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Short-ranged attractive colloids: What is the gel state ?
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We evaluate thermodynamic, geometric and dynamic properties of a short-ranged square
well binary mixture to provide a coherent picture of this simple, but rich, model for col-
loidal interactions. In particular, we compare the location, in the temperature-packing
fraction plane, of the geometrical percolation locus, the metastable liquid-gas spinodal
and the glass transition lines. Such comparison provides evidence that the gel-state can
not be related to the attractive glass transition line directly. Indications are given for
the possibility of an indirect link between the two, via an arrested phase separation pro-
cess. We finally discuss the possibility that a spherical short range attraction may not
be sufficient to produce an equilibrium cluster phase at low packing fraction and low
temperatures.

1. Introduction

Colloidal dispersions are a suitable class of matter for many scientific purposes. In-
deed, these systems are experimentally accessible with light scattering techniques and mi-
croscopy, due the the large length scales and time scales involved. Also, the inter-particle
interactions can be tuned almost ad-hoc, for example by changing the solvent, grafting
the particles or adding polymers in the dispersion. Interaction ranges much shorter than
the characteristic ones of molecular or atomic liquids can be produced in colloidal sus-
pensions. The interaction range can be reduced to a few per cent of the colloidal particle
diameter. Hence, colloids can be used to test a large variety of theoretical models, or
vice versa theories can be subjected to stringent experimental tests. Experimentally, the
most common realization of short-range attractive colloids is obtained by the addition
of small non-adsorbing polymers in the colloidal solution. These, for sufficiently small
sizes, can be integrated out of the description[1], and their net effect is to produce an
effective attraction on the colloidal spheres, via depletion interactions[2]. The size and
the concentration of the polymers control respectively the range and the magnitude of
the attraction. Theoretical models of an effective one-component attractive potential are
often used, to mimic the experimental situation.

The thermodynamics of short-ranged attractive colloidal systems has been studied in
great details[3,4]. By tuning the inter-particle interactions, it has been shown that, for
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spherical hard-sphere colloids, the addition of a particularly narrow range of the attractive
part of the potential, with respect to the hard-core diameter, can produce an interesting
modification of typical (à la Van der Walls) equilibrium phase diagrams. On decreasing the
range of interaction of the attractive potential, the liquid-gas coexistence curve becomes
metastable with respect to the crystal, resulting in the disappearance of the liquid as
equilibrium phase.

In recent years, the study of the dynamic behaviour of short-ranged attractive colloids
has revealed exciting new results. Thanks to theoretical work based on the Mode Cou-
pling Theory (MCT) for the glass transition [5], applied to Baxter sticky spheres [6] and
to the short ranged attractive Yukawa model[7], some previous astonishing experimental
results[8,9] have been revisited and interpreted. MCT theoretical predictions have pro-
vided a coherent picture [10,11,12,13,14,15] of the dynamic features characteristic of short-
ranged attractive potentials and have stimulated novel experiments [16,17,18,19,20,21] and
simulation studies [22,23,24,25,26,27,28]. Near the structural arrest dynamics displays far
more richness than the one observed in simply repulsive, or long-ranged attractive systems.
Many predictions have been confirmed by multiple evidences, some have been questioned,
others are still under investigation.

So far, most of the attention of the scientific community has addressed questions regard-
ing the behaviour of short-ranged attractive colloidal systems in the very dense regime of
colloidal particles, where the most striking predictions of MCT are manifested. In particu-
lar, it is now recognized, with the help of experiments and numerical simulations, that, at
high volume fractions, two different mechanisms for glassification exist, one controlled by
the excluded volume, commonly referred as ‘hard-sphere’ (repulsive) glass transition, and
one dominated by the attractive interactions, or ‘bonding’, between particles, commonly
termed ‘attractive’ glass transition. The former glass scenario is only observed at high
packing fraction φ, while the latter is manifested for large strength of attraction, i.e. low
temperatures or, in the depletion picture, large polymer concentration. These two mecha-
nisms effectively compete with each other[29], when the range of the attractive part of the
potential becomes sufficiently short with respect to the hard-core of the particles, giving
rise to a reentrant fluid region between the two glasses. The system remains liquid even
for packing fractions where a hard sphere repulsive system would be glassy. In MCT, this
competition arises from the presence of a higher-order singularity in the control-parameter
space [30,31], which regulates the anomalous dynamical behaviour in these systems, giv-
ing rise to an intriguing logarithmic decay of the density auto-correlation functions, as
well as a power-law sub-diffusive behavior for the mean squared displacement. For the
square well model, a recent study has provided evidence of the presence of such point[28].

