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We report extensive numerical simulations of a simple model for charged colloidal particles in suspension
with small nonadsorbing polymers. The chosen effective one-component interaction potential is composed of
a short-range attractive part complemented by a Yukawa repulsive tail. We focus on the case where the
screening length is comparable to the particle radius. Under these conditions, at low temperature, particles
locally cluster into quasi one-dimensional aggregates which, via a branching mechanism, form a macroscopic
percolating gel structure. We discuss gel formation and contrast it with the case of longer screening lengths,
for which previous studies have shown that arrest is driven by the approach to a Yukawa glass of spherical
clusters. We compare our results with recent experimental work on charged colloidal suspeRbiymis (

Rev. Lett. 2005 94, 208301).

I. Introduction glass. The simulation stuéshowed that the resulting arrested
State is not percolating; i.e., the arrest transition cannot be
of the interparticle potential on controlling structure and interpreted in terms of the formation of a bonded network of

dynamics of colloidal dispersions. Experimeht? theory13-15 particles. . )

and simulatioff~2! studies have provided evidence that when A Very recent experimental woflhas reported evidence of
the hard-core repulsion is complemented simultaneously by a@Test via linear cluster_grovvth_followed by per_colatlon, in a
short range attraction (of finite depth) and by a screened SYyStém of charged pollmplal partlclgs. In the §tudled system,the
electrostatic repulsion, particles tend to form aggregates, whosesShort-range attraction, induced via depletion mechanism, is
shape and size is sensitively dependent on the balance betweefOMmplemented by an electrostatic repulsion, with a Debye
attraction and repulsiof? 262027 |n some cases, the system Screening lengt estimated on the order gfo ~ 0.65, where
shows an equilibrium cluster phase, where particles associate” |nd!cates the har'd core diameter of the coI.I0|daI part|cle.. The
and dissociate reversibly into clusté#:11interestingly enough, ~ duasi one-dimensional clu_sters observed via (_:onfocal micros-
these cluster phases appear not only in colloidal systems butcoPy are locally characterized by a Bernal spiral geometry,
also in protein solutions, at the limit of low salt concentra- the same structure fognd as cluster ground-state configuration
tion4512Estimates of the ground-state configuration of isolated for the case of screening lengths smaller thei# The Bernal
clusters of different siZ8 suggest that, when the clusters SPiral, shown in Figure 1, is composed of face sharing tetrahedra,
diameter exceeds the screening length, the shape of then Which each particle is connected to six neighbors.
aggregates crosses from spherical to linear. Evidence has been In this work, we numerically investigate the possibility that,
reported that, for appropriate tuning of the external control when the potential parameters are such that the Bernal spiral is
parameters, colloidal cluster phases progressively evolve towardthe ground-state structure for isolated clusters, macroscopic gels
an arrested stafe/1012Recent numerical studies suggest that can be formed at large, but finite, attraction strength, via a
arrest may be connected to a percolation proE€Sa different mechanism of branching favored by the small but finite thermal
arrest scenario has been proposed, and supported by numericalontributions. We explore the low packing fraction region for
simulations, for the case of relatively large screening length (i.e., several values of the attractive interaction strength, to highlight
the case of preferentially spherical clusters), dynamic arrest maythe collective effects arising from clustecluster interactions
proceed via a glass transition mechanism, where clusters, actingand to assess under which external conditions, ground state
as supeparticles interacting via a renormalized Yukawa po- predictions are valid. We carry our study along two routes. In
tential, become confined by the repulsions created by their both cases, we study a colleigholymer mixture in the effective
neighboring cluster¥ This mechanism is, in all respects, o0ne-component description, i.e., assuming that the polymer size
identical to the glass transition of Yukawa partiéfes!t and is much smaller than that of the colloids. In the first route, we
leads, favored by the intrinsic polydispersity of the clusters control the attraction between colloidal particles via a temper-
induced by the growth process, to the realization of a Wigner ature scale. In the second rotigesigned to make direct contact
with the experimental work reported in ref-#ve study an

Recent years have witnessed a progressive interest in the rol

" Dipartimento di Fisica and INFM-CRS-SOFT, UniveisieRoma La isothermal system where the repulsive part of the potential is
Safgi?)z‘ﬁﬁmemo di Fisica and INFM-CRS-SMC. UniversitiRomta La fixed, while the attractive part of the potential is varied according
Sapienza. ’ to the concentration of depletant, to model the strength of the

8|SC-CNR. polymer-induced depletion interaction. We will refer to these
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Figure 1. Pictorial view of the Bernal spiral. Particles have been ® =020 |
differently colored to highlight the presence of three strands. In this 0 - —
geometry, each particle has exactly six nearest neighbors. BV( L — ¢p=0.50 -
r -
) ) ) . — ¢ =069 | |
two sets of simulations respectively as the temperature and I)U ¢p=0 938
polymer concentration routes, naming them after the respective — ]
relevant control parameters. -20 ¢,=1.1 =
We study—as a function of the packing fraction and of the — ¢p=1,5 i
attraction strengttrthe shape of the clusters (quantified via their 30 0 =25 N
fractal dimension), the local geometry around each particle, the | . | . | P
interparticle structure factor, and the connectivity properties of 1 1.5 2 25
the system. We complement the static picture with information T

on the interparticle bond lifetime and on the dynamics of self- gigyre 2. Interaction potentighV(r) = B[Vsdr) + Vi(r)] for different
properties and collective properties. We compare these quantitiessalues of the polymer concentratign. HereA = 10¢, £ = 0.6%, a
for the two routes, and show that the two approaches provide a= 10, andfe = 14.0p,.”

