to a ‘solid-like’ but non-crystalline
substance on changing some physically relevant parameter such as temperature, density,
or more complex variables such as pH and ionic strength. Such processes are termed,
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variously, gellation, solidi8cation, dynamical arrest, glassi8cation, jamming, and the
ergodic–non-ergodic transition. Furthermore, these phenomena are observed in systems
as varied as simple atomic substances (‘glassi8cation’) to particle and colloidal dis-
persions (aggregation, or particle-gellation) to polymers and proteins, and more exotic
mixtures of these (gellation). We collectively label these ‘dynamical arrest’ phenom-
ena thereby ensuring a lack of any prejudice in the physical processes leading to the
arrest, and leaving open the possibility that they are all the same phenomenon, at some
deeper, but yet to be understood manner [1].
Whatever the mechanism, the central observation is that the molecules, particles, or

other objects in the system simply stop moving in a fairly reproducible, perhaps on
closer inspection, completely reproducible manner. That they do stop moving does not
imply that the system has crystallised, or that it has reached another equilibrium state
in which the free energy is minimised. In fact, we shall typically direct our comments
to those phenomena where the free energy is not minimised, whilst not absolutely
excluding minimisation as an accompanying aspect of the ‘transition’.
Phenomena of this type have been studied on an ad hoc basis within various branches of

condensed matter science, and 8nd many practical applications. In fact, if the reader would
look around the current environment (including at him-, or her-self), it is likely that the
vast majority of material substances fall within this category of arrest, rather than the
typical states that minimise the free energy. However, a unifying framework, with sim-
ple concepts and clear underlying assumptions that can be derived, beginning from in-
teractions leading to materials, has been diJcult to 8nd, despite the enormous advances
made in the theory of spin-glasses, and latterly the structural glass transition [2–5].
The equilibrium phase transitions have been well-classi8ed, leading to a high degree

of universality in observations throughout nature. Thus, at the lowest level of classi8-
cation we have the thermodynamical derivatives of the free energy of diKerent orders.
A discontinuity in the 8rst-, second-order derivatives lead respectively to 8rst-order
(melting-freezing), second-order (critical point) phase-transitions [6]. These transitions,
along with the ‘in8nite order derivative’ phase-transitions (Kosterlitz–Thouless [7]) rep-
resent essentially all equilibrium phase-change behaviour known in condensed matter
science, and their classi8cation has been one of the key steps in developing the con-
ceptual infrastructure of this part of science. Within these de8nitions there are further
more detailed sub-classi8cations that have been of great importance [8]. Critical phe-
nomena have been classi8ed according to their critical exponents, these representing
very large and universal groups of behaviour according to the type of order parame-
ter in the system. The Muid-‘solid’ (three spatial dimensions) or Muid-hexatic-‘crystal’
(two spatial dimensions) phase-transitions have also been further classi8ed. Firstly, we
recognise that symmetries are broken diKerently; rotational and translational together in
three dimensions, separately in two dimensions, leading to natural expectations about
how the new state emerges, and acquires rigidity. Underlying all these classi8cations,
and universal behaviour, is the observation that a useful description requires the use
of an order parameter that makes primary or direct contact with the physical processes
leading to the transformation. Also, an added simpli8cation is that the resulting states
are free-energy minima, so we have all of the long-tested machinery of Boltzmann
statistics to rely upon in computing explicit properties of the system.
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None of this intellectual framework, and little sense of organisation or cohesion has
accompanied the study of the dynamical arrest through much of its history. In fact, until
recently there seemed little reason to suppose that these diKerent observations of solid-
i8cation are in any way connected. Of course, from a deeper perspective this lack of
uni8cation of concept seems odd. Thus, it is certain that these solidi8cation phenomena
arise also from some embedded phenomena, or organisation of phase-space, based on
the same Newtonian equations as do phase transitions. They are also macro-phenomena,
so the simpli8cations in laws that govern the statistics of large numbers of interacting
units (leading to thermodynamical simplicity), might be expected also to obtain here.
It is therefore intuitively unsatisfactory that there be no uni8ed means by which to
understand them, given their common origin with the phase-transitions, and practically
inconvenient that there be no obvious means by which to classify them.
Indeed, this feeling of dissatisfaction has expressed itself in, until now, unsuccessful

attempts to 8nd hidden symmetries that are broken in ‘glassi8cation’ [9], rather than the
explicit space symmetries broken in the typical phase transitions. It may be remarked
that our expectation of 8nding some simple hidden symmetry that is broken may be
baseless, since in fact these phenomena we discuss are dynamical arrests, rather than
the in8nitely long-lived ‘phases’ previously understood. Might it be, therefore, that the
symmetry of Newtonian equations that is really broken is time-translational-invariance;
that these are long-lived, but ultimately decaying states to some more ordered equilib-
rium phase. And, as a result, there is no real basis for our desires to have a physical
‘order-parameter’ description, and all the familiar simplifying regularity of the con-
densed phase. It may be, that time-translation-invariance (TTI) breaking of this type
can occur and lead to no particular ‘order’ or, worse still, no particular rationale. In
some sense, whether expressed explicitly or not, it is this rather ill-framed doubt that
has been the dominant intuition in the science of this aspect of the condensed phase for
many years. Some more positive views and achievements have emerged from the the-
ory of spin-glasses, where time-translational-invariance breaking has been confronted in
a very general manner using the theory of replicas, and the accompanying replica sym-
metry breaking, essentially the expression of the loss of time-translational-invariance in
various prescribed manners according to the RSB prescription [4]. The symmetry bro-
ken replicas indicate how important successive con8gurations (in time) become trapped
and ergodicity lost. Despite, or perhaps because of, the great beauty and generality of
these concepts, valid for spin-glasses and structural glasses, the dynamical arrest still
lacks a synthesis that is directly related to the physics of solidi8cation, and some
appropriate classi8cation scheme.
It may be that the lack of success in determining broken symmetries and related