However, not all predictions share the same robustness with respect to the approxi-
mations present in the MCT description. In particular, the theory is ideal, in the sense
that it does not take into account the so-called hopping processes, that, as well known,
become relevant on approaching the glass transition. These processes allow for residual
diffusion where the theory would predict a complete arrest. Indeed, a recent work [27]
has investigated the question of the existence of a pure glass-glass transition, as well as
the stability of the attractive glass, in relation to activated bond-breaking processes.

Experimentally, dynamical arrest phenomena in short range attractive colloids are ob-
served not only at high density, as discussed above, but also in the low packing fraction
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region. In this case, the arrested material is commonly named a gel. In some cases, the
gel phase appears to be contiguous to a cluster phase[32,33,34,35], characterized by large
supraparticular aggregates, diffusing through the sample in ergodic dynamics. The gel
state displays peculiar features like the appearance of a peak in the static structure fac-
tor, for very large length scales (of the order of several particle diameters), that is stable
in time, as well as a non-ergodic behaviour in the density correlation functions and a
finite shear modulus. These solid-like, disordered, arrested features have induced to the
appealing conjecture that these colloidal gels can be viewed as the low-density expression
of the attractive glasses, both being driven by the same underlying mechanism of arrest.
Support to these ideas was found in MCT itself. Indeed, the theory predicts that the
attractive glass line extends, practically flat, toward very low packing fractions, almost
touching at the critical point the spinodal curve, and following it on its left-hand side.
The predicted large values of the non ergodicity parameter along the attractive glass line,
similar to the ones observed in the gel phase, and the possibility of modeling the ergodic
to non-ergodic transition locus with the attractive MCT line provide support for such an
identification [7,36]. Still, some inconsistencies in the interpretation of the gel state as
attractive glass have been noted. For example, in the low packing fraction regime, an
identification of the attractive glass line with the gel line theory would predict a gel made
of particles with average number of bonds less than two [11].

In this paper, we present Molecular Dynamics simulations of a simple model of short-
ranged potential. In the high packing fraction region, the dynamics of the model displays
two different arrest mechanisms, and indeed two different glass transition lines have been
located. Here we complement the high density dynamic data with an evaluation of the
percolation locus and of the liquid-gas spinodal. We study the intersection between the
glass line and the spinodal and show that the former meets the latter at low temperatures,
on the high density side. Similarly, no relation is found between the percolation locus and
the glass line[37,38]. The outcome of our studies is quite unexpected, and might be crucial
for understanding the nature of the colloidal gels.

2. Model, Theory and Simulation

We perform Molecular Dynamics simulations of a 50%−50% binary mixture of N = 700
hard spheres of mass m, with diameters σ

AA
and σ

BB
and ratio σ

AA
/σ

BB
= 1.2. The hard

core between particles of different type σ
AB

= 0.5(σ
AA

+ σ
BB

). The hard core potential
is complemented by an attractive square well potential of depth −u0, whose well-width
∆ij is controlled by varying the parameter ǫ = ∆ij/(∆ij + σij), which is the same for any
i, j. In this model, a ‘bond’ between two particles is unambiguously defined when their
interaction energy is equal to −u0. The simulation is based on a standard event-driven
algorithm, implemented for particles interacting with SW potentials[39]. Distances are
measured in units of σBB, while energy and temperature are measured in units of uo, i.e.
kB = 1. Time is measured in units of σBB · (m/u0)

1/2, mass in units of m.
For the particular case ǫ = 0.03, results of extensive simulations for this model have

been reported in the high density region, in order to make comparison with the existing
MCT predictions. This was carried forward in a recent attempt to build an effective
mapping between theory and simulation, in order to localize and probe the dynamics
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near the so-called higher order singularity[28].
Ideal glass lines are predicted by MCT as ergodic to non-ergodic transitions, at which by

definition the self-diffusion coefficient of atoms, or colloidal particles in our case, is equal
to zero. In order to build from our simulations something comparable to an ideal glass
line, we have calculated iso-diffusivity curves in the φ−T plane and studied the evolution
of these curves with decreasing diffusivity. Interestingly, the shape of the ideal glass line
is maintained up to quite large values of the diffusivity, allowing for a straightforward
establishment of the re-entrant behaviour of the glass transition.

