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Abstract
We report a numerical study of the shear viscosity and the frequency dependent
elastic moduli close to dynamical arrest for a model of short range attractive
colloids, both for the repulsive and the attractive glass transition. Calculating the
stress autocorrelation functions,we find that density fluctuations of wavevectors
close to the first peak in the structure factor control the viscosity rise on
approaching the repulsive glass,while fluctuations of larger wavevectors control
the viscosity close to the attractive glass. On approaching the glass transition,
the viscosity diverges with a power law with the same exponent as the density
autocorrelation time.

(Some figures in this article are in colour only in the electronic version)

Colloidal dispersions, in addition to their technological relevance, play an important role in the
development of basic physical sciences, in particular in the fascinating field of formation of
disordered arrested states, glasses and gels. The possibility of tailoring shape,size and structure
of the colloidal particles makes it possible to design specific interparticle interaction potentials.
Recently, the application of experimental [1–3] and theoretical tools [4–6] to the analysis of the
glass transition in short-ranged attractive colloids has shown an extremely rich scenario, with
no analogue in atomic systems [7]. The standard packing-driven hard-sphere glass transition
transforms—discontinuously in some cases—into a novel type of glass transition driven by
the short-range attractions. The connection between this attractive transition and gelation is
still a matter of debate.

Previous numerical work on short-range attractive colloids has mostly focused on the
behaviour of single-particle diffusion and on the time dependence of the density autocorrelation
function �q(t) close to dynamical arrest. Despite the strong link with experiments and the
relevance to industrial applications, the numerical evaluation of the viscosity η and viscoelastic
properties η̃(ω) has not been performed, since significant computational effort is required for
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accurate calculation of η̃(ω), even more for states close to dynamical arrest. The behaviour
of η close to dynamical arrest in colloidal systems is under theoretical and experimental
investigation [8–11]. Measurements in dense hard sphere colloids show a divergence of
η in the vicinity of the repulsive glass point, its exact location and functional form being
still under debate [10, 12]. For colloidal gels, a power law divergence has been reported at
the gel transition [13]. The mode coupling theory (MCT) for glass transitions [14], which
anticipated the presence of novel dynamic phenomena in short-range attractive colloids [4–6],
predicts asymptotic power law divergence of η with the distance to the transition, with identical
exponents to the divergence of the timescale, and the inverse of the diffusion coefficient.

In this letter we report an extensive numerical study of the viscoelastic behaviour of
a colloidal system, approaching both the repulsive and the attractive glass transition. We
concentrate on the effects arising from direct interactions among colloids, and neglect the
contributions from the solvent (both solvent viscosity and hydrodynamic interactions), which
are not expected to present divergences close to the transition points. We calculate the stress
autocorrelation function, as well as the viscosity and the elastic moduli. Close to both
transitions, η diverges with a power law, with the same exponent as the density relaxation
time, but different from that of the diffusion coefficient. Moreover, we provide evidence that
the rise of η is controlled by density fluctuations of wavevectors around the first peak in the
structure factor close to the repulsive glass, and larger wavevectors for the attractive glass.

Our system is polydisperse, composed of 1000 particles interacting via a steep repulsive
(r−36) potential complemented by the Asakura–Oosawa (AO) short-range attractive potential3.
The attraction strength is measured in units of the polymer volume fraction, φp, and density is
reported as colloid volume fraction, φc ≡ 4/3πa[a2 + δ2]ρ, with ρ the number density, a the
mean radius and δ the width of the size distribution, δ = 0.1a, and the range of the interaction
is ξ = 0.1a. A long-range repulsive barrier is added to inhibit liquid–gas separation at high
attraction strength. The specific shape of the potential can be found in [16]. Lengths have
been measured in units of a, the particle mass is set to m = 1, and kBT = 4/3.

Dynamics in this model has been studied previously [16, 17]. In the absence of polymers
(φp = 0) and with no repulsive barrier, on increasing the particle packing fraction a repulsive
glass transition is observed at φG

c � 0.594. At fixed φc = 0.40, on increasing φp, an attractive
glass transition is observed at φG

p � 0.4265. Both values were obtained from the MCT analysis
for �q(t) and D0 (power-law fittings) [16, 17].

The shear viscosity η is given by the Green–Kubo relation

η ≡
∫ ∞

0
dt Cσσ (t) = 1

3V kBT

∫ ∞

0
dt

∑
α<β

〈σαβ(t)σ αβ(0)〉, (1)

which expresses η as the integral of the correlation function of the non-diagonal terms of the
microscopic stress tensor, σαβ = ∑N

i=1 mviαviβ − ∑N
i< j

ri jαri jβ

ri j
V ′(ri j ), where V is the volume

of the simulation box, viα is the αth component of the velocity of particle i , and V ′ is the
derivative of the total potential.