order parameter changes, has led to the overly negative opinion that, indeed, there is
no rational basis for uni8cation of the science of emergent rigidity in the vicinity of
dynamical arrest. That is, we know it is possible in very general terms to parameterise
the loss of time-translational-invariance by the breaking of replica symmetry (RSB)
analysis of the non-ergodic parameter. However, this is a very general prescription
that deals with how TTI is lost. Of course, we may still hope that on approach to
arrest, it is possible to 8nd a deeper level of universality in physical properties. This
is a profound question that we are not yet in a position to answer in a very general
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manner. Rather our view is that by the study of simple examples, to be viewed almost
as ‘toy models’ of the phenomena, we might be able to re8ne the questions somewhat,
and draw some more limited conclusions on which we can rely. That this strategy might
lead to conclusions for the more general situation of dynamical arrest is therefore an
aspiration, though if the processes leading to emergence of solid-like structures are
generic, then it may well be a legitimate aspiration.
We have outlined this perspective in some detail because the whole approach we shall

adopt is framed to make logical connection to these concepts. We study simple models,
with generic processes of dynamical arrest where simulations, and theory are both
feasible at a high level. We cannot therefore claim to have understood the dynamical
arrest of any particular substance, and such models have really deep value only if there
are generic, perhaps ‘universal’ phenomena to be understood.
In this paper, we will present some 8ndings, based on simulation, but to be later

supported by theory, for a few very simple lattice models. The aim of our paper will
be to analyse these 8ndings for diKerent regimes of the lattice description, and on this
basis, propose a general view of the (ideal) dynamical arrest, and a perspective for
arrest in its largest sense. In particular, we shall propose that, at least for the so-called
ideal transitions, there may be a very few clearly de8ned generic mechanisms by which
ergodicity is lost, and by which solidi8cation emerges. Indeed, we will propose that
there may be a natural order parameter description of dynamical arrest (‘dynamically
available volume’), and that this has a simple expression for ideal-lattice de8ned arrests.
A question naturally emerges as to what the ‘ideal’ arrest means. This phrase has

arisen in the context of simpli8ed treatments of the glass transition, or in real transitions
of simple systems. In essence it has become used where the characteristic relaxation
time is a power law in the density-(or temperature-) diKerence from the arrest point.
It is often felt to be inextricably linked to the mode-coupling-theory [10,11] of arrest,
and this link seems correct for a number of speci8c cases [4,12–14]. In general it
seems likely that the ideal dynamical arrest is a sort of mean-8eld solution to general
dynamical arrest phenomenon (where Muctuations or ‘hopping’ is also involved. It
appears that many systems (especially colloidal ones) fall within this ideal or mean
8eld limit, explaining the success of that theory [15,16].

2. The concept of dynamically accessible volume as an order parameter

One of the advantages of working with lattice models is that they are so sim-
ple that concepts that are more generally de8ned can be quite simply realised within
them. This is especially helpful when a number of closely related ideas are of interest,
and one must validate one of them, requiring a reasonable level of precision from
simulations.
We wish to introduce a concept of dynamically accessible volume (DAV), a quantity

that we expect to govern the dynamics of a dense system. However, this volume will
not be the same as, for example, the voids used to calculate the chemical potential by
the insertion method, and if we use the wrong de8nition of ‘free volume’ it is found
that no useful order parameter emerges.
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We de8ne dynamically accessible volume as follows. Imagine a group of particles
that is about to move under some prescribed dynamics. We may determine the total
volume of phase-space available to those particles, subject to all others in the system
being 8xed. For an athermal system this construction is suJcient to de8ne the quan-
tum of phase space available to the group of particles under consideration, the more
general (8nite-energy) case requiring only modest modi8cations [17]. The ensemble of
such packages of phase-space volume, conceived as distributions of sizes and shapes,
represents a stationary distribution for systems ‘at equilibrium’ in the sense that the
Muctuation dissipation theorem is satis8ed (FDT2), an issue to be discussed in detail
below. The distribution of volumes so de8ned we term the dynamically accessible
volume (DAV) distribution, and thermodynamic averages may be taken with respect
to it. Should we 8nd the typical or average size of DAV to be representative of the
ensemble, it is natural to approximate the distribution using this quantum of accessible
volume. These de8nitions can be explained, and elementary implications explored by
treatment of a simple example.
For stochastic single particle motion on a lattice model, dynamically accessible

volume at high density consists of those vacancies in the system that are accessible
in a single move of the dynamics. Such objects are termed ‘holes’, and their number
Muctuating around the average is termed the hole density. We emphasise that the hole
is an elementary, but crucial, extension of the concept of a vacancy. The fact that
DAV naturally occurs on a lattice in 8xed packages, and the fact that we work in
the dense lattice limit implies that only single quanta of DAV are found, rather than
double holes, triples and so forth. This makes their use very simple indeed.
To sum up. On a lattice undergoing single particle dynamics, a hole is de8ned as

a vacancy into which at least one of its surrounding particles can move. For simple
cases such as the lattice gas model, vacancies and holes are equivalent. However, when
packing rules are introduced, not every part of un8lled space is dynamically available,
and holes are then de8ned as accessible according to the dynamical rules associated to
the lattice model. In the next section we de8ne such models.