similar description of cluster growth, percolation, and gel

formation33 we choose/ksT = 14¢y; i.e., the attraction strength is assumed
_ _ _ to depend linearly on the fraction of free volume occupied by
[I. Simulation Details polymersgy,. In this case, as in experimentsjs kept constant

We study a system composedMf= 2500 colloidal particles to kBT = 1. To study a model as close as possible gg the
of diameters and massnin a cubic box of sizé, as a function ~ €xPerimental work of ref 7, we selegt= 0.6%, A = 10k,
of the packing fractionp. = 7p0%6, wherep = N/L3 is the ando = 10. For this value oft, rmin = 1.0%, in agreement
number density, and of the temperatlit@he particles interact ~ With the position of the maximum in the radial distribution
simultaneously via a short-range potentigkand a screened  Unctiong(r), as extracted from data reported in ref 7.
electrostatic repulsive interactidfy. The short-range attraction _The dependence of the potential shape th shown in
is modeled for simplicity with the generalization to= 18 of Figure 2. Note tha¥/(r) changes from monotonically repulsive

the Lennard-Jonesi2— o potential, as proposed by Viiegenthart O repulsive with docal minimum (with V(rmin) > 0). Finally,
et al3¥) for ¢, > 0.50, V(r) develops an attractive global minimum

followed by a repulsive tail.
g\2e  [g\ In the rest of the present work, we will nanferoute and
Vedr) = 46[(?) - (?) (1) ¢p-route the two parallel sets of simulations. The short-range
nature ofVsg favors a very effective way to define pairs of
wheree is the depth of the potential. The parameterand bonded particles. Indeed, the resulting poten¥@) = Vsg +
are chosen as units of length and energy, respectively. We alsoVy has a well-defined maximum located approximatively where
considerkg = 1. For this choice ot the width of the attraction ~ the short-range attraction becomes negligible. In the following
range is roughly 02 The phase diagram &fsgr) has been we will consider bonded (or nearest neighbors) all pairs of
studied previousRf and it is characterized by a rather flat gas ~ particles whose relative distande< rmax In the T-route case,
liquid coexistence line, with a critical point located Bt =~ we fix rmax=1.280, the location of the local maximum iisg
0.43 and¢fR ~ 0.225. + Vy. In'theqbp-case the maximum exists only fop = 0.5 qnd
The repulsive interaction is modeled by a Yukawa potential IS location depends on the value ¢, changing approxima-
tively between 1.8 and 1.% in the investigated range, as shown
o 1lE in Figure 2. For convenience, in tifg-route we chooS€nax=
E (2) 1.40 which provides a good estimate of the bonding distance
in the interesting cases of largs values. Note that in the

characterized by an amplitudeand a screening length We manuscript we limit ourselves to the cage> 0.5, for which
focus on the casé = 0.50 andA = 8, for which the minimum a well-defined minimum inVsg + Vy is present.
of the pair potentialVsg + Vv is located atr = 1.04% In all simulations, time is measured in units¥mo*e. For
corresponding to a potential energin = —0.52. With the numerical reasons, the repulsive potential is cug &t 85, such
present choice of andé&, the ground-state configuration of an  thatVy(rc) ~ 4.2 x 107°A. All simulated state points are shown
isolated cluster is known to be the one-dimensional Bernal spiral, in Figure 3. In theT-route, a clear connection can be made with
shown in Figure £° The Bernal spiral structure is composed the thermodynamic behavior of thég potential. All studied
of face-sharing tetrahedrons, resulting in three twisting strands state points are located inside the spinodal region of the attractive
of particles in such a way that each particle has six nearestpotential. This is due to the fact that the spinodal is quite flat;
neighbors. In this geometry, for lard¢ the potential energy  see Figure 4B in ref 34. Equilibration is achieved with
per particleE is E = —1.36+ 2.10N (always in units ok). In Newtonian dynamics, followed by a Brownian dynamics
the bulk of the spiral (far from side effectg) is about three simulation, based on the scheme of ref 36, to produce equilib-
times Emin, confirming that the attractive interaction with the rium trajectories. In the case of Newtonian dynamics, the
six neighbors provides most of the binding energy. equation of motion have been integrated with a time steftof

In parallel, we also study the case in which the magnitude of = 0.02. In the case of Brownian dynamiast = 0.05 with a
the attractive part changes to mimic the dependence of thebare diffusion coefficientD, = 0.005. Equilibration runs
depletion interaction on polymer concentratign As in ref 7, required, at the slowest states, more thahihfegration time

V(r)=A
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Figure 3. State points studied in this work, in tAe— ¢ (left y-axis)
and¢p, — ¢c (right y-axis) planes, respectively, for tfie(circles) and
¢p (triangles) routes. Full symbols indicate state points where the
equilibrium structure presents a spanning network of bonded particles.
The dashed line represents the experimental percolation line of ref 7.
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Figure 4. Time dependence of the potential energy following a quench
starting from high temperatur@ & 1.0) for¢. = 0.16, for theT-route
case.

steps, corresponding to about three months of computer time
on a 1.6 GHz Pentium processor.

IlI. Equilibration

Simulations are started from high (or correspondingly
= 0) equilibrium configurations and quenched to the selected
final state. During equilibration, a Berendsen thermostat with a

Sciortino et al.

Figure 5. Evolution of the static structure fact§q) during equilibra-

tion at¢. = 0.125 andT = 0.08.

