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We report extensive numerical simulations of a simple model for charged colloidal particles in suspension
with small nonadsorbing polymers. The chosen effective one-component interaction potential is composed of
a short-range attractive part complemented by a Yukawa repulsive tail. We focus on the case where the
screening length is comparable to the particle radius. Under these conditions, at low temperature, particles
locally cluster into quasi one-dimensional aggregates which, via a branching mechanism, form a macroscopic
percolating gel structure. We discuss gel formation and contrast it with the case of longer screening lengths,
for which previous studies have shown that arrest is driven by the approach to a Yukawa glass of spherical
clusters. We compare our results with recent experimental work on charged colloidal suspensions (Phys.
ReV. Lett. 2005, 94, 208301).

I. Introduction

Recent years have witnessed a progressive interest in the role
of the interparticle potential on controlling structure and
dynamics of colloidal dispersions. Experiments,1-12 theory,13-15

and simulation16-21 studies have provided evidence that when
the hard-core repulsion is complemented simultaneously by a
short range attraction (of finite depth) and by a screened
electrostatic repulsion, particles tend to form aggregates, whose
shape and size is sensitively dependent on the balance between
attraction and repulsion.22-26,20,27 In some cases, the system
shows an equilibrium cluster phase, where particles associate
and dissociate reversibly into clusters.4,10,11Interestingly enough,
these cluster phases appear not only in colloidal systems but
also in protein solutions, at the limit of low salt concentra-
tion.4,5,12Estimates of the ground-state configuration of isolated
clusters of different size20 suggest that, when the clusters
diameter exceeds the screening length, the shape of the
aggregates crosses from spherical to linear. Evidence has been
reported that, for appropriate tuning of the external control
parameters, colloidal cluster phases progressively evolve toward
an arrested state.1,7,10,12Recent numerical studies suggest that
arrest may be connected to a percolation process.17,18A different
arrest scenario has been proposed, and supported by numerical
simulations, for the case of relatively large screening length (i.e.,
the case of preferentially spherical clusters), dynamic arrest may
proceed via a glass transition mechanism, where clusters, acting
as superparticles interacting via a renormalized Yukawa po-
tential, become confined by the repulsions created by their
neighboring clusters.16 This mechanism is, in all respects,
identical to the glass transition of Yukawa particles28-31 and
leads, favored by the intrinsic polydispersity of the clusters
induced by the growth process, to the realization of a Wigner

glass. The simulation study16 showed that the resulting arrested
state is not percolating; i.e., the arrest transition cannot be
interpreted in terms of the formation of a bonded network of
particles.

A very recent experimental work7 has reported evidence of
arrest via linear cluster growth followed by percolation, in a
system of charged colloidal particles. In the studied system, the
short-range attraction, induced via depletion mechanism, is
complemented by an electrostatic repulsion, with a Debye
screening lengthê estimated on the order ofê/σ ≈ 0.65, where
σ indicates the hard core diameter of the colloidal particle. The
quasi one-dimensional clusters observed via confocal micros-
copy are locally characterized by a Bernal spiral geometry,32

the same structure found as cluster ground-state configuration
for the case of screening lengths smaller thanσ.20 The Bernal
spiral, shown in Figure 1, is composed of face sharing tetrahedra,
in which each particle is connected to six neighbors.

In this work, we numerically investigate the possibility that,
when the potential parameters are such that the Bernal spiral is
the ground-state structure for isolated clusters, macroscopic gels
can be formed at large, but finite, attraction strength, via a
mechanism of branching favored by the small but finite thermal
contributions. We explore the low packing fraction region for
several values of the attractive interaction strength, to highlight
the collective effects arising from cluster-cluster interactions
and to assess under which external conditions, ground state
predictions are valid. We carry our study along two routes. In
both cases, we study a colloid-polymer mixture in the effective
one-component description, i.e., assuming that the polymer size
is much smaller than that of the colloids. In the first route, we
control the attraction between colloidal particles via a temper-
ature scale. In the second routesdesigned to make direct contact
with the experimental work reported in ref 7swe study an
isothermal system where the repulsive part of the potential is
fixed, while the attractive part of the potential is varied according
to the concentration of depletant, to model the strength of the
polymer-induced depletion interaction. We will refer to these
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two sets of simulations respectively as the temperature and
polymer concentration routes, naming them after the respective
relevant control parameters.

We studysas a function of the packing fraction and of the
attraction strengthsthe shape of the clusters (quantified via their
fractal dimension), the local geometry around each particle, the
interparticle structure factor, and the connectivity properties of
the system. We complement the static picture with information
on the interparticle bond lifetime and on the dynamics of self-
properties and collective properties. We compare these quantities
for the two routes, and show that the two approaches provide a
similar description of cluster growth, percolation, and gel
formation.33

II. Simulation Details

We study a system composed ofN ) 2500 colloidal particles
of diameterσ and massm in a cubic box of sizeL, as a function
of the packing fractionφc ) πFσ3/6, whereF ) N/L3 is the
number density, and of the temperatureT. The particles interact
simultaneously via a short-range potentialVSR and a screened
electrostatic repulsive interactionVY. The short-range attraction
is modeled for simplicity with the generalization toR ) 18 of
the Lennard-Jones 2R - R potential, as proposed by Vliegenthart
et al.34)

whereε is the depth of the potential. The parametersσ andε

are chosen as units of length and energy, respectively. We also
considerkB ) 1. For this choice ofR the width of the attraction
range is roughly 0.2σ. The phase diagram ofVSR(r) has been
studied previously34 and it is characterized by a rather flat gas-
liquid coexistence line, with a critical point located atTc

SR =

0.43 andφc
SR = 0.225.