3. The models

To provide an example we introduce a set of lattice models where these ideas can be
worked out in detail [18–21]. Ideas underlying those we discuss began with the lattice
glass model that has recently been developed by Biroli and Mezard [22]. Our studies
of this model have encouraged us to believe that the basic direction is very promising.
However, in working out the detail, it has been found that the time-scale over which one
can see glassy behaviour is modest, and consequently that some quantitative calculations
of the approach to dynamical arrest, and glassi8cation are not possible, or are possible
with limited precision. This has lead us to generalise the interactions somewhat.
We de8ne the model as follows. Begin by dividing space up into cubes of side a,

the microscopic length. We believe that this length represents a convenient measure of
the frustration length of the system [23,24]. To the centre of each such cube we may
associate a ‘particle’ of type i. Between like particles we de8ne interactions ei with
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ci nearest neighbours, ei+1 between particles ci+1 that are diagonal neighbours, and
so forth. Between particles of diKerent types we de8ne energies eij between nearest
neighbours, eij+1 between next (diagonal) neighbours, and so forth.
In practice it will as yet be necessary to study only the much more restricted models

where there are two types of particle, a majority and minority system with nearest
neighbour interactions between one type, and nearest neighbour and more extended
interactions between the other. Between diKerent particles we will require only
interaction between nearest neighbours. However, it would appear that the full range
of interactions between particles up to diagonal neighbours is required to capture the
richness of repulsive and attractive particles in very dense systems [25]. Note that by
taking the limit of in8nite energy for the nearest-neighbour model we arrive back at
the Biroli–Mezard model BM13 (30% 1-particles and 70% 3-particles). By allowing
for additional interactions between diagonal neighbours for the minority particles, and
leaving all other interactions as for the Biroli–Mezard case we arrive to what shall
here be called the extended model EM13.
We then de8ne a local single-particle stochastic dynamics in which sites, and

directions for proposed moves, are chosen randomly, and then moved according to
the normal Monte-Carlo algorithm. In the athermal case in which the energies have
all been taken to zero, we simply execute the move if it leads to no violation of the
packing rules in which particles of type i have no more than ci nearest neighbours of
type i, no more than ci+1 second nearest neighbours of type i + 1 and so forth.

4. The move table

In principle, simulations become increasingly lengthy near the dynamical arrest tran-
sition. Thus, the vast majority of proposed moves lead to unfavourable energies, or
in the athermal model, to illegal con8gurations. This is, of course, the reason for
the arrest transition. However, from a practical point of view, this is an unsatisfac-
tory situation since not only are the simulations more costly in time, but ultimately
the sampling becomes so ineJcient as to be misleading. This is particularly true of
continuum calculations where both Monte-Carlo calculations become very slow, and
Molecular Dynamics (crucial to dynamical properties) may become of limited value
in the vicinity of the ‘ideal’ arrest transition, meaning that the true singularity is diJ-
cult to evaluate. These issues represent the main challenge facing those who simulate
realistic models of particles undergoing dynamical arrest, and are the reason that it is
diJcult to evaluate general questions using detailed models.
The situation is, of course, greatly improved for lattice models because of the sim-

plicity of the interactions, and the regularity of the data structures. However, the fun-
damental limitations remain in that typically much less than 1% of the proposed moves
is acceptable in that limit where we may hope for true dynamical arrest laws.
To remedy this limitation we have de8ned the model as a selection of moves from

a table. At the beginning of the calculation it is straightforward to scan through the
lattice to determine those moves that lead to legitimate states of the model. Subsequent
moves aKect the status of only a few particles, and the cost in updating the table is



K.A. Dawson et al. / Physica A 316 (2002) 115–134 121

therefore minimal. Moves, and times, are selected from the table, each such move
being successful by de8nition. The only computational overheads are associated with
performing the moves and the management of the move table.
Although at 8rst site it seems counterintuitive, it is clear that on approach to the

dynamical arrest transition there are fewer, in fact vanishingly small numbers of
legitimate moves, and the overall table overheads become much smaller. Therefore,
our approach, whilst less eJcient than the standard method at low concentrations be-
comes remarkably rapid near the transition. In fact, as we shall show, this apparently
quite technical innovation should not come as much of a surprise, for the natural way in
which to view the dynamical transition turns out to be terms of a dilute gas of ‘holes’,
de8ned as vacancies on the lattice into which at least one particle can move. In essence
then, we have transformed the approach to dynamical arrest to a simulation of rela-
tively few holes on a cubic lattice. Typical times-scales for simulation in the results
that we report are 106 MCS (L = 20). However there is no particular limitation
in accessing time-scales of 108 MCS near the arrest using a personal computer.
Continuum simulations equivalent to this are not yet feasible even with the largest
super-computers.
Besides this de8nition of the dynamics associated with the model, we also comment