T=0.08, §=0.125

» Y By

t=200 t=600 t=20000

Figure 6. Snapshots of the largest cluster at three different times during
the equilibration process. Hegge = 0.125 andl = 0.08. The cluster
size is 72, 605, and 908, respectivelytat 200,t = 600, andt =

20 000.

defined as

Fi

®3)

S(q):EGZ, e D

where T; indicates the coordinates of particle The Q)
evolution, shown in Figure 5, is reminiscent of the initial stages
of spinodal decomposition, showing a laypeak which grows

in amplitude and moves to smaller and smatjerectors. While

in spinodal decomposition, the coarsening process proceeds
endless, in the present case the evolution of the sqnpéak
stops when equilibrium is reached. The presence of the low
g-peak in§(q), at a finite wavevector, highlights the presence

time constant of 10 is active, to dissipate the energy releasedof an additional characteristic length scale in the system,

in the clustering process. Following the quench, the time
evolution of the potential energg shows a significant drop.
Equilibration becomes slower the lower the fiffabr the larger

¢p. It also slows down on lowering the colloid packing fraction
¢c. The evolution ofE following a quench is shown in Figure

4 for the cas@. = 0.16. AroundT < 0.07, equilibration cannot
be achieved within the simulation time and dynamic arrest takes
place. In these conditions, extremely slow (logarithmic in time)
drift of E is still present at long times. To provide evidence
that equilibrium is reached during the Newtonian simulation,
we check thak is independent of the previous history and that
clusters reversibly break and re-form on changh®r ¢..
Similar results are obtained following thyg-path.

discussed in more details in the next section.

Figure 6 shows the evolution of the shape of the largest cluster
for the casep. = 0.125 andl' = 0.08, one of the cases in which
the average cluster size grows monotonically in time. It is
interesting to observe that, at short times, the shape of the larger
cluster is rather ramified, the potential energy is still large and
locally the structure is still very different from the six-
coordinated ground state structure. Cluster arms are essentially
composed by particles arranged along lines. At longer times,
the cluster arms get thicker and thicker, and the local config-
uration approaches the characteristic one of the Bernal spiral,
even if some parts of the original branching points persist in
the final structure favoring the formation of a gel network. The

The equilibration process is characterized by the progressiveevolution of the shape, complemented with the time dependence

formation of bonds between particles and the corresponding
growth of the particle’s aggregates, the named clusters.

A guantification of the evolution of the structure of the system
during equilibration can be provided by the structure fag&gqy,

of E, suggests that at large attraction strengths (Toor large

¢p), the equilibration process can be conceptually separated into
two parts: an initial relaxation which is closely reminiscent of
the one which would take place if the potential was purely
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Eormalizegsngt_eng? $nergiy per pa”irﬁﬂf_ntwind at diffdefe”t¢c ‘I’Ea'ues- We also examine the connectivity properties of the equilib-
min — — U. In the [-route case, wnile It depenas as Emin = H : : - : H :
Z"L48 KT + Vo(Fme), With Fin = 1.07, i thergp caspe. Thqugrrespon ding rium conflgurat_lons. Conf_lgu_ratlons are consujt_ared pergolgt_lng
value for the Bernal spiral configuration is also reported. when, a}ccountlng for periodic boundqry condltl_ons, gn 'nf'n't,e
cluster is present. To test for percolation, the simulation box is
attractive, followed by a second rearrangement which sets in duplicated in all directions, and the ability of the largest cluster
only after the coordination number has become significant. At to span the replicated system is controlled. If the cluster in the
this point, the competition of the long-range repulsion enters simulation box does not connect with its copy in the duplicated
into play, forcing thereby the system to rearrange into the system, then the configuration is assumed to be nonpercolating.
expected local configuration. This competition results also in a The boundary between a percolating and a nonpercolating state
nonmonotonic evolution, during the equilibration, of the mean point has been defined by the probability of observing infinite

cluster size, at some state points. clusters in 50% of the configurations. To provide an estimate
of the percolation locus, we report in Figure 3 the state points
IV. Equilibrium Properties: Statics which are percolating. We note that, at this level, percolation

is a geometric measure, and it does not provide any information
on the lifetime of the percolating cluster. Indeedgat= 0.125,
percolation is present both at high, where we observe
geometric percolation of clusters with bonds of very short
lifetime, and at lowT, where the particles are connected by
energetic bonds of very long lifetime, as discussed below. The
competition between geometric and energetic percolation results
in a intermediate temperature window where the system does
not percolate, i.e., in a re-entrant percolation locus. A substantial
agreement between the percolating states found here and those
examined in ref 7 by confocal microscopy (see dashed line in
Figure 3) is reported, except for the evidence of re-entrant
percolation, which is missing in the experiment. This could be
explained by a less transient bond formation in the real system
with respect to the simulated model.
The cluster size distribution(s) is shown in Figure 8. At

T = 0.2 (wherekE =~ 0 and hence no significant bonding exists)

zsrg upon increasingp., the distribution progressively develops a

. power-law dependence with an exponentonsistent with the
8= —— = N/N, 4) random percolation value~ —2.237:38Percolation is reached

zns when 0.125< ¢ < 0.16. At slightly lowerT, i.e., T = 0.15, the

S

A. Potential Energy. The upper panel of Figure 7 shows
the T dependence d&/Eni, at the studied values @f.. Around
T ~ 0.2, E becomes negative, suggesting that the short-range
attractive interaction becomes relevant. For loe0.1 < T
< 0.2, E drops significantly, quickly reaching below= 0.1 a
value compatible with the ground state Bernal spiral configu-
ration (also shown), once the vibrational components are
properly accounted for. A similar behavior is observed for the
¢p dependendence, shown in the lower panel of Figure 7. In
the studiedp. range, thep. dependence o is rather weak,
especially for large attraction strengths.