The repulsive interaction is modeled by a Yukawa potential

characterized by an amplitudeA and a screening lengthê. We
focus on the caseê ) 0.5σ andA ) 8ε, for which the minimum
of the pair potentialVSR + VY is located atr ) 1.042σ
corresponding to a potential energyEmin ) -0.52ε. With the
present choice ofA andê, the ground-state configuration of an
isolated cluster is known to be the one-dimensional Bernal spiral,
shown in Figure 1.20 The Bernal spiral structure is composed
of face-sharing tetrahedrons, resulting in three twisting strands
of particles in such a way that each particle has six nearest
neighbors. In this geometry, for largeN, the potential energy
per particleE is E ) -1.36+ 2.10/N (always in units ofε). In
the bulk of the spiral (far from side effects)E is about three
times Emin, confirming that the attractive interaction with the
six neighbors provides most of the binding energy.

In parallel, we also study the case in which the magnitude of
the attractive part changes to mimic the dependence of the
depletion interaction on polymer concentrationφp. As in ref 7,

we chooseε/kBT ) 14φp; i.e., the attraction strength is assumed
to depend linearly on the fraction of free volume occupied by
polymersφp. In this case, as in experiments,T is kept constant
to kBT ) 1. To study a model as close as possible to the
experimental work of ref 7, we selectê ) 0.65σ, A ) 10ε,35

and R ) 10. For this value ofR, rmin ) 1.07σ, in agreement
with the position of the maximum in the radial distribution
function g(r), as extracted from data reported in ref 7.

The dependence of the potential shape withφp is shown in
Figure 2. Note thatV(r) changes from monotonically repulsive
to repulsive with alocal minimum (withV(rmin) > 0). Finally,
for φp > 0.50, V(r) develops an attractive global minimum
followed by a repulsive tail.

In the rest of the present work, we will nameT-route and
φp-route the two parallel sets of simulations. The short-range
nature ofVSR favors a very effective way to define pairs of
bonded particles. Indeed, the resulting potentialV(r) ) VSR +
VY has a well-defined maximum located approximatively where
the short-range attraction becomes negligible. In the following
we will consider bonded (or nearest neighbors) all pairs of
particles whose relative distanced < rmax. In theT-route case,
we fix rmax ) 1.28σ, the location of the local maximum inVSR

+ VY. In theφp-case the maximum exists only forφp g 0.5 and
its location depends on the value ofφp, changing approxima-
tively between 1.3σ and 1.5σ in the investigated range, as shown
in Figure 2. For convenience, in theφp-route we choosermax )
1.4σ which provides a good estimate of the bonding distance
in the interesting cases of largeφp values. Note that in the
manuscript we limit ourselves to the caseφp > 0.5, for which
a well-defined minimum inVSR + VY is present.

In all simulations, time is measured in units ofxmσ2/ε. For
numerical reasons, the repulsive potential is cut atrc ) 8ê, such
thatVY(rc) ≈ 4.2× 10-5A. All simulated state points are shown
in Figure 3. In theT-route, a clear connection can be made with
the thermodynamic behavior of theVSR potential. All studied
state points are located inside the spinodal region of the attractive
potential. This is due to the fact that the spinodal is quite flat;
see Figure 4B in ref 34. Equilibration is achieved with
Newtonian dynamics, followed by a Brownian dynamics
simulation, based on the scheme of ref 36, to produce equilib-
rium trajectories. In the case of Newtonian dynamics, the
equation of motion have been integrated with a time step of∆t
) 0.02. In the case of Brownian dynamics,∆t ) 0.05 with a
bare diffusion coefficientDo ) 0.005. Equilibration runs
required, at the slowest states, more than 109 integration time

Figure 1. Pictorial view of the Bernal spiral. Particles have been
differently colored to highlight the presence of three strands. In this
geometry, each particle has exactly six nearest neighbors.

VSR(r) ) 4ε[(σr )2R
- (σr )R] (1)

VY(r) ) A
e-r/ê

r/ê
(2)

Figure 2. Interaction potentialâV(r) ≡ â[VSR(r) + VY(r)] for different
values of the polymer concentrationφp. HereA ) 10ε, ê ) 0.65σ, R
) 10, andâε ) 14.0φp.7
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steps, corresponding to about three months of computer time
on a 1.6 GHz Pentium processor.

III. Equilibration

Simulations are started from highT (or correspondingly
φp ) 0) equilibrium configurations and quenched to the selected
final state. During equilibration, a Berendsen thermostat with a
time constant of 10 is active, to dissipate the energy released
in the clustering process. Following the quench, the time
evolution of the potential energyE shows a significant drop.
Equilibration becomes slower the lower the finalT or the larger
φp. It also slows down on lowering the colloid packing fraction
φc. The evolution ofE following a quench is shown in Figure
4 for the caseφc ) 0.16. AroundT j 0.07, equilibration cannot
be achieved within the simulation time and dynamic arrest takes
place. In these conditions, extremely slow (logarithmic in time)
drift of E is still present at long times. To provide evidence
that equilibrium is reached during the Newtonian simulation,
we check thatE is independent of the previous history and that
clusters reversibly break and re-form on changingT or φc.
Similar results are obtained following theφp-path.

The equilibration process is characterized by the progressive
formation of bonds between particles and the corresponding
growth of the particle’s aggregates, the named clusters.

A quantification of the evolution of the structure of the system
during equilibration can be provided by the structure factorS(q),

defined as

where rbi indicates the coordinates of particlei. The S(q)
evolution, shown in Figure 5, is reminiscent of the initial stages
of spinodal decomposition, showing a lowq peak which grows
in amplitude and moves to smaller and smallerq vectors. While
in spinodal decomposition, the coarsening process proceeds
endless, in the present case the evolution of the smallq peak
stops when equilibrium is reached. The presence of the low
q-peak inS(q), at a finite wavevector, highlights the presence
of an additional characteristic length scale in the system,
discussed in more details in the next section.