that the model’s phase space may be explored by a number of sampling Monte-Carlo
techniques. We have used a Kawasaki algorithm in which diKerent particles are swapped,
and particles are swapped with vacancies providing this does not lead to any violation.
However, the Kawasaki method is a much more eJcient way of exploring the phase
space, and this is the method we use to ‘equilibrate’ the systems.
We may conclude, therefore, that whilst we have yielded up much of the detail

associated with continuum simulations in favour of a more schematic representation,
we have gained access to a level of sampling not normally explored on approach to
the glass transition. This exchange is a sensible one, providing the essential features
of the interactions leading to characteristic landscapes are captured in the model. The
degree to which this is deeply true has not yet been established, but progress is being
made.

5. Survey of dynamical arrest

The nature of the dynamical arrest transition for the Biroli–Mezard model has been
discussed in the literature, so we will recount only the outline here. The BM13 mixture
of 70% percent 3-particles and 30% 1-particles has been studied in some detail. As
we increase the total volume fraction the diKusion constant, as determined from the
mean-squared distances travelled begins to decrease towards dynamical arrest. How-
ever, at a total density of 0.51 the system undergoes a phase separation to a Muid in
equilibrium with a lamellar crystalline phase. The dynamical arrest is pre-empted by the
equilibrium phase transition, and irreversible Muctuations begin to dominate the system.
This point is illustrated Fig. 1 where we plot the diKusion constants for 3-particles for
two distinct models, the original BM limit, and new extended model EM in which
extended interactions are de8ned between the minority 1-particles. In both cases, we
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Fig. 1. Log DiKusion constants against log density diKerence from the arrest. For the two models,
BM (�) and EM (◦), we show diKusion constants calculated after 104 MCS. We also do the same dif-
fusion calculation after performing 105 Kawasaki MCS which are shown for the two models, BM (?) and
EM (×). From the best 8t lines to the data D ∝ R� we 8nd that �BM = 2:38 and �EM = 2:50.

present data for the 70
30 mixture, and the diKusion constants have been determined from

the mean-squared distances. Up to the equilibrium phase transition only one data set is
de8ned for the diKusion constant, as might be expected. Beyond, where non-equilibrium
eKects begin to predominate, the diKusion constants begin to drift slowly. In the case
of the BM limit this drift is moderately large, and beyond the branch point in Fig. 1,
the diKusion constant data are plotted for two time-scales (see caption). The EM13 has
been selected to avoid such problems, and the diKusion constants are almost insensitive
to slow changes up the transition at = 0:495.

6. Transport near the ideal arrest transition of hard particles

Here we begin by making the simplifying assumption that ‘holes’, de8ned as va-
cancies into which at least one neighbouring particle can move, have a density that is
on average 8xed over the duration of the observation to be described. This is true for
the BM and EM for densities up to the ‘branch’ point of the diKusion constant curves
(Fig. 1).
We begin by emphasising the point that holes, by de8nition, provide the only means

by which particles can move in a highly constrained system such as that of the frustrated
lattice model. It is clear that, for the simpler case of the lattice gas model (c = 6) in
which there is no frustration, every empty site (vacancy) can be used by the surrounding



K.A. Dawson et al. / Physica A 316 (2002) 115–134 123

particles. Thus, in the vicinity of a vacancy on a simple cubic lattice, any of six particles
can move into that vacancy, leading to particle motion and, providing the particle does
not move backward again, a contribution to nett diKusive motion results.
This is clearly not so for the frustrated models (c¡ 6) where the packing rules can

render vacancies inaccessible to their surrounding particles.
The rules that de8ne a hole in such models are unambiguous, being easily represented

on a computer or as a multi-particle correlation function. It may be remarked that the
hole operator is a product of equal-time particle density operators, and as a consequence
averages of products of this operator at equal times are equilibrium properties of the
model. Simply put, quantities such as the hole density are thermodynamic quantities,
even though we will later show that they tell us quite a lot about the dynamics and
non-equilibrium phenomena of the lattice model. This is an important question of
principle that later implies many interesting results so it is worth dwelling on its
meaning.
We observe that, despite being an equilibrium quantity, the hole density represents a

good order parameter for the dynamical arrest transition. Hole density vanishes as
we approach dynamical arrest, though it is also in principle possible for a small
residue of immobilised holes to remain at arrest. The true order parameter would then
be the diKerence between the hole density and this small residue. However, for the
cases we have studied so far there is no evidence of a 8nite and measurable number
of holes in the (extrapolated) limit where the diKusion constant vanishes. In fact, the
diKusion constant and hole density for both the BM and EM can be well-8tted by a
power law on approach to arrest,

D = Ai |− c|�i ; (1)

�= Bi |− c|�i : (2)

For the athermal case we may construct a Landau-type theory of the transition based
on the entropy, with the order parameter being hole density. Assuming there is an
analytic series connecting entropy and hole density we write the series,