Combined with the iso-diffusivity curves, we present here the estimation of liquid-gas
‘pre-critical’ curve. Such curve is defined as the locus in the φ− T plane of points where
the static structure factor S(q) ∼ 1 at q = 0 and provides a close estimate to the spinodal
line. Indeed, S(0) = 1 signals the onset of the divergence of the compressibility, i.e. it is a
precursor of the phase separation into gas (colloid-poor) and liquid (colloid-rich) phases.

The square well model is also very well suited for defining a percolation threshold.
Indeed, as discussed above, the existence of a bond can be defined unambiguously, when
the pair interaction energy is −u0. We report here the bond percolation line, beyond
which space-spanning clusters of bonded particles are present in the system at a given
instant. We estimated it by calculating the cluster connectivity. From an operational
point of view, we have defined percolating a state point where more than 50% of the
examined independent configurations (over a total of sixty) displayed an infinite cluster,
spanning across the simulation box.

3. The Phase Diagram

We plot in Fig.1 the ideal MCT glass lines (GL) for the studied binary SW system with
ǫ = 3% calculated theoretically using the Percus-Yevick (PY) structure factor[28]. We
also report the locus of constant diffusivity, evaluated from MD simulation, with D/D0

[40] values varying between 5 · 10−3 and 5 · 10−6 together with the locus of zero diffu-
sivity (symbols), obtained extrapolating isothermally the φ-dependence of the diffusion
coefficient according to power-law[28]. We also show the transformation of the ideal PY
MCT glass line according to the bilinear transformation[31] φ → 1.897 φ − 0.3922 and
T → 0.5882 T − 0.225, already discussed in [28]. The parameters of the transformation
are the result of fitting the locus of zero diffusivity with the transformed MCT curves.
Indeed, it is typical that both MCT and the PY solution, in a certain sense, ‘overesti-
mates’ the glass transition, i.e. always predicting it earlier with respect to reality (for
example at higher temperatures in super-cooled liquids or at lower packing fraction for
hard spheres). However, differently from hard sphere systems, where this discrepancy
requires just a shift in the packing fraction, for an attractive system we have to consider
a bilinear mapping [41], which considerably affects the attractive branch of the predicted
glass line.

Fig.2 shows the ‘spinodal’ curve, the percolation curve and the locus of constant diffu-
sivity with D/D0 values of 5 · 10−2 and 5 · 10−3, significantly extending to lower packing
fractions the calculations already presented in [24]). From the data shown in Fig.2 several
considerations aris:
(i) the intersection between the isodiffusivity curve and the spinodal provides an esti-
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mate of the characteristic times along the spinodal. Dynamics slows down on increasing
density. The intersection between the glass line and the spinodal is located on the high
density side. Hence, in this model, the attractive glass line cannot be directly associated
to physical phenomena taking place at low packing fractions, i.e. to the gel state.
(ii) The fact that the ideal attractive GL meets the spinodal at high densities suggests an
indirect possibility for linking the gel state to the attractive glass. Indeed, if we call Tcg

the temperature at which the attractive GL meets the coexistence line in the high density
side[42], then quenches below Tcg may generate upon decomposition regions where the
particle concentration is within the attractive glass phase and hence which could arrest
kinetically the phase separation process, leaving the imprinting of the phase separation
in the frozen structure factor of the system[43,44,45,46,35]. Such hypothesis, discussed
in more details in the next section, although stimulating, unfortunately cannot explain
the existence of a contiguity between an ”equilibrium” cluster phase and the colloidal
gel[32,33,34,35].
(iii) The static percolation line is found to start from the low density side of the spinodal,
and at all studied temperatures, it remains well to the left side of the largest drawn iso-
diffusivity curve. This means that the percolating clusters are made of particles which
are moving fast, thus the lifetime of the bonds of which the clusters are made at the
percolation threshold is extremely short. A study of the lifetime of the infinite cluster[47],
which may provide more precise indication of the time stability of the percolating cluster
as compared to diffusional times is underway. Still, the short lifetime of the bonds and the
extremely large diffusional times suggest that it is not possible to establish any connection
between percolation and formation of stable aggregates. On the contrary, we can rule out
the possibility that, for the short ranged ǫ = 3% model studied here, bond percolation is
connected to gelation.