B. Cluster Size Distribution. In this section, we examine
the cluster size distribution, as it evolves withandT. Standard
algorithms are used to partition particles into clusters of size
and to evaluate the cluster size distributigrand its moments.
The first moment of the cluster size distribution

picture remains qualitatively similar, except for a hint of
nonmonotonic behavior, arousds 10—20. On further lowering
is connected to the inverse of the number of clusirsvhile T, the number of clusters of sizes 10 drops significantly, to
the second momeri&;Oprovides a representative measure of eventually disappear &= 0.07. These results are observed at
the average cluster size all studied densities.
To frame the results presented above, we recall information
ZsznS previously obtained in the study of the ground-state energy of
s isolated cluster of different siZ8.For a cluster sizs < 10, the
BlE— 5) addition of a monomer to an existing cluster lowers the energy
zsnS per particle, since the gain associated with the formation of an
S additional attractive short-range bond is not yet compensated
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Figure 9. Temperature ang. dependence of the second moment of  Figure 10. Top: geondt) at ¢ = 0.125 for various temperatures.
the cluster size distributiofs,[] for the T-route case. Bottom: Comparison ofjcondr) and g(r) for the same state point

. = 0.08 andT = 0.07.

by the increased number of repulsive interactions. However,

when clusters have grown sufficiently, ferz 10 — 20, the  the physics of the short-range bonding sets in, percolation at
energy driving force for growing is reduced, since the energy small packing fractions is not reached at all temperatures we
per particle does not significantly depend any longer on the gre able to equilibrate. A = 0.125, a nonmonotonic
cluster size?0 Isolated clusters results carry on to the interacting dependence ofs,[J(T) is observed, which we interpret as a
clusters case since the relatively small screening length doescrossover from the “random” percolation observed at High

not produce a significant clustecluster interaction. Indeed,  the bond-driven percolation, which becomes dominant at low
the effective clustercluster potential will be characterized, to  T. The ¢ dependence dE,Llis shown in the bottom panel. At

a first approximation, by the samg®® which is short as gl T, a monotonic growth is observed.

compared to the distance between clusters. C. Pair Connectedness FunctionAnother useful metric of

~ The highT percolation phenomenon observedpat= 0.125 5 custer distribution is the pair connectedness funaigar),

is not related to the establishment of long lifetime bonding (3150 reported a®(r)), defined as conditional probability of
between particles. Indeed, with the same definition of bond finding a particle at a distanaefrom a particle located at the
distance (1.28), the hard-sphere fluid would be characterized origin, connected via a sequence of bonds, i.e., within the same
by an infinite cluster already at. = 0.16. Hence, the higfi cluster. The quantitgeon{r) is used in classical percolation
percolation is only weakly controlled by the interparticle theory and can be determined by generalized integral equa-
potential. Thus, it is not a surprise that, close to percolation, at tjgp 39-42 leading to well-defined cluster sizes and statistics.

highT, n(s) ~ s with 7 consistent with the random percolation  |ndeed, the average cluster sizis related togeondr) as?
value3738The disappearance of clusters of size 10, which

starts to be visible foll < 0.1, signals the progressive role of B 3

energy in controlling clustering. At the lowest investigaf&gd =1+ Pf drigeondr) (6)

energy has taken over and all clusters are formed by energeti-

cally convenient configurations. In this respect, we can think When an infinite cluster appears, the largémit of geond(r) is

of the low T system as a fluid composed of super-aggregates, different from zero.

providing an effective renormalization of the concept of Figure 10 (top) showgcond(r) along thep. = 0.125 isochore.

“monomer” in the fluid. The small clustercluster interaction In agreement with previous comments, the large distance limit

energy may favor a reestablishment of the random percolation of geond(r) indicates a reentrant behavior. Indeed, both at high

geometries and characteristic exponents, as discussed in thd and at lowT, geond(r) is different from zero at large distances,

following. while it reaches a zero value at intermediatge.g., T = 0.11).
Figure 9 shows thél and ¢. dependence of the second Significantly less structured peaks, for next and higher order

moment of the distribution, the average cluster g€ defined neighbors, are observed at highwith respect to lowr.

in eq 5, for all nonpercolating state points. Apart from Figure 10 (bottom) compares, for one specific state point,

¢ = 0.16, where configurations are percolating already before g(r) andgeondr). It is interesting to note that the oscillations in
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Figure 11. Typical largest cluster ap. = 0.08 for four differentT
values: from top left to bottom righff = 0.15, 0.12, 0.1, and 0.07.

T=0.15

Figure 12. Same as Figure 11 fap. = 0.125.

g(r), describing the liquid structure, are essentially retained into
thedeondr), Suggesting the intercluster interactions are negligible.
D. Cluster Shape.A pictorial description of the shape of
the larger cluster observed in a typical configuration at

¢c = 0.08 andgp, = 0.125 for differentT is shown in Figures

coordinated and that the loose highbonding progressively

the lowestT, the clusters are composed by large segments of intermediate size 16 s < 100, d
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Figure 14. Size dependence of the cluster gyration radius &t 0.1
and severaf.. Lines provide reference slopes for differehtvalues.

Bernal spiral structures joined in branching points, the latter
providing the mechanism for network formation.