S − ��= a2
2
�2 +

a3
3
�3 + · · · ; (3)

where the conservation of hole density is expressed by the chemical potential �. Min-
imising the entropy we obtain,

� = a2�+ a3�2 + · · · ; (4)

where the coeJcients an are functions of the particle density that are at present un-
known. The solution of Eq. (4) near arrest is equivalent to the results in Eq. (2).
Now we turn to the application of dynamically accessible volume (DAV) as the

order parameter for dynamical processes. Since transport properties are controlled by
(a decreasing) hole density in the limit of arrest, it is reasonable to propose, say, that
the vanishing of the diKusion constant may be expanded in a low order series in terms
of the (vanishing) hole density. Thus,

D = �1�+ �2�2 + �3�3 + · · · : (5)
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Fig. 2. The quantity D=� as a function of hole density � for diKerent models: BM13 (�), BM35 (•), BM65 (?)
and EM13 (◦). For comparison we have shown the case of the lattice gas (+) along with the Tahir-Kheli
result (solid line) for f(�) [26].

We know, that the lattice gas diKusion constant vanishes linearly in the limit of van-
ishing hole (vacancy) density [26–28],

Dc=6(�→ 0) ≈ �1� : (6)

For the lattice glass models we may plot the diKusion constant data against the hole
density (Figs. 2 and 3. Remarkably, the data appear to collapse onto the very simple
law,

Dc¡6(�→ 0) ≈ �2�2 (7)

a result that is obeyed for a remarkably large range of particle densities and diKerent
mixtures.
Evidently, as c becomes less than the co-ordination number of the lattice, the degree

of frustration increases, the loss of transport occurs as a dynamical arrest, rather than
a simple lack of vacancies and a new mechanism obtains. This is the origin of the
novel diKusion constant scaling with hole density. Therefore, we seek to explore this
issue in a little more depth.

7. Realization of the Adam–Gibbs relationship

The forgoing discussion must be considered to involve some fundamental assump-
tions, since it leads to some fundamental conclusions. The steps taken so far imply that
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Fig. 3. D=�2� against � for diKerent models (symbols as in Fig. 2). The straight line has a slope of 1.0.

there must be a relationship between diKusion constant and entropy. Such a relation is
by no means built into the fundamental laws lying at the foundations of dynamics and
statistical mechanics. It arises by virtue of two assumptions.
Firstly, the de8nition of holes ensures their role as the mediators of motion and,

implicitly, their status as order parameter for dynamical arrest. This is not guaranteed
in a trivial manner, and most other de8nitions of ‘free volume’, leads to no meaningful
relationship to the motion.
Secondly, despite their relevance to dynamics, the fact that holes are de8ned as

equilibrium averages makes it possible to de8ne a constrained average in which the
entropy is calculated for 8xed hole density,

S(�) = kb lnW (�; ) : (8)

This implies that the number of micro-states of the system must be calculated for 8xed
hole density, and particle density. This can be carried out explicitly [17], but here we
emphasise the conceptual elements in our presentation. In Eq. (3) we assumed that S
can be expanded in an analytic series of the hole density, an assumption that is correct
for our current presentation, but which is not in general guaranteed, and which is,
we believe, not true for the general (non-ideal) case [29]. Thus, the entropy vanishes
as the hole density vanishes, and arrest implies very low hole density, so there are
valid reasons to attempt a hole density expansion. If we assume no thermodynamic
singularity then derivatives of the entropy in terms of hole density must vanish in
the limit of zero hole density, and the series thereby possess no regular singularity.
It is therefore either a simple Taylor series in hole density, or at most an essential
singularity that is suJciently weak that its derivatives all vanish at zero hole density.
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These possibilities constitute what may be the generic, and perhaps even universal,
classes of arrest.
In fact, for the following observations on the Adams–Gibbs relationship [30] we

require only the weaker condition that the entropy-hole density relation be invertible,
and we immediately obtain a direct, in principle exact, relation between transport prop-
erties, such as diKusion constant, and entropy.
The ingredients are therefore relatively simple, to obtain such a relation as that

found by Adams and Gibbs, though it has been diJcult to 8nd an explicit realization
of the ideas until now. Holes, and their extension to the most general continuum case
(dynamically accessible volume) appears to represent such a realization.

8. Phenomenological description of the scaling with di(usion constant with hole
density

By de8nition all transport in lattice models of the type we discuss occurs only by
‘holes’. For the lattice gas, in the limit of vanishing hole (there equivalent to a vacancy)
concentration all transport occurs by a particle moving into a neighbouring hole. If these
vacancies are uniformly spread throughout the lattice it is natural to suppose that the
diKusion constant should depend linearly on the rates with which particles move into
the vacancy, �0, and the concentration of holes, � [31,32],

D0 = �0� : (9)

This has, within the solid state physics literature, been named the mean-8eld approx-
imation. We shall avoid that language here as it could lead to confusion in the arena
in which we work.
Whatever the terminology, it is clear that after this 8rst movement of a particle

into the hole, the concept of a uniform distribution of holes contributing equally to
transport breaks down. Thus, of the particles that are now nearest-neighbours of the
new hole, one is the particle that moved to create the new hole, and if we assume that
the next set of particle movements into the new holes contributes in an equal manner
to the preceding step, this leads to an overestimation of the diKusion constant. If the
particle, which in the last step moved to create the hole, should now move backwards
then, despite the fact that the hole has moved twice, no contribution to the diKusion
processes has occurred. Also, at higher hole density, holes may merge and compete for
particles, thereby complicating the simple results of Eq. (7). These eKects have been
described by a correlation factor, f(�), that describes the reduction of the diKusion
constant leading to [33],