Recently, Miller and Frenkel [48] evaluated the critical point, the spinodal line and the
percolation locus for the sticky spheres Baxter model. The Baxter model is the limiting
case of the square well model when the width of the well goes to zero and u0 goes to
infinity. The relation between the sticky parameter τ [49] and the square well parameters,
i.e. u0/kBT = log(1 + 1/(4τ(1/(1− ǫ)3 − 1))) , based on the equality of the second virial
coefficients for the two models [50], and between the Baxter packing fraction φB and the
square well one, i.e. φ = φB(1 − ǫ)3, allow us to compare the phase diagram of the two
systems. Miller and Frenkel [48] data, upon appropriate scaling of the variables, are also
reported in Fig.2. The agreement between the pre-critical curve and Baxter spinodal
allows us to estimate the critical point for the attractive well to be approximately around
φc ∼ 0.24, Tc/u0 ∼ 0.31 for ǫ = 3%.

4. Phase Separation and Gels

We now examine the possibility discussed in the previous section that the gel state is
an arrested phase separated system, where the high density phase concentration is in the
glass phase. We perform such a study by quenching from T/u0 = 1.0 within the liquid-gas
unstable region. We focus for simplicity on a one-component system but, since now we
are interested in an aggregation process which involves clustering of many particles, we
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Figure 1. (φ, T/u0)-diagram in the large colloidal volume fraction region for the binary
SW system with ǫ = 3%. From left to right the reported curves are: the calculated MCT
glass line (GL) within Percus-Yevick approximation, iso-diffusivity curves with D/D0

equal to 5 · 10−3, 5 · 10−4, 5 · 10−5 and 5 · 10−6, power-law extrapolated MD data from
Ref.[24] for D/D0 = 0 (crosses), and the MCT GL mapped as shown in Ref. [28].
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Figure 2. Same as Fig. 1, but reporting the full colloid density region. Together with
the mapped GL, already shown in the previous figure, the calculated percolation and
precritical lines are reported, as well iso-diffusivity curves for the values D/D0 = 5 ·

10−2, 5 · 10−3, both crossing the spinodal line at finite temperature. From these data, one
could extrapolate the temperature where the GL meets the spinodal Tcg (see text). Also
shown for comparison are spinodal points calculated for the Adhesive Hard Sphere (AHS)
model, redrawn from [48].
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consider a much larger system than the one studied previously. We study N = 30000
particles, interacting via SW potential, with varying well-width, respectively equal to
ǫ = 0.04, 0.01, 0.005.

We focus on the low packing fraction φ = 0.15, and decrease the temperature. The
choice of parameters was made in order to compare our simulation data with the phase
diagram reported in [33]. Up to approximately T/u0 = 0.3, the system remains in equi-
librium, and the static structure factor is similar to that of a normal liquid. However,
as we go further in lowering the temperature, i.e. quenching the system to T/u0 = 0.2
and T/u0 = 0.1, we enter in the spinodal regime and phase separation takes place. This
causes particles to aggregate, producing a low wavevector peak in the static structure
factor, similar, in localization and amplitude, to the one observed in [32]. However, differ-
ently from what reported in those experiments, the structure factor continues to evolve,
during the simulation, although on logarithmic time-scales. This phenomenon is more
marked for the largest studied well-width, i.e. ǫ = 0.04, and for the highest temperature
considered for the smaller widhts, T/u0 = 0.2.

In Figure 3 - (upper panel), we report the time evolution of the energy per particle U/N
for the various studied cases. It can be observed that there is a characteristic time-scale,
which controls the aggregation kinetics. After the microscopic time-scale, there is a strong
decrease in the energy, which then crosses over to a regime of very slow, approximately
logarithmic, decay. The decay is slower, the narrower the studied well-width and the lower
the temperature. We note that the number of bonds per particle tends to a value of about
3 or more, which, taking into account the low packing fraction of the system, indicates the
formation of a cluster network. The resulting cluster phase is not an equilibrium phase,
in the sense that it is driven by spinodal decomposition. To support such interpretation
we show in Figure3 - (lower panel), the evolution of the static structure factor for the case
ǫ = 0.01 and T/u0 = 0.1. The various curves represents S(q) at different times from the
quench, which are logarithmically spaced between t1 ∼ 10 and t2 ∼ 104. Times shorter
than thermal equlibration are not reported. To better quantify the time dependence of the
separation process, we report in Figure 4 the time evolution of the peak intensity SMAX