Figure 6 shows the evolution of the shape of the largest cluster
for the caseφc ) 0.125 andT ) 0.08, one of the cases in which
the average cluster size grows monotonically in time. It is
interesting to observe that, at short times, the shape of the larger
cluster is rather ramified, the potential energy is still large and
locally the structure is still very different from the six-
coordinated ground state structure. Cluster arms are essentially
composed by particles arranged along lines. At longer times,
the cluster arms get thicker and thicker, and the local config-
uration approaches the characteristic one of the Bernal spiral,
even if some parts of the original branching points persist in
the final structure favoring the formation of a gel network. The
evolution of the shape, complemented with the time dependence
of E, suggests that at large attraction strengths (lowT or large
φp), the equilibration process can be conceptually separated into
two parts: an initial relaxation which is closely reminiscent of
the one which would take place if the potential was purely

Figure 3. State points studied in this work, in theT - φc (left y-axis)
andφp - φc (right y-axis) planes, respectively, for theT (circles) and
φp (triangles) routes. Full symbols indicate state points where the
equilibrium structure presents a spanning network of bonded particles.
The dashed line represents the experimental percolation line of ref 7.

Figure 4. Time dependence of the potential energy following a quench
starting from high temperature (T ) 1.0) forφc ) 0.16, for theT-route
case.

Figure 5. Evolution of the static structure factorS(q) during equilibra-
tion at φc ) 0.125 andT ) 0.08.

Figure 6. Snapshots of the largest cluster at three different times during
the equilibration process. Hereφc ) 0.125 andT ) 0.08. The cluster
size is 72, 605, and 908, respectively att ) 200, t ) 600, andt )
20 000.

S(q) ) 〈1

N
∑
i,j

e-iqb( rbi- rbj)〉 (3)
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attractive, followed by a second rearrangement which sets in
only after the coordination number has become significant. At
this point, the competition of the long-range repulsion enters
into play, forcing thereby the system to rearrange into the
expected local configuration. This competition results also in a
nonmonotonic evolution, during the equilibration, of the mean
cluster size, at some state points.

IV. Equilibrium Properties: Statics

A. Potential Energy. The upper panel of Figure 7 shows
theT dependence ofE/Emin at the studied values ofφc. Around
T ≈ 0.2, E becomes negative, suggesting that the short-range
attractive interaction becomes relevant. For lowerT, 0.1 < T
< 0.2,E drops significantly, quickly reaching belowT ) 0.1 a
value compatible with the ground state Bernal spiral configu-
ration (also shown), once the vibrational components are
properly accounted for. A similar behavior is observed for the
φp dependendence, shown in the lower panel of Figure 7. In
the studiedφc range, theφc dependence ofE is rather weak,
especially for large attraction strengths.

B. Cluster Size Distribution. In this section, we examine
the cluster size distribution, as it evolves withφc andT. Standard
algorithms are used to partition particles into clusters of sizes
and to evaluate the cluster size distributionns and its moments.
The first moment of the cluster size distribution

is connected to the inverse of the number of clustersNs, while
the second moment〈s2〉 provides a representative measure of
the average cluster size

We also examine the connectivity properties of the equilib-
rium configurations. Configurations are considered percolating
when, accounting for periodic boundary conditions, an infinite
cluster is present. To test for percolation, the simulation box is
duplicated in all directions, and the ability of the largest cluster
to span the replicated system is controlled. If the cluster in the
simulation box does not connect with its copy in the duplicated
system, then the configuration is assumed to be nonpercolating.
The boundary between a percolating and a nonpercolating state
point has been defined by the probability of observing infinite
clusters in 50% of the configurations. To provide an estimate
of the percolation locus, we report in Figure 3 the state points
which are percolating. We note that, at this level, percolation
is a geometric measure, and it does not provide any information
on the lifetime of the percolating cluster. Indeed, atφc ) 0.125,
percolation is present both at highT, where we observe
geometric percolation of clusters with bonds of very short
lifetime, and at lowT, where the particles are connected by
energetic bonds of very long lifetime, as discussed below. The
competition between geometric and energetic percolation results
in a intermediate temperature window where the system does
not percolate, i.e., in a re-entrant percolation locus. A substantial
agreement between the percolating states found here and those
examined in ref 7 by confocal microscopy (see dashed line in
Figure 3) is reported, except for the evidence of re-entrant
percolation, which is missing in the experiment. This could be
explained by a less transient bond formation in the real system
with respect to the simulated model.

The cluster size distributionn(s) is shown in Figure 8. At
T ) 0.2 (whereE ≈ 0 and hence no significant bonding exists)
upon increasingφc, the distribution progressively develops a
power-law dependence with an exponentτ, consistent with the
random percolation valueτ ≈ -2.2.37,38Percolation is reached
when 0.125< φ < 0.16. At slightly lowerT, i.e.,T ) 0.15, the
picture remains qualitatively similar, except for a hint of
nonmonotonic behavior, arounds≈ 10-20. On further lowering
T, the number of clusters of sizes j 10 drops significantly, to
eventually disappear atT ) 0.07. These results are observed at
all studied densities.

To frame the results presented above, we recall information
previously obtained in the study of the ground-state energy of
isolated cluster of different size.20 For a cluster sizes j 10, the
addition of a monomer to an existing cluster lowers the energy
per particle, since the gain associated with the formation of an
additional attractive short-range bond is not yet compensated

Figure 7. T (upper panel) andφp (lower panel) dependence of the
normalized potential energy per particleE/Emin at differentφc values.
Emin ) - 0.52ε in the T-route case, while it depends onφp asEmin )
- 14φpkT+ VY(rmin), with rmin ) 1.07, in theφp case. The corresponding
value for the Bernal spiral configuration is also reported.