We have performed Newtonian dynamics (ND) and Brownian dynamics (BD) simulations,
to test the independency of the long time dynamics on the short time model4. Although the
latter is more appropriate for colloidal systems, its short timescale is much smaller, implying
larger computational effort. The inset in figure 1 shows Cσσ (t) for two states with φc = 0.40,
both for ND and BD. In the case of ND, clear oscillations in Cσσ (t) at small time (t < 0.5)
are observed, caused by motion in the attractive well. These oscillations are completely

3 The AO potential is an effective attractive interaction between colloids, induced by small polymers in the mixture;
see e.g. [15].
4 A high friction coefficient (γ = 50) is needed to decouple momentum relaxation from the effect of the attractions.
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Figure 1. Stress correlation functions for ND (grey (green) lines) and BD (black lines), time
rescaled, for different states. In all cases, CBD

σσ (t) has been time-rescaled onto CND
σσ (t) by a

factor 6.25. Inset: full scale stress correlation functions for ND and BD (without time rescaling);
φp = 0.30 and 0.41.

damped in the BD case, confirming that this part of the decay of the correlation function has a
microscopic (dynamic-dependent)origin and that short time oscillations are not to be expected
in real colloidal systems. When φp is increased, an additional slow relaxation process is present.
Interestingly, the BD Cσσ (t) can be time-rescaled to collapse on ND data (main figure) at long
times by a constant factor for all states, confirming that the long time dynamics of the system
does not depend on the microscopic dynamics, in agreement with previous studies in glass
forming atomic systems [18]. Therefore, we use the more efficient ND hereafter to analyse
the long time decay of Cσσ (t) and the viscosity close to both transitions.

Figure 2 shows the stress correlation function, Cσσ (t), for different φc or φp values
on approaching the repulsive (upper panel) and attractive (lower panel) glass transitions.
Correlation functions have been superimposed by a suitable scaling of time. On approaching
the transition, Cσσ (t) slows down by several orders of magnitude—with no appreciable change
in its shape at long time—causing the rise of η. A stretched exponential can be fitted to the
decay with an exponent β = 0.48 and 0.25 for the repulsive and attractive glasses, respectively.

The scaling property of Cσσ (t) at long times is reminiscent of the scaling of �q(t). Indeed,
within MCT, Cσσ (t) can be related to �q(t), by means of [19, 20]:

Cσσ (t) = kBT

60π2

∫ ∞

0
dq q4

[
d ln Sq

dq
�q(t)

]2

(2)

where Sq is the static structure factor. Accordingly, the timescales from Cσσ (t) and �q(t)
should be equivalent. The two insets of figure 2 show a plot of τσ versus τq , parametric in
φc or φp; here τσ is defined as Cσσ (τσ ) = 1 for the repulsive glass and Cσσ (τσ ) = 5 for the
attractive one, and �q(τq) = fq/e with fq the non-ergodicity parameter gives τq . In both
transitions, τq and τσ are proportional to each other (continuous lines), showing that they are
indeed equivalent.

The dominant contribution to the q-integral in equation (2), for times in the α-decay of
�q(t), can be revealed studying the function q4[d ln Sq/dq fq ]2. This function oscillates with
q (from d ln Sq/dq), but its envelope shows a maximum. For the repulsive glass transition, this
maximum is close to the nearest neighbour peak of Sq (qa ≈ 3.75), and it is located at higher
q for the attractive one. (For the AO potential, using Percus–Yevick closure, the dominant
wavevector is qa ≈ 13, although the distribution is very wide.)
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Figure 2. Stress correlation functions for different states approaching the glass transitions. Upper
panel: repulsive glass transition. From right to left: φc = 0.55, 0.57, 0.58. Lower panel: attractive
glass transition. From right to left: φp = 0.405, 0.41, 0.415, 0.42 and φc = 0.40. The dashed
lines are �q(t)2 for qa = 4 at φc = 0.58 (repulsive glass) and qa = 11 at φp = 0.415 (attractive
glass). Insets: timescale from the stress correlator τσ versus timescale from the density correlator
τq at the wavevectors given above.

To test this, we have compared Cσσ(t) with �2
q (evaluated from the simulations) at different

wavevectors, allowing for a scaling factor only in the amplitude. Good agreement is obtained
for qa = 4 in the repulsive glass transition and qa = 11 in the attractive one (dashed lines in
figure 2). This comparison shows that, indeed, the long time decay of the stress correlation
function, within the accuracy of our numerical results, is adequately described by the dominant
wavevector in equation (2).5 Interestingly, the wavevectors driving the repulsive and the
attractive ideal glass transitions, as observed from �q(t), are also the dominant ones in the
calculation of Cσσ (t), respectively.

We now turn to the study of η, which is more efficiently calculated numerically using the
Einstein relation [21]:

η = 1

6V kBT
lim

t→∞
1

t
〈�A(t)2〉, (3)

where �A(t) is the integral from zero to t of the three off-diagonal terms of the stress tensor.
Figure 3 shows the behaviour of η approaching the repulsive and the attractive glass transitions,

5 The identification of the decay of Cσσ with a single �q is of course an approximation. Indeed, different q are
characterized by stretched exponential decay with different values of τq and βq . Slow decaying contributions (q
around the nearest neighbour peak of S(q)) will always control the decay of Cσσ at very long times for both glass
transitions. In the present simulations, however, such an effect is not observed within the accuracy of our data.
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Figure 3. Viscosity, η, timescale at q = 3.5, τq , and diffusion coefficient (D0 × 103) and Cσσ (0)

for the repulsive glass transition (upper panel) and the attractive one (lower panel), as labelled.
Note that ηD0 diverges in the transition point. The lines are the power law fittings to η, τq and D0
(see table 1).

Table 1. Exponents obtained in fitting η, τ and 1/D0 to (φG
c − φc)

−γ , for the repulsive glass and
(φG

p − φp)
−γ for the attractive one.

γη γτ γD0 γMCT

Repulsive glass 2.72 2.74 2.02 2.58 [23]
Attractive glass 3.14a 3.23 1.33 2.95b

a The last point, φp = 0.42