To quantify the cluster shape we study the cluster size
dependence of the cluster radius of gyratiy defined as

1 N
Ry= ’N_ (ri = RCM)2

1/2

()

whereRcy are the cluster center of mass coordinates. For fractal
aggregatesR, ~ s, whered; indicates the fractal dimension.
The observed behavior of the clusters shape is very different at
high and lowT. Figure 13 show®y vs s for two representative
state points at = 0.15, close to percolation. The typical shape
of the cluster at these two state points is reported in Figures 11
and 12. Of course, the bond lifetime (as discussed in the
following) increases on cooling, and only at lowdo clusters
survive as well-defined entities for appreciable times. Hence at
high T, clusters should be considered as simply transient
arrangements of particles. In this respect, it is not a surprise
that, when the cluster size is greater than 20 monomers, the
fractal dimension is consistent with the random percolation value
in three dimensionsdf = 2.52)37:38This value confirms that at
high T, as discussed previously, the energetic of the bonds is
negligible as compared to entropic effects and the cluster size
grows on increasing., mostly due to the increase in the average
11 and 12. In both cases, a progressive change of shape of theumber of particles with a relative distance less thag. At
largest cluster is observed on cooling. A close look to the figures low T, an interesting phenomenon occurs, shown in Figure 14.
shows that on cooling particles become locally tetrahedrally The very small clusters(< 10) are rather compact a~ 3,

and indeed, in this size interval, the energy per particle in the
crosses to a one-dimensional arrangement of tetrahedrons. Atluster decreases on increasing cluster lZar clusters with

~ 1.25, supporting the
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interaction potential, which defines quite sharply the interparticle

(and higherT), but which becomes more relevant at very low
' T. We note that, on isothermally increasipg the location of
the peak does not change even when percolation is crossed. On
the other hand, th& dependence is significant and the location
of the peak moves to smallgron decreasing, suggesting the
establishment of longer correlation lengths. Thend¢. trends
are quite similar to those recently observed in concentrated
protein solutions at low ionic strengthln particular, in that
paper, the independence of the cluster peak positiop. ovaes
interpreted as evidence of a linear dependence of the equilibrium
cluster size withp.. Indeed, if clusters are assumed to be rather
o ' 5 4o 10 ' monodisperse in size and if the inverse of the peak position is
assumed to be a measure of the intercluster distance, the number

Figure 15. Wavevectorq dependence of(q) at three differentT cluster density has also to be independentof It is worth
(T=0.07,0.1, 9‘2) for tha-route case. For each data at thre stressing that, in one of the first papers addressing the possibility
are reported¢. = 0.08, 0.125, 0.16). Lo . .

of equilibrium cluster phases in colloidal systet43the same
relation between equilibrium cluster size afidvas presented,
although its validity was limited to the case of clusters of size
significantly larger than the one observed experimentally in ref
4, hinting to a wider validity of the relation suggested in ref 4.
Here we note that the independence of 8ig) cluster peak
position with ¢¢ holds from very smallp. up to values well
beyond percolation, where an interpretation in terms of finite
clusters relative distance is clearly not valid. In the present study
(of non spherical clusters), we can access H&tf) and the
cluster size distribution. We note that, as shown in Figure 8,
the cluster size distribution does not peak around a typical value.
Actually, the cluster size is significantly nonmonodisperse,
expecially close to percolation. We also note that neitBgn
nor [$;[(see Figure 9) scale linearly with, despite the constant
position of the lowq peak inSq).

0 It would be relevant to understand how the parameteand

entering the potential (see eqs 1 and 2) control the position
Figure 16. Wavevectorq dependence o§q) at three differentp. 5 9 P ( 9 ) P

(¢ = 0.08, 0.125, 016) for the T-route case. For eactiata at several of the cluster peak and it and¢. dependence. In the case of
T are reported. spherical clusters, it was possible to associate the peak position

to the average distance between clusters, since no percolation
preferential one-dimensional nature of the elementary aggrega-was observed. This explanation is not fully satisfactory for the
tion process, driven by the repulsive part of the potential. This present model, since, as can be seen in Figure 16 for the case
d; value is observed for all equilibrium cluster phases in which of T = 0.2, the location of the peak is clearly the same both in
clusters of size 16< s < 100 are dominant, with a small trend  the nonpercolating staig= 0.125 and in the percolating state
toward smaller values for small@randgc. This smalld; value ¢ = 0.16. A better understanding of the quantities controlling
provides further evidence that in this size interval growth is the peak position is requested. A first attempt in this direction
essentially uniaxial, and that clusters of size 100 or less are has been recently presentéd.
essentially composed by pieces of Bernal spirals joined by few

branching point¥ (see Figures 1.1 and 12). For Ia_rgaaralues, is provided by the average number of nearest neighlmaiznd

a crossover towardy ~ 2.52 is observed._ Thls_crossover by the associated distribution of nearest neight®§rg, which

suggests that for .'arg?r clusters the qne-dlmensmr)al bundlescounts the fraction of particles surroundedryeighbors within

have branched a significant number of times, generating (:Iustersr As shown in Figure 17[fCgrows upon progressively
. . . max

whose geometry IS again contr_olled by fa”do”.‘ percolatlon lowering T, approaching, in a nonmonotonic way, a coordination

features. Pieces of Bernal spirals act as building blocks

. - ot . number of 6.