Figure 8. Cluster size distributionns at severalT. In each panel, the
full line represents the functionns ∼ s-2.2.

〈s〉 )

∑
s

sns

∑
s

ns

) N/Ns (4)

〈s2〉 ≡
∑

s

s2ns

∑
s

sns

(5)
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by the increased number of repulsive interactions. However,
when clusters have grown sufficiently, fors J 10 - 20, the
energy driving force for growing is reduced, since the energy
per particle does not significantly depend any longer on the
cluster size.20 Isolated clusters results carry on to the interacting
clusters case since the relatively small screening length does
not produce a significant cluster-cluster interaction. Indeed,
the effective cluster-cluster potential will be characterized, to
a first approximation, by the sameê,16 which is short as
compared to the distance between clusters.

The highT percolation phenomenon observed atφc ) 0.125
is not related to the establishment of long lifetime bonding
between particles. Indeed, with the same definition of bond
distance (1.28σ), the hard-sphere fluid would be characterized
by an infinite cluster already atφc ) 0.16. Hence, the highT
percolation is only weakly controlled by the interparticle
potential. Thus, it is not a surprise that, close to percolation, at
highT, n(s) ∼ s-τ with τ consistent with the random percolation
value.37,38 The disappearance of clusters of sizes j 10, which
starts to be visible forT e 0.1, signals the progressive role of
energy in controlling clustering. At the lowest investigatedT,
energy has taken over and all clusters are formed by energeti-
cally convenient configurations. In this respect, we can think
of the low T system as a fluid composed of super-aggregates,
providing an effective renormalization of the concept of
“monomer” in the fluid. The small cluster-cluster interaction
energy may favor a reestablishment of the random percolation
geometries and characteristic exponents, as discussed in the
following.

Figure 9 shows theT and φc dependence of the second
moment of the distribution, the average cluster size〈s2〉, defined
in eq 5, for all nonpercolating state points. Apart from
φ ) 0.16, where configurations are percolating already before

the physics of the short-range bonding sets in, percolation at
small packing fractions is not reached at all temperatures we
are able to equilibrate. Atφc ) 0.125, a nonmonotonic
dependence of〈s2〉 (T) is observed, which we interpret as a
crossover from the “random” percolation observed at highT to
the bond-driven percolation, which becomes dominant at low
T. Theφc dependence of〈s2〉 is shown in the bottom panel. At
all T, a monotonic growth is observed.

C. Pair Connectedness Function.Another useful metric of
a cluster distribution is the pair connectedness functiongconn(r),
(also reported asP(r)), defined as conditional probability of
finding a particle at a distancer from a particle located at the
origin, connected via a sequence of bonds, i.e., within the same
cluster. The quantitygconn(r) is used in classical percolation
theory and can be determined by generalized integral equa-
tion,39-42 leading to well-defined cluster sizes and statistics.
Indeed, the average cluster size〈s2〉 is related togconn(r) as39

When an infinite cluster appears, the larger limit of gconn(r) is
different from zero.

Figure 10 (top) showsgconn(r) along theφc ) 0.125 isochore.
In agreement with previous comments, the large distance limit
of gconn(r) indicates a reentrant behavior. Indeed, both at high
T and at lowT, gconn(r) is different from zero at large distances,
while it reaches a zero value at intermediateT (e.g.,T ) 0.11).
Significantly less structured peaks, for next and higher order
neighbors, are observed at highT with respect to lowT.

Figure 10 (bottom) compares, for one specific state point,
g(r) andgconn(r). It is interesting to note that the oscillations in

Figure 9. Temperature andφc dependence of the second moment of
the cluster size distribution〈s2〉, for theT-route case.

Figure 10. Top: gconn(r) at φc ) 0.125 for various temperatures.
Bottom: Comparison ofgconn(r) and g(r) for the same state point
φc ) 0.08 andT ) 0.07.

s2 ) 1 + F∫ dr3gconn(r) (6)
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g(r), describing the liquid structure, are essentially retained into
thegconn(r), suggesting the intercluster interactions are negligible.

D. Cluster Shape.A pictorial description of the shape of
the larger cluster observed in a typical configuration at
φc ) 0.08 andφc ) 0.125 for differentT is shown in Figures
11 and 12. In both cases, a progressive change of shape of the
largest cluster is observed on cooling. A close look to the figures
shows that on cooling particles become locally tetrahedrally
coordinated and that the loose highT bonding progressively
crosses to a one-dimensional arrangement of tetrahedrons. At
the lowestT, the clusters are composed by large segments of

Bernal spiral structures joined in branching points, the latter
providing the mechanism for network formation.

To quantify the cluster shape we study the cluster size
dependence of the cluster radius of gyrationRg, defined as

whereRCM are the cluster center of mass coordinates. For fractal
aggregates,Rg ∼ s1/df, wheredf indicates the fractal dimension.
The observed behavior of the clusters shape is very different at
high and lowT. Figure 13 showsRg vs s for two representative
state points atT ) 0.15, close to percolation. The typical shape
of the cluster at these two state points is reported in Figures 11
and 12. Of course, the bond lifetime (as discussed in the
following) increases on cooling, and only at lowT do clusters
survive as well-defined entities for appreciable times. Hence at
high T, clusters should be considered as simply transient
arrangements of particles. In this respect, it is not a surprise
that, when the cluster size is greater than 20 monomers, the
fractal dimension is consistent with the random percolation value
in three dimensions (df ) 2.52).37,38This value confirms that at
high T, as discussed previously, the energetic of the bonds is
negligible as compared to entropic effects and the cluster size
grows on increasingφc, mostly due to the increase in the average
number of particles with a relative distance less thanrmax. At
low T, an interesting phenomenon occurs, shown in Figure 14.
The very small clusters (s < 10) are rather compact anddf ≈ 3,
and indeed, in this size interval, the energy per particle in the
cluster decreases on increasing cluster size.20 For clusters with
intermediate size 10j s j 100, df ≈ 1.25, supporting the

Figure 11. Typical largest cluster atφc ) 0.08 for four differentT
values: from top left to bottom right,T ) 0.15, 0.12, 0.1, and 0.07.