D = ��f(�) : (10)

This over-counting eKect is quite simple at low density since the miscounted particle
moves backwards into the hole it created only if the hole remains at this site for long
enough. It will move away if one of the other neighbouring particles moves into this
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site. Thus, the correlation factor, in the dilute limit is a result of competition between
the rate of the particles return, and forward motion of the hole [34]. Thus,

f(�→ 0) ≈ k�
k� + 2�

: (11)

Furthermore, in the dilute limit the hole vanishes if another particle moves into it. This
quantity is independent of hole concentration since all but one particle surrounding the
hole has contributed some probability to move into it, causing the hole to move away.
That is, in the dense limit, nearly all neighbouring sites are 8lled with particles, and the
overall concentration of the system now makes no diKerence to the escape processes.
The rate is given by k�(� → 0) = �G, where G is a geometrical factor. Thus, in the
limit of small hole concentrations, the correlation factor, f(�), becomes a constant,
and the diKusion constant vanishes linearly. Here, there is no dynamical arrest in any
meaningful sense.
This whole scheme of thought is greatly modi8ed if we consider the geometrical

constraints (c¡ 6). Then the de8nition of holes becomes non-trivial, and the hole
density must be calculated via equilibrium statistical mechanical methods, either ana-
lytically as outlined in Eq. (3), or by simulation. However, in addition to the mechanism
by which particles move in highly frustrated systems is diKerent, and we must therefore
also revise the link between hole density and diKusion constant.
Near the dynamical arrest our description begins as before. Particles move

into neighbouring holes, and the diKusion constant is written linearly in the hole
density (itself calculated from equilibrium statistical mechanics), with a correlation
factor f′(�).

D = ��f′(�) : (12)

However, the nature of f′(�) is now quite diKerent, though it may be represented
in the same manner as for f(�) above in Eq. (11). Rather than (as for the lattice
gas), reMecting simply the equal probability of a particle to move backwards into the
site it has just vacated we now 8nd that, typically, there is no choice but to move
backwards. This is because other neighbouring particles, besides the one that has just
moved to create the new hole, when they attempt to move into the hole lead to a
violation of the constraints. Of course, this is a rather extreme example, but it is true
that the hole is typically highly immobilised and spends much of its time oscillating
around a central location. This means that the hole escape rate must be become small
(in fact vanishing) near the arrest. If we write Eq. (11),

f′(�) ≈ k�
2�
; (13)

we need only to approximate the leading behaviour of the hole escape rate in the
vicinity of arrest, k�. We may suppose, and then check from the simulations that, there
appears to be no limiting density independent escape rate for holes in the limit of low
concentration so that k� → 0 for �→ 0. We may then propose that k� may be expanded
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(see Fig. 2 where we plot a quantity proportional to k�),

k� ≈ �′�+ · · · (14)

and therefore,

D(�→ 0) ≈ C�2 : (15)

These observations may be presented in a few diKerent ways. As we have remarked
above, closer examination of the simulations lead us to conclude that when a particle
moves to liberate a hole, it is typical that all other surrounding particles (except the
particle that moved to create it) are forbidden to occupy that new hole, unless it can
become unblocked. This unblocking may occur only if some of the particles up to
say, two linear lattice spacings distant move, unblocking the hole under question. The
main point to be drawn here is that the escape rate for a hole is dependent on the
concentration of surrounding holes. This is a remarkable distinction to the lattice gas,
and may be viewed as typical of the frustration limit implied by ideal dynamical arrest.
In essence, then, the dependence of the diKusion constant on the square of the

particle density results from the collision of a pair of holes. The transport properties
near dynamical arrest are expected to be very simple when written in terms of the
canonical order parameter that underlies them. They reMect the simple processes that
lead to the remaining relaxation present in an almost blocked system.

9. Towards universality for ideal dynamical arrest transitions in the lattice glass
models?

Now we come to the crux of the matter. Suppose it is generally true that we can
expand the diKusion constant (or other transport properties) for the ideal transition in
terms of powers of the hole density,

D = �1�+ �2�2 + �3�3 + · · · : (16)

We now know that if �1 remains 8nite at arrest, as with the lattice gas, we have a rather
simple arrest in which vacancies are exhausted. Now we consider the possibility that
�1 vanishes due to single-hole localisation. In the absence of any other eKects, single
isolated holes are trapped by the frustration eKect. However, if �2 is 8nite then we
have a dynamical arrest of ‘glassy’ type in which pairs of holes collide to produce the
residual dynamical relaxation on approach to the transition. It is also possible, in even
more highly frustrated cases, that two-hole processes are ineKective, and three-hole
collisions are required to provide unblocking. Thus, we propose that critical indices
(by analogy with critical phenomena), may be universal,