connected at branching points in a random fashion. . ) o

E. Structure Factor. As discussed in section IlI, the Figure 18 shows thd evolution of the distributionP(n).
clustering process and the residual repulsive interactions betweerf:9@in, a clear preference for local geometries with about six
different clusters produce an additional laypeak in g), neighbors is displayed at low a condition which is hardly
located well below the location of the nearest neighbor peak OPserved in other materials in which particlearticle interaction
(qo ~ 27). Figures 15 and 16 show, respectively, thande. is spherically symmetric. The valu@ll= 6 is consistent with
dependence i), in equilibrium. Data refer to both percolat- @ local geometry of face-sharing tetrahedra.
ing and nonpercolating state points. We observe no dependence Another useful indicator of local order, which enables us to
of the position (either witfT or ¢) of the nearest-neighbor peak, effectively quantify the local structure, is provided by the so-
consistent with the presence of a deep minimum in the called local orientation order paramet@yg(i) defined as

8 T=0.07 o008 ] ; ; _
6 oo =0.125]] distance. The amplitude of the nearest-neighbor peak grows on
Z 4l . °¢:=0_1(, i decreasing or increasingp.. The location of the clustercluster
@ of g peak shows a weal; dependence, almost absentTat 0.2
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F. Local Order. A simple and useful indicator of local order
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Figure 17. Average number of neighbofsillas a function ofT for

different ¢. values. Note that, for allp., all curves approach the
M= 6 value characteristic of the geometry of the Bernal spiral.
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Figure 18. Distribution of the number of neighbof¥n) for several
T at ¢ = 0.125 (for theT-route case).

Nbi

— 1 ~
Om(i) = N_biI: Yim(Fip)

8)

where Ny, is the set of bonded neighbors of a particlélhe
unit vectorf;; specifies the orientation of the bond between
particlesi andj. In a given coordinate frame, the orientation of
the unit vectorf; uniquely determines the polar and azimuthal
anglesd; andgjj. TheYim(65,¢0i) = Yim(fij) are the corresponding
spherical harmonics. Rotationally invariant local properties can
be constructed by appropriate combinations of @agi). In
particular, local order in crystalline solids, liquids, and colloidal
gels, has been quantified, focusing on

| 5 1/2
q() = mn;| Tim(1) ] 9)
and
|
wi(i) = w(y| Y |q|m(i)|2]3’2 (10)
m=—I
with
L I T T W
WI(|)= e (ml m2 n]s)qlml(l)qlmz(l)qlm3(|)
my+my+mg =0 (11)
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Figure 19. Temperature dependence of the rotational invariant
distributionsP(q;) (top) andP(W;) (bottom) forl = 4 andl = 6 at¢ =
0.125. Arrows indicate the ideal Bernal spiral values. In the ideal spiral,
the local surrounding of all particles is identical and hence the rotational
invariant distributions aré functions. Filled circles are experimental
data from ref 7.

The distributions of theq and W, parameters provide a
sensitive measure of the local environment and bond organiza-
tion. For example, dimers are characterizedgpy= 1, Wy =
0.13 andis = —0.09. A local tetrahedral order is characterized
by large negative values @¥s, up to the value-0.17 for the
icosahedrori* For the perfect Bernal spiral of Figure 1, the
orientational order parameters are determinedyas 0.224,
gs = 0.654,W, = 0.08, andivg = —0.148. Figure 19 shows the
Os4, Os, Wa, and We distributions and how they evolve with
decreasing temperature fgr = 0.125. We note that, upon
cooling, the progressive presence of dimers and small clusters
disappears and the distributions evolve toward a limiting form
which appears to be specific of the Bernal spiral type of cluster.
Atlow T, and in particular below = 0.1, all distributions peak
close to the characteristic values of the Bernal spiral. The local
orientation order parameters have been evaluated in the confocal
experimental work of ref 7, and they are represented in Figure
19 as filled symbols. There, it was shown that the experimental
data are consistent with the Bernal geometry. In the analysis of
the experimental data, the position of the particles in the perfect
spiral geometry was subjected to some random displacements,
to account for thermal fluctuations, possible intrinsic errors in
the localization of the particles, and polydispersity in size (and/
or charge) in the samples. After this procedure, the sharp peaks
displayed in Figures 19 and 20 disappear, and smooth distribu-
tions are obtained, which compare well with the experimental
data.

Figure 20 shows that, at loW, the distributions appear to be
insensitive toge, in agreement with observations in ref 7 and
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Figure 20. Packing fraction dependence of the rotational invariant
distributionsP(q;) and P(w;) for | = 4 andl = 6 atT = 0.07. Note

that, at this lowT, no ¢. dependence is present.
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Figure 21. Averaged mean-square displacema#iifor the T-route
(top) and thep,-route (bottom)in log-log scale. In the top panep. =
0.16, while in the bottom onej. = 0.15.

supporting once more that the local structure around the majority
of the patrticles is similar to the ground-state structure provided
by the Bernal spiral.

V. Dynamics and Gel Formation

In this section, we present results for the particle dynamics
as a function of¢. and T (in the T-route), or¢, (in the ¢p-
route). As for the equilibrium data shown in the previous section,

Sciortino et al.
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Figure 22. Temperature dependence of the normalized diffusion
coefficient D/D,, for different ¢. values. The short and long dashed
lines represent power law fits with exponest= 2.15 andyp = 2.37

and dynamic critical temperaturegy = 0.084 andTy = 0.091
respectively forp. = 0.125 andp. = 0.16.

plateau which develops faf, = 0.9. These results signal that
particles become tightly caged, with a localization length not
very different from the one observed in the case of dynamic
arrest in glass-forming systems, although in the present case
caging is much less resolved. Increasing the attraction strength,
the long time limit ofd%(t)Cremains proportional tg but with

a smaller and smaller coefficient.