Figure 12. Same as Figure 11 forφc ) 0.125.

Figure 13. Size dependence of the cluster gyration radius atT ) 0.15
for two values ofφc. The dashed line provides a reference slope for
the random percolationdf value.

Figure 14. Size dependence of the cluster gyration radius atT ) 0.1
and severalφc. Lines provide reference slopes for differentdf values.

Rg ) [1

N
∑
i)1

N

(r i - RCM)2]1/2

(7)
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preferential one-dimensional nature of the elementary aggrega-
tion process, driven by the repulsive part of the potential. This
df value is observed for all equilibrium cluster phases in which
clusters of size 10< s < 100 are dominant, with a small trend
toward smaller values for smallerT andφc. This smalldf value
provides further evidence that in this size interval growth is
essentially uniaxial, and that clusters of size 100 or less are
essentially composed by pieces of Bernal spirals joined by few
branching points20 (see Figures 11 and 12). For largers values,
a crossover towarddf ≈ 2.52 is observed. This crossover
suggests that for larger clusters the one-dimensional bundles
have branched a significant number of times, generating clusters
whose geometry is again controlled by random percolation
features. Pieces of Bernal spirals act as building blocks
connected at branching points in a random fashion.

E. Structure Factor. As discussed in section III, the
clustering process and the residual repulsive interactions between
different clusters produce an additional lowq peak in S(q),
located well below the location of the nearest neighbor peak
(qσ ≈ 2π). Figures 15 and 16 show, respectively, theT andφc

dependence ofS(q), in equilibrium. Data refer to both percolat-
ing and nonpercolating state points. We observe no dependence
of the position (either withT or φc) of the nearest-neighbor peak,
consistent with the presence of a deep minimum in the

interaction potential, which defines quite sharply the interparticle
distance. The amplitude of the nearest-neighbor peak grows on
decreasingT or increasingφc. The location of the cluster-cluster
peak shows a weakφc dependence, almost absent atT ) 0.2
(and higherT), but which becomes more relevant at very low
T. We note that, on isothermally increasingφc, the location of
the peak does not change even when percolation is crossed. On
the other hand, theT dependence is significant and the location
of the peak moves to smallerq on decreasingT, suggesting the
establishment of longer correlation lengths. TheT andφc trends
are quite similar to those recently observed in concentrated
protein solutions at low ionic strength.4 In particular, in that
paper, the independence of the cluster peak position onφc was
interpreted as evidence of a linear dependence of the equilibrium
cluster size withφc. Indeed, if clusters are assumed to be rather
monodisperse in size and if the inverse of the peak position is
assumed to be a measure of the intercluster distance, the number
cluster density has also to be independent ofφc.4 It is worth
stressing that, in one of the first papers addressing the possibility
of equilibrium cluster phases in colloidal systems,13,43the same
relation between equilibrium cluster size andφc was presented,
although its validity was limited to the case of clusters of size
significantly larger than the one observed experimentally in ref
4, hinting to a wider validity of the relation suggested in ref 4.
Here we note that the independence of theS(q) cluster peak
position with φc holds from very smallφc up to values well
beyond percolation, where an interpretation in terms of finite
clusters relative distance is clearly not valid. In the present study
(of non spherical clusters), we can access bothS(q) and the
cluster size distribution. We note that, as shown in Figure 8,
the cluster size distribution does not peak around a typical value.
Actually, the cluster size is significantly nonmonodisperse,
expecially close to percolation. We also note that neither〈s1〉
nor 〈s2〉 (see Figure 9) scale linearly withφc, despite the constant
position of the lowq peak inS(q).

It would be relevant to understand how the parametersA and
ê entering the potential (see eqs 1 and 2) control the position
of the cluster peak and itsT andφc dependence. In the case of
spherical clusters, it was possible to associate the peak position
to the average distance between clusters, since no percolation
was observed. This explanation is not fully satisfactory for the
present model, since, as can be seen in Figure 16 for the case
of T ) 0.2, the location of the peak is clearly the same both in
the nonpercolating stateφ ) 0.125 and in the percolating state
φ ) 0.16. A better understanding of the quantities controlling
the peak position is requested. A first attempt in this direction
has been recently presented.15

F. Local Order. A simple and useful indicator of local order
is provided by the average number of nearest neighbors〈n〉 and
by the associated distribution of nearest neighborsP(n), which
counts the fraction of particles surrounded byn neighbors within
rmax. As shown in Figure 17,〈n〉 grows upon progressively
loweringT, approaching, in a nonmonotonic way, a coordination
number of 6.

Figure 18 shows theT evolution of the distributionP(n).
Again, a clear preference for local geometries with about six
neighbors is displayed at lowT a condition which is hardly
observed in other materials in which particle-particle interaction
is spherically symmetric. The value〈n〉 ) 6 is consistent with
a local geometry of face-sharing tetrahedra.

Another useful indicator of local order, which enables us to
effectively quantify the local structure, is provided by the so-
called local orientation order parametersqjlm(i) defined as

Figure 15. Wavevectorq dependence ofS(q) at three differentT
(T ) 0.07, 0.1, 0.2) for theT-route case. For eachT, data at threeφc

are reported (φc ) 0.08, 0.125, 0.16).