D = ���� ; (17)

where � is the critical exponent of dynamical arrest, and may be expected within this
ideal-glass scenario to be integer-valued. Notably, it also is expected (and so far our
studies are in agreement with this expectation) that these exponents depend only on
the presence of geometrical frustration. Each of these integers represents a universality
class for the (ideal-type) arrest.
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We provide examples of this type of thinking by considering the asymptotic
behaviour of the diKusion constant in Eq. (7). That is, we de8ne the reduced correla-
tion factor by dividing the diKusion constant by the hole density, and then removing
the dependence on the rate constant �2. In the 8rst step we would expect all correlation
factors to reduce to a linear behaviour, with diKerent slopes near arrest (2). Indeed this
is found to be true for those case of frustrated lattice modes that we have explored.
By 8tting these data to a straight line we may determine the slopes, and thereby the
rate constants �2. One expects therefore,

D
�2�

= � (18)

and, so presented, the data would fall on a straight line with slope unity. In Fig.
3 we present data from a range of lattice glass models which have been treated in
this manner. A straight line with slope of unity has been drawn for comparison. This
8gure contains the same information as that in Fig. 2. However, with the removal of
the microscopic constants, we expect a universal plot of a straight line, so the scatter
about that plot is a direct measure of the scatter about proposed universality.
In fact, there is reasonable agreement with our expectations based on these ideas of

‘universality’; apparently only two types of behaviour (linear and quadratic diKusion)
arising from the lattice gas and glass models. Simulation, even of a simple model, is
intrinsically limited in the strength of the statements that can be made. However the
results of 8gure point towards the possibility of ‘generic behaviour’, and possibly even
universality classes based on simple hole processes.
One should note carefully the distinction between exponents de8ned with respect to

hole density and particle density. The exponents de8ned in relation to particle density
are expected to be, and indeed are usually found to be, dependent on details of the
system. They reMect details of the dynamics that are not easily classi8able. On the
contrary, exponents de8ned in relation to the hole density represent canonical mecha-
nisms of relaxation of arrest, in the simple case of ideal transitions representing hole
collisions of various types. We have seen how diKerent lattice glass models, yielding
diKerent exponents in relation to the particle density, nevertheless, fall onto a remark-
ably common curve when plotted in terms of the hole density (see Fig 4).
Another way of explaining this simpli8cation that may appeal to some is to observe

that the representation of the dynamical arrest in terms of hole densities sums up many
perturbation diagrams [35] that are present when the dynamics is presented in terms of
the particle density. Thus, representation of the dynamics in terms of particles rather
than holes is inappropriate near the dynamical arrest transition. We have taken the
8rst, albeit currently very limited step towards establishing a order-parameter space for
dynamical arrest.
Another very important possible universality scenario outside of what has been dis-

cussed here does, however, exist. That is, in those cases where the series in Eqs. (3)
and (5) do not converge (because of the behaviour of the coeJcients) then, no matter
how small the hole density the arrest cannot be represented by any simple integer power
of hole density. There are physical phenomena that would lead to such a new variety
of (non-ideal) universality, but the methods to treat them are somewhat advanced and
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Fig. 4. The hole density � as a function of time for the BM13 (upper panel) and the EM13 model (lower
panel). For the BM13 model we show � at particle density  0:53 (?), 0:54 (×), 0:55 (∗), 0:56 (+) and
for the EM13 model at  0:47 (?), 0:475 (×), 0:48 (∗), 0:485 (+).

cannot be addressed within the present paper. This is, however, an important point
since it transpires that universality may still be a useful concept. The details will be
laid out elsewhere [17].

10. The breakdown of -uctuation dissipation theorem of type two;
alternative scenarios

Study of this model has lead us to conclude that the system may violate FDT2,
beyond a critical density by two distinct mechanisms. The 8rst arises if we cross an
equilibrium phase transition, the second if we pass through, for example, the ideal
dynamical arrest transition.
We have discussed in some detail elsewhere [36] the observation that, for the BM

limit of the lattice model, mixtures of particles of diKerent type may undergo a tran-
sition from Muid to crystal at mesoscopic length-scales. There we have also remarked
that one useful approach to a formal de8nition of the dynamical arrest transition is to
enforce the Muctuation–dissipation of type two (FDT2) during the simulations, thereby
creating an ensemble identical to the unconstrained one, but without the irreversible
Muctuations that drive the system away from equilibrium.
Here we wish to discuss the possibility of using the holes, de8ned earlier, as a

useful order parameter to determine how far one has drifted from the ‘equilibrium’
dynamical manifold (regions of the landscape) for which FDT2 is obeyed. Thus, the
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hole density Muctuates, without any overall drift when FDT2 is obeyed, but begins
to slowly increase as we drift towards the more stable crystal phase. Consider Fig. 4
where we have plotted hole density data (� vs. time) for a few rather long simulations,
again for the BM13 and EM13 models. In each case we have plotted hole densities
for a number of diKerent particle densities, to illustrate the change as one crosses the
phase-transition.
The results for the BM limit are quite striking. Up until the phase transition the hole

densities Muctuate around a 8xed, time-dependent average, that is typical of the hole
density in the disordered Muid. Beyond the density 0.51, we 8nd that after a period (that
itself depends on the quench into the crystal region) the hole density rises to a much
higher value. Here the hole density is essentially being used as an order parameter for
the dynamically slowed Muid to crystal transition.
In parenthesis we may remark that it is hardly surprising that the hole density should