A global view of theT dependence of the slow dynamics is
shown in Figure 22, where the long time limit @Gf(t)Z6t, i.e.,
the self-diffusion coefficienD, is reported. While at higfl
the diffusion coefficient approaches the bare self-diffusion
coefficient, on cooling, in the same& interval in which a
substantial bonding takes placB, drops several order of
magnitudes, signaling a significant slowing down of the
dynamics and the approach to a dynamically arrested state. The
same behavior is observed for ipgroute, wheréd approaches
a very small value forp, > 1.1.

It is interesting to note that, fap. = 0.125 andp. = 0.16,
the T dependence ob is compatible with a power law, with
exponentyp ~ 2.2, not very different from the typical values
of yp predicted by mode coupling theory (MCT) for simple
liquids. The case op. = 0.16 is particularly interesting, since
at all T, the instantaneous configuration of the system is
percolating, providing a clear example of the difference between
percolation and dynamic arrest. Vanishindglois observed only
at very lowT, well below percolation. It is tempting to state
that, when the clustercluster interaction is weak as in the
present case, dynamic arrest always requires the establishment
of a percolating network of attractive bonds, though this is not

dynamical quantities are evaluated from trajectories generateda sufficient condition since the bond lifetime should be

according to Brownian dynamics. The mean-square displace-

ment, [M2(t)[] averaged over all particles and several starting
times is shown in Figure 21 for one specifle value both for
the T and theg, routes.

Beyond the ballistic region (which extends up to
()0 < 107309, particles enter into a diffusive regime,
composed of two different processes. A short transient where
the bare self-diffusion coefficienD,, set by the Brownian
algorithm, dominates and a long-time region when particles feel
the interparticle bonding. At high, in the latter regime, particles
diffuse almost freely, with a diffusion coefficient not very
different from the bare self-diffusioB, value. Upon cooling,
[A%(t)Oprogressively develops a plateau, more evidenflfar
0.1, which reaches the valeed x 1072 If we look at thegy-
data, we observe a very similar behavior, with a very similar

significantly long. When repulsive clustecluster interactions

are not negligible, arrest at loyw. can be generated in the

absence of percolatidhvia a Yukawa glass mechanism.
Another important quantity to characterize dynamic arrest

(particularly relevant for attraction-driven slowing dot®) is

the bond correlation functiopg(t), defined as

#e(t) = D ny(H)n; (O)[Ng(0)]

1<)

(12)

Heren;(t) is 1 if two particles are bonded and O otherwise, while
Ng(0) = i< nj(0)dis the number of bonds dt= 0. The
average is taken over several different starting timpg€ounts
which fraction of bonds found at tinte= 0 is still present after
time t, independent of any breakirge-forming intermediate
process.
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Figure 23. Bond correlation functiorpg(t) for ¢ = 0.16 (T-route,
top) and forg. = 0.15 @p-route, bottom). Thepg(t) shape can be well
fitted by a stretched exponential function with stretching expogpent
= 0.73 (dashed line superimposed to the= 0.12 curve).

Figure 25. Wavevectorg dependence of the intermediate scattering
function F(q,t) at T = 0.07, 0.10, 0.12 (from top to bottom) fg =
0.16. The reportedo values are, respectively, 0.33, 0.78, 1.56, 2.34,
3.12, and 4.68.
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Figure 24. Temperature dependence of the bond lifetirgeat all

- P : i 26. Temperature dependence of the intermediate scattering
studied densities. The short and long dashed lines represent power law_'34"® a o
fits with exponenty, = 3.5 andy, = 4.0 and dynamic critical \Aﬁmctlon F(q) até. = 0.16 andgo = 0.78. The reported are 0.07,

temperaturedy = 0.084 andTy = 0.085, respectively, fop. = 0.125 01,012, 0.15,0.2, 025 0.3, and 0.4.

and¢. = 0.16. TheT = 0.07 point, not included in the fits, is shown  close to dynamic arrest, we calculate the collective intermediate
here only as an indication, since equilibrium is not properly reached at scattering functiorF(q,t), defined as
this T. e

Figure 23 shows the evolution ¢&(t) with T andg,. When F(Gf) = —iq(Fi(t)—?j(o))D 13
dynamics slows down, the shapedt) is preserved at all @ Ze (13)
or ¢p. The shape can be modeled with high accuracy with a .
stretched exponential functioh exp(—(t/r)?), with stretching where the average is calculated over different starting initial
exponents ~ 0.73. times. Figure 25 shows tleedependence of thE(q,t) at three

An estimate of the average bond lifeting can be defined differentT values. The decay of the correlation functions does
astg = 7/0I'(1/B), wheret andj are calculated via stretched not show any appreciable intermediate plateau for @rijhe

1 | looT=0112 bl Y k\ﬂ ]
1 02 |&AT=015 .
% iy
ol

| L
] 5]

0 10

exponential fits and” is the EulerI" function. functional form of the decay is strongly dependentporossing

Figure 24 showsg vs T. Analogous considerations to those from an almost log{ decay at smalfj to a less stretched decay
reported above in discussing tAedependence ob apply. at largeq values. At the lowesT (T = 0.07),F(q,t) does not
Indeed,z5(T) is consistent with a power law with exponent decay to zero any longer, confirming that a nonergodic state
varying between 3.5 and 4.0, larger than the one foun® @}, has been reached. The nonergodic behavior manifests for very
but with consistent predictions for the divergiiig small values ofjo, in the range of the low peak ing(q), while