Figure 16. Wavevectorq dependence ofS(q) at three differentφc

(φc ) 0.08, 0.125, 016) for the T-route case. For eachφc data at several
T are reported.
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whereNbi is the set of bonded neighbors of a particlei. The
unit vector r̂ ij specifies the orientation of the bond between
particlesi andj. In a given coordinate frame, the orientation of
the unit vectorr̂ ij uniquely determines the polar and azimuthal
anglesθij andφij. TheYlm(θij,φij) ≡ Ylm(r̂ij) are the corresponding
spherical harmonics. Rotationally invariant local properties can
be constructed by appropriate combinations of theqjlm(i). In
particular, local order in crystalline solids, liquids, and colloidal
gels, has been quantified, focusing on

and

with

The distributions of theql and ŵl parameters provide a
sensitive measure of the local environment and bond organiza-
tion. For example, dimers are characterized byql ) 1, ŵ4 )
0.13 andŵ6 ) -0.09. A local tetrahedral order is characterized
by large negative values ofŵ6, up to the value-0.17 for the
icosahedron.44 For the perfect Bernal spiral of Figure 1, the
orientational order parameters are determined asq4 ) 0.224,
q6 ) 0.654,ŵ4 ) 0.08, andŵ6 ) -0.148. Figure 19 shows the
q4, q6, ŵ4, and ŵ6 distributions and how they evolve with
decreasing temperature forφ ) 0.125. We note that, upon
cooling, the progressive presence of dimers and small clusters
disappears and the distributions evolve toward a limiting form
which appears to be specific of the Bernal spiral type of cluster.
At low T, and in particular belowT ) 0.1, all distributions peak
close to the characteristic values of the Bernal spiral. The local
orientation order parameters have been evaluated in the confocal
experimental work of ref 7, and they are represented in Figure
19 as filled symbols. There, it was shown that the experimental
data are consistent with the Bernal geometry. In the analysis of
the experimental data, the position of the particles in the perfect
spiral geometry was subjected to some random displacements,
to account for thermal fluctuations, possible intrinsic errors in
the localization of the particles, and polydispersity in size (and/
or charge) in the samples. After this procedure, the sharp peaks
displayed in Figures 19 and 20 disappear, and smooth distribu-
tions are obtained, which compare well with the experimental
data.

Figure 20 shows that, at lowT, the distributions appear to be
insensitive toφc, in agreement with observations in ref 7 and

Figure 17. Average number of neighbors〈n〉 as a function ofT for
different φc values. Note that, for allφc, all curves approach the
〈n〉 ) 6 value characteristic of the geometry of the Bernal spiral.

Figure 18. Distribution of the number of neighborsP(n) for several
T at φc ) 0.125 (for theT-route case).

qjlm(i) ≡ 1

Nbi

∑
j)1

Nbi

Ylm(r̂ ij) (8)

ql(i) ≡ [ 4π

2l + 1
∑

m)-l

l |qjlm(i)|2]1/2

(9)

ŵl(i) ≡ wl(i)/[ ∑
m)-l

l

|qjlm(i)|2]3/2 (10)

wl(i) ≡ ∑
m1,m2,m3

m1+m2+m3 ) 0

(l l l
m1 m2 m3

)qjlm1
(i)qjlm2

(i)qjlm3
(i)

(11)

Figure 19. Temperature dependence of the rotational invariant
distributionsP(qi) (top) andP(ŵi) (bottom) forl ) 4 andl ) 6 atφ )
0.125. Arrows indicate the ideal Bernal spiral values. In the ideal spiral,
the local surrounding of all particles is identical and hence the rotational
invariant distributions areδ functions. Filled circles are experimental
data from ref 7.
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supporting once more that the local structure around the majority
of the particles is similar to the ground-state structure provided
by the Bernal spiral.

V. Dynamics and Gel Formation

In this section, we present results for the particle dynamics
as a function ofφc and T (in the T-route), orφp (in the φp-
route). As for the equilibrium data shown in the previous section,
dynamical quantities are evaluated from trajectories generated
according to Brownian dynamics. The mean-square displace-
ment, 〈r2(t)〉, averaged over all particles and several starting
times is shown in Figure 21 for one specificφc value both for
the T and theφp routes.

Beyond the ballistic region (which extends up to
〈r2(t)〉 j 10-3σ2), particles enter into a diffusive regime,
composed of two different processes. A short transient where
the bare self-diffusion coefficientDo, set by the Brownian
algorithm, dominates and a long-time region when particles feel
the interparticle bonding. At highT, in the latter regime, particles
diffuse almost freely, with a diffusion coefficient not very
different from the bare self-diffusionDo value. Upon cooling,
〈r2(t)〉 progressively develops a plateau, more evident forT j
0.1, which reaches the value≈4 × 10-2. If we look at theφp-
data, we observe a very similar behavior, with a very similar

plateau which develops forφp J 0.9. These results signal that
particles become tightly caged, with a localization length not
very different from the one observed in the case of dynamic
arrest in glass-forming systems, although in the present case
caging is much less resolved. Increasing the attraction strength,
the long time limit of〈r2(t)〉 remains proportional tot, but with
a smaller and smaller coefficient.

A global view of theT dependence of the slow dynamics is
shown in Figure 22, where the long time limit of〈r2(t)〉/6t, i.e.,
the self-diffusion coefficientD, is reported. While at highT
the diffusion coefficient approaches the bare self-diffusion
coefficient, on cooling, in the sameT interval in which a
substantial bonding takes place,D drops several order of
magnitudes, signaling a significant slowing down of the
dynamics and the approach to a dynamically arrested state. The
same behavior is observed for theφp route, whereD approaches
a very small value forφp g 1.1.