be a good order parameter for the transition. In fact, larger hole density implies that
particles have a larger amount of dynamically accessible volume (DAV), or holes on
the lattice), and this implies a higher entropy. This possibility to improve the packing
is, in fact, the driving force for the transition to the crystal, and hole density is therefore
also the natural order parameter.
Now, returning to the lower panel of Fig. 4, we see quite a diKerent situation in

which for much of the density range, and until very close to the dynamical arrest,
the hole density Muctuates around its average value. It is true that, beyond 0.49, we
do 8nd very small slow drifts of hole density, but at that point the diKusion constant
is already so small that the drift is negligible. We may remark also that, even using
the Kawasaki algorithm, for the chosen parameters, the EM shows no visible signs of
formation of ordered structures.

11. Conclusions

The conclusions to be drawn from our study fall into two broad classes of discussion.
The 8rst are deductions that can be drawn about the lattice glass models, both in
terms of the nature of lattice glass dynamical arrest, and aging. The second class of
comments are much broader propositions for continuum which are based on the lattice
glass behaviour.
We have concluded 8rstly, that for at least the examples discussed, the concept of

dynamically accessible volume (DAV) appears to be a useful order-parameter for the
dynamical arrest. In fact, we now suppose that it is the primary object in such systems,
parameterising directly the objects or excitations of the system that control arrest.
In this sense, particle density is an inappropriate order parameter for the transition.
The situation is thus subtle. There appears to be no generic rational behaviour of the
transport coeJcients in the vicinity of the arrest when written in terms of the particle
density, even for the restricted class of ideal behaviour.
On the contrary, transport coeJcients written in terms of the hole density imme-

diately tend towards a few simple canonical behaviours. These may be the signa-
tures of generic, perhaps universality, classes. If so, they reMect the dominance of
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low order hole processes, beginning with single hole dynamics in the low frustra-
tion (lattice-gas type) behaviour, with two-hole collisions dominating the more highly
frustrated cases. Elementary arguments allow for one other type of arrest transition,
not discussed here.
Recognising the value of holes as an order parameter for the dynamical arrest of

the lattice model, we can also suppose that they represent a suitable variable in which
to write the entropy of the highly restricted phase space of a nearly-arrested system in
terms of the hole density. This is not an entirely trivial step. One should not mistake
these ‘holes’ for the vacancies into which one can insert a particle, thereby evaluating
the (particle) chemical potential. It is natural that entropy is a function of the (parti-
cle) chemical potential of the system, but this leads to no particular simpli8cation for
the arrest. Rather, we recall that we study those functions of the vacancies that are
dynamically accessible to their neighbours, and indicate the possibility of movement.
It is natural that such holes should also parameterise the number of micro-states of
the system, and thereby the entropy, whilst phase-space still percolates, as it does un-
til dynamical arrest. Assuming that the entropy-hole density relation is invertible, we
can then write the transport coeJcients in terms of the entropy. Dynamically acces-
sible volume is therefore a bridging concept spanning thermodynamics, and dynam-
ics. It is likely that ‘holes’ (or, more generally, DAV) therefore represent the basis
of the Adam–Gibbs relationship. The equivalent relationship for the ideal arrest is
trivial.
At this point we may remark that if our understanding of the situation is cor-

rect, the ideal-transitions, besides being simple powers of the hole density, are also
weak-coupling transitions. That is, the transition may be written exactly in terms of
the low-order expansion in holes. This may be exploited to develop an exact analytical
theory of the lattice glass transition [35], and likely it can be further developed for
continuum theory.
We turn to the conclusions we have been able to draw in relation to the ‘aging’ of

the system. Here again we 8nd that the slow aging of the system is well-represented
by the hole density. We have not explored this issue in detail yet, but it may of-
fer promise in understanding how microscopic theories of aging can be developed
[37,38].
Now let us review these results for the potential application to continuum systems.

We have not yet applied the approach to continuum systems, so strictly speaking we
can only make statements about their possible relevance. However, we remark that
the idea of dynamically accessible volume as an order parameter near arrest does not
seem tied to the lattice in any way, although it is clearly much more readily applied to
such situations. Also, the phenomena that arise on the lattice seem rather universal in
character, and the arrest processes rather generic in mechanism. It would seem likely
that the ideas should be applicable to the continuum system. If simpli8cations do
emerge, then it may be possible to consider the (ideal) dynamical arrest phenomenon
in a new light.
In this presentation, we have been able only to touch on some of the main fea-

tures of the dynamical arrest transition. In particular, if we de8ne order parameter
spaces that make primary contact with the physical phenomena, such as dynamically
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accessible volume, we may expect a high degree of universality, predicated on a small
number of mechanisms of arrest. It is clearly very early days in these and related
investigations, and it is not yet possible to see if an elegant and compact formalism
such as found for critical phenomena will result. However, there are encouraging signs
that the emergence of generalised rigidity for gels, glasses, aggregates, and the many
other seemingly unconnected arrested condensed states of matter may be essentially
the same phenomena. There is the possibility that they are precisely the same phe-
nomenon, being manifestations of a simple set of arrest behaviours, with relatively
universal features.
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