We notice that, al = 0.07, dynamics is extremely slow and  ergodicity is restored at nearest neighbor lerf§tRigure 26
bonds are almost unbroken in the time window explored in the contrasts, at fixed, value, theT dependence of the dynamics.
simulation. It would be interesting to find out if th& The shape oF(q,t) is sufficiently different to conclude that
dependence ofg crosses to a different functional form at low time—temperature superposition does not hold for this observ-
T when all bonds are formed and if such crossover bears someable. We also note that at very lapg (¢ = 0.04 or 0.08) all
analogies to the crossover from power-law to super Arrhenius density correlation functions decay to zero, within the explored
observed in glass forming molecular systems. Unfortunately, time window, suggesting that cluster diffusion allows for the
as in the molecular glass cases, the time scale today availabledecay of density fluctuation, even in the presence of a
to simulation studies does not allow us to resolve this issue. nonergodic bond restructuring process. This suggests that, at

To further compare the arrest observed in the present systemow ¢, in the absence of percolation, density fluctuations are
and the slowing down of the dynamics observed in other systemsergodic.
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VI. Conclusions although differing only by modest changes in the experimental
conditions, are probably characterized by significantly different

tm tth|s|wo:]||< (;/ve haye presetr_ned ? detalile_g ?réquss .Of the viscoelastic properties. Indeed we expect that the Wigner glass
structural and dynamic properties of a colloidal diISPersion In v pe myuch weaker than the stiff percolating structure

which the s_hort-ran_ge attraction is complemented b_y a Scr.eenedgenerated by a continuous sequence of particles tightly bounded
electrostatic repulsion. We have studied one specific choice of to six neighbors
the parameters controlling the repulsive potential. In particular, ;

we have chosen reening lenath comparable to the radi The system studied in this work is a good candidate for a
€ have chosen a screening length comparableé 1o he radius 0{horough comparison with the slowing down characteristic of
the colloidal particles. For this screening length, a stldy

; glass forming materials. The numeric “exact” equilibrium
the ground-state structure of isolated clusters showed that theparticle structure factor could be used as input in the mode

preferential local structure is composed by a one-dmensmngl coupling theory, along the lines theoretically suggested in ref
sequence of face-shared tetrahedra, generating a local six-

dinated structure and a B | spiral shape 14 to provide a full comparison of the theoretical predictions

coordinated structure and a bernal spiral shape. for the arrest line as well as for the shape of the correlation
The Collect|v.e. behavior of the syst'em IS very mut?h |nflugnch functions. It would be interesting to quantify the role of the

by the competition between attraction and repulsion, which in o ster pre-peak in the structure factor in the predicted slowing
the present model sets in wh&rbecomes smaller than 0.2 (in - 401 of the dynamics
units of thg depth Of. the attractive F’a”)- The relative location — pagy s presented in this work also provide further example
of thle partltl:les, Wh'c? 1froir (’;‘20('12 IS rgostly contzjolled bY " of the existence of equilibrium cluster phases, a phenomenon
trans atl_or:‘a entrogy, 0 S 0.2 ep:jt_ern_sonlorﬁ an ngore ?n which is recently receiving a considerable interest. Cluster
energetic factors. Betweein= 0.2 andT = 0.1, the number o phases have recently been investigated in systems as different
bonded pairs increases S|gn|f|cant!y, and Fhe local structure ;o protein solution&512colloidal dispersiond# 719 aponiteSt
evolves progressively toward the six-coordinated one charac- jj,,q4mjc solutiong! 52 5 star-polymers,aqueous solutions of
teristic of the Bernal spiral. At the lowest studiédT = 0.07, silver iodide® and metal oxiddsand in recent numerical
the cluster shape becomes independent.cind the ground- 1

local f. on b domi The o .__studiest® 1821 |n all cases, the combination of the repulsive
state local configuration becomes dominant. The CIUSIer Size; a4 ctions with the short-range attraction appears to be crucial
distributions at lowT show a very clear suppression of clusters

. . ; in stabilizing the cluster phase. The high sensitivity of the cluster
of size <10, _the size _request(_ad for_the establishment of a bulk shape and the final topology of the arrested state on the detailed
component in the spiral configuration.

g ) . . balance between range and amplitude of the attractive and
Although the majority of particles tends to preferentially sit repulsive part of the potential brought forward by this and
in the 6-coordinated configuration, some particles are located previous studies add new challenges to the modern research in
in defective regions of the spiral, which act as branching points goft condensed matter and to the possible technological exploi-

and favor the formation of large ramified fractal clusters, whose tations of these new materials.
elementary units are spirals of finite size. It is interesting to A final remark concerns the use of an effective potential, with
investigate if the small energetic cost of branching allows us to state-independent parameters for the description of systems in
model the spiral segments as renormalized monomers. In sUpPOTy hich the screening length can be a function of the colloid
of this possibility, we have detected a progressive increase of h,cking fraction and in which the significant changes in structure
the cluster fractal dlmenS|o_n for clt_Jster of sigez 100. We with T (or concentration of depletant) may lead to relevant
have also shown that, consistent with the ground-state CalCUIa'Changes in the cluster surface potential or in the spatial
tions, clusters of size < 10 are almost spherical, while clusters  gistribution of ions. The similarity between the numerical data
of size 10< s < 100 are characterized ly ~ 1.25. reported in this manuscript and the closely related experimental
The one-dimensional growth followed by a dynamic arrest resyits suggest that, despite the approximation adopted in the

phenomenon, observed in this work is reminiscent of the nymerical work, the essence of the arrest phenomenon is
aggregation process in several protein solution systém%in captured by the present models.

this class of protein solutions, a variation in the external control

parameters (temperature, ionic strength, pH) often trigger an  Acknowledgment. We thank P. Bartlett and J. van Duijn-
aggregation process of proteins into cylindric clusters which, eveldt for sharing their results with us, for discussions and for
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