It is interesting to note that, forφc ) 0.125 andφc ) 0.16,
the T dependence ofD is compatible with a power law, with
exponentγD ≈ 2.2, not very different from the typical values
of γD predicted by mode coupling theory (MCT) for simple
liquids. The case ofφc ) 0.16 is particularly interesting, since
at all T, the instantaneous configuration of the system is
percolating, providing a clear example of the difference between
percolation and dynamic arrest. Vanishing ofD is observed only
at very low T, well below percolation. It is tempting to state
that, when the cluster-cluster interaction is weak as in the
present case, dynamic arrest always requires the establishment
of a percolating network of attractive bonds, though this is not
a sufficient condition since the bond lifetime should be
significantly long. When repulsive cluster-cluster interactions
are not negligible, arrest at lowφc can be generated in the
absence of percolation16 via a Yukawa glass mechanism.

Another important quantity to characterize dynamic arrest
(particularly relevant for attraction-driven slowing down45), is
the bond correlation functionφB(t), defined as

Herenij(t) is 1 if two particles are bonded and 0 otherwise, while
NB(0) ≡ 〈∑i<j nij(0)〉 is the number of bonds att ) 0. The
average is taken over several different starting times.φB counts
which fraction of bonds found at timet ) 0 is still present after
time t, independent of any breaking-re-forming intermediate
process.

Figure 20. Packing fraction dependence of the rotational invariant
distributionsP(qi) and P(wi) for l ) 4 and l ) 6 at T ) 0.07. Note
that, at this lowT, no φc dependence is present.

Figure 21. Averaged mean-square displacement〈r2〉 for the T-route
(top) and theφp-route (bottom)in log-log scale. In the top panel,φc )
0.16, while in the bottom one,φc ) 0.15.

Figure 22. Temperature dependence of the normalized diffusion
coefficient D/Do, for different φc values. The short and long dashed
lines represent power law fits with exponentγD ) 2.15 andγD ) 2.37
and dynamic critical temperaturesTd ) 0.084 andTd ) 0.091
respectively forφc ) 0.125 andφc ) 0.16.

φB(t) ) 〈∑
i<j

nij(t)nij(0)〉/[NB(0)] (12)
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Figure 23 shows the evolution ofφB(t) with T andφp. When
dynamics slows down, the shape ofφB(t) is preserved at allT
or φp. The shape can be modeled with high accuracy with a
stretched exponential functionA exp(-(t/τ)â), with stretching
exponentâ ≈ 0.73.

An estimate of the average bond lifetimeτB can be defined
asτB ) τ/âΓ(1/â), whereτ andâ are calculated via stretched
exponential fits andΓ is the EulerΓ function.

Figure 24 showsτB vs T. Analogous considerations to those
reported above in discussing theT dependence ofD apply.
Indeed,τB(T) is consistent with a power law with exponentγτ
varying between 3.5 and 4.0, larger than the one found forD(T),
but with consistent predictions for the divergingT.

We notice that, atT ) 0.07, dynamics is extremely slow and
bonds are almost unbroken in the time window explored in the
simulation. It would be interesting to find out if theT
dependence ofτB crosses to a different functional form at low
T when all bonds are formed and if such crossover bears some
analogies to the crossover from power-law to super Arrhenius
observed in glass forming molecular systems. Unfortunately,
as in the molecular glass cases, the time scale today available
to simulation studies does not allow us to resolve this issue.

To further compare the arrest observed in the present system
and the slowing down of the dynamics observed in other systems

close to dynamic arrest, we calculate the collective intermediate
scattering functionF(q,t), defined as

where the average is calculated over different starting initial
times. Figure 25 shows theq dependence of theF(q,t) at three
differentT values. The decay of the correlation functions does
not show any appreciable intermediate plateau for anyq. The
functional form of the decay is strongly dependent onq, crossing
from an almost log(t) decay at smallq to a less stretched decay
at largeq values. At the lowestT (T ) 0.07),F(q,t) does not
decay to zero any longer, confirming that a nonergodic state
has been reached. The nonergodic behavior manifests for very
small values ofqσ, in the range of the lowq peak inS(q), while
ergodicity is restored at nearest neighbor length.46 Figure 26
contrasts, at fixedq value, theT dependence of the dynamics.
The shape ofF(q,t) is sufficiently different to conclude that
time-temperature superposition does not hold for this observ-
able. We also note that at very lowφc (φc ) 0.04 or 0.08) all
density correlation functions decay to zero, within the explored
time window, suggesting that cluster diffusion allows for the
decay of density fluctuation, even in the presence of a
nonergodic bond restructuring process. This suggests that, at
low φc, in the absence of percolation, density fluctuations are
ergodic.

Figure 23. Bond correlation functionφB(t) for φc ) 0.16 (T-route,
top) and forφc ) 0.15 (φp-route, bottom). TheφB(t) shape can be well
fitted by a stretched exponential function with stretching exponentâ
) 0.73 (dashed line superimposed to theT ) 0.12 curve).

Figure 24. Temperature dependence of the bond lifetimeτB at all
studied densities. The short and long dashed lines represent power law
fits with exponentγτ = 3.5 and γτ = 4.0 and dynamic critical
temperaturesTd ) 0.084 andTd ) 0.085, respectively, forφc ) 0.125
andφc ) 0.16. TheT ) 0.07 point, not included in the fits, is shown
here only as an indication, since equilibrium is not properly reached at
this T.

Figure 25. Wavevectorq dependence of the intermediate scattering
function F(q,t) at T ) 0.07, 0.10, 0.12 (from top to bottom) forφc )
0.16. The reportedqσ values are, respectively, 0.33, 0.78, 1.56, 2.34,
3.12, and 4.68.