(upper panel), in analogy with the inset of Fig. 1 in Ref.[32]. For the larger well-width
ǫ = 0.04, the increase of the amplitude in S(q), although on logarithmic time-scale, is still
clearly observable after two decades in time[51]. However, for the two very narrow widths
1%, 0.5% at the extremely low temperature T/u0 = 0.10 a significantly flatter behaviour
is observed. Indeed, the two curves are almost superimposed onto each other at long
times, and the narrower well-width shows a sharper crossover to the quasi-plateau.

Also, in Figure 4 - (lower panel), we plot the time evolution of the first moment of S(q),
i.e. q1 = [

∑

q qS(q)]/[
∑

q S(q)], which has a scaling equivalent to the peak position, but
which can be calculated much more accurately [52]. These curves can be fitted at large
times with a power-law ∼ t−β , where β varies between 0.25 and 0.5, depending on the case
and on the range of fit. We recall that the typical exponent for spinodal decomposition is
1/d, d being the dimensionality [53,45]. This result is consistent with the typical scaling of
spinodal decomposition, and provides another indication that the aggregation we observe
is driven by the gas-liquid phase transition. The two cases of extremely short-ranged
and strong attraction display an extremely slow dynamics, which almost arrest at large
times. If we return to the situation examined in the previous paragraph, we know that
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Figure 3. Upper Panel: Time evolution of the energy per particle for a one-component
SW model at φ = 0.15,after the quenches to T/u0 = 0.2 and T/u0 = 0.1. Various well-
widths; Lower Panel: Static structure factors after the quench for the case ǫ = 0.04 and
T/u0 = 0.2. The various curves refer to different times, equally spaced on a logarithmic
scale. The significant noise is due to the fact that we show a single realization.
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the attractive branch of the glass line meets the spinodal, at some very low temperature
Tcg. It might be possible that these two cases already correspond to a temperature lower
than Tcg, thus what we observe here are indirect gels induced by spinodal decomposition.

5. Conclusions

In this paper we have provided evidence of two new important facts for simply short-
ranged attractive potentials, of the kind generated via depletion interactions. Firstly, the
slowing down of the dynamics in short-ranged attractive systems truly arises only at very
high densities, far away from the percolation line. At low temperatures, the attractive
glass line ends in the spinodal on the high density side. Secondly, a gel contiguous to
an equilibrium cluster phase does not manifest. A gel could result from an arrested
phase separation process when the density of one of the two phases crosses the attractive
glass transition at low temperatures and for very short ranges of attraction (T/u0 = 0.1,
ǫ ≤ 0.01). At even lower temperatures, diffusion limited cluster aggregation[54] will take
over, leaving the imprinting of the aggregation process in the gel structure[55,56].

These two observations clash with earlier conjectures that a gel state, considered as a
natural extension to lower densities of the ideal MCT attractive glass, would be found
in these systems [7,36]. We also note that the data reported in this article appear in
disagreement with the recent theoretical model [57] (see in particular Fig. 2 of Ref. [57]),
where a gel state is identified with an attractive glass after a renormalization procedure.
On the other hand, our results shed some light on the fact that in real systems there
must be an additional mechanism that allows to stabilize an equilibrium cluster phase.
Evidence is now emerging in the scientific community that colloidal particles often tend
to have a residual charge distribution [58,34,59], whose net effect is a weak, long-ranged
repulsive barrier, whose importance in governing the dynamics of the system may manifest
when many particles are clustered together, preventing further aggregation[60]. It would
be interesting to find out if the stabilizing effect of electro-static forces implies that gels
are formed by caging of clusters, instead of by caging of particles. If this were the case,
particle gels would be driven by a completely different mechanism than attractive glasses,
ultimately being a different form of glasses, where particles are replaced by clusters of
many particles, whose size and distribution will depend on the amount of charge that
is present in the colloidal suspension. Work is in progress to address specifically such
possibilities.
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