Figure 26. Temperature dependence of the intermediate scattering
function F(q,t) at φc ) 0.16 andqσ ) 0.78. The reportedT are 0.07,
0.1, 0.12, 0.15, 0.2, 0.25, 0.3, and 0.4.

F(qb,t) ) 〈1

N
∑
i,j

e-iqb( rbi(t)- rbj(0))〉 (13)
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VI. Conclusions

In this work we have presented a detailed analysis of the
structural and dynamic properties of a colloidal dispersion in
which the short-range attraction is complemented by a screened
electrostatic repulsion. We have studied one specific choice of
the parameters controlling the repulsive potential. In particular,
we have chosen a screening length comparable to the radius of
the colloidal particles. For this screening length, a study20 of
the ground-state structure of isolated clusters showed that the
preferential local structure is composed by a one-dimensional
sequence of face-shared tetrahedra, generating a local six-
coordinated structure and a Bernal spiral shape.

The collective behavior of the system is very much influenced
by the competition between attraction and repulsion, which in
the present model sets in whenT becomes smaller than 0.2 (in
units of the depth of the attractive part). The relative location
of the particles, which forT J 0.2 is mostly controlled by
translational entropy, forT j 0.2 depends more and more on
energetic factors. BetweenT ) 0.2 andT ) 0.1, the number of
bonded pairs increases significantly, and the local structure
evolves progressively toward the six-coordinated one charac-
teristic of the Bernal spiral. At the lowest studiedT, T ) 0.07,
the cluster shape becomes independent ofφc and the ground-
state local configuration becomes dominant. The cluster size
distributions at lowT show a very clear suppression of clusters
of sizej10, the size requested for the establishment of a bulk
component in the spiral configuration.

Although the majority of particles tends to preferentially sit
in the 6-coordinated configuration, some particles are located
in defective regions of the spiral, which act as branching points
and favor the formation of large ramified fractal clusters, whose
elementary units are spirals of finite size. It is interesting to
investigate if the small energetic cost of branching allows us to
model the spiral segments as renormalized monomers. In support
of this possibility, we have detected a progressive increase of
the cluster fractal dimension for cluster of sizes J 100. We
have also shown that, consistent with the ground-state calcula-
tions, clusters of sizesj 10 are almost spherical, while clusters
of size 10j s j 100 are characterized bydf ≈ 1.25.

The one-dimensional growth followed by a dynamic arrest
phenomenon, observed in this work is reminiscent of the
aggregation process in several protein solution systems.47-50 In
this class of protein solutions, a variation in the external control
parameters (temperature, ionic strength, pH) often trigger an
aggregation process of proteins into cylindric clusters which,
by branching mechanisms, forms a macroscopic gel, similar to
what takes place in the system here investigated. Results
reported in this work confirm that, as speculated in ref 20, there
is a range of small but finite temperatures in which branching
of the one-dimensional structure is preferred to cluster breaking
and that such branching does indeed help establishing a
connected three-dimensional network.

It is important to stress that the dynamic arrest mechanism
observed in this work is very different from the one observed
numerically for the case ofê ≈ 1.2σ.16 In that case, clusters
grow mostly spherical and do not present branching points. The
slowing down of the dynamics in theê ≈ 1.2σ case arises from
the residual repulsive cluster cluster interaction, resulting in the
formation of a cluster phase or a repulsive cluster glass,
analogous to the mechanisms suggested for Wigner glass
systems. Indeed, in the arrested state, no percolation was
detected. The arrested state generated via a Wigner glass
transition discussed in ref 16 and the one generated via
branching of one-dimensional clusters discussed in this work,

although differing only by modest changes in the experimental
conditions, are probably characterized by significantly different
viscoelastic properties. Indeed we expect that the Wigner glass
will be much weaker than the stiff percolating structure
generated by a continuous sequence of particles tightly bounded
to six neighbors.

The system studied in this work is a good candidate for a
thorough comparison with the slowing down characteristic of
glass forming materials. The numeric “exact” equilibrium
particle structure factor could be used as input in the mode
coupling theory, along the lines theoretically suggested in ref
14 to provide a full comparison of the theoretical predictions
for the arrest line as well as for the shape of the correlation
functions. It would be interesting to quantify the role of the
cluster pre-peak in the structure factor in the predicted slowing
down of the dynamics.

Results presented in this work also provide further example
of the existence of equilibrium cluster phases, a phenomenon
which is recently receiving a considerable interest. Cluster
phases have recently been investigated in systems as different
as protein solutions,4,5,12colloidal dispersions,1,4,7,10Laponite,51

liposomic solutions,11,52-56 star-polymers,8 aqueous solutions of
silver iodide,3 and metal oxides6 and in recent numerical
studies.16-18,21 In all cases, the combination of the repulsive
interactions with the short-range attraction appears to be crucial
in stabilizing the cluster phase. The high sensitivity of the cluster
shape and the final topology of the arrested state on the detailed
balance between range and amplitude of the attractive and
repulsive part of the potential brought forward by this and
previous studies add new challenges to the modern research in
soft condensed matter and to the possible technological exploi-
tations of these new materials.

A final remark concerns the use of an effective potential, with
state-independent parameters for the description of systems in
which the screening length can be a function of the colloid
packing fraction and in which the significant changes in structure
with T (or concentration of depletant) may lead to relevant
changes in the cluster surface potential or in the spatial
distribution of ions. The similarity between the numerical data
reported in this manuscript and the closely related experimental
results suggest that, despite the approximation adopted in the
numerical work, the essence of the arrest phenomenon is
captured by the present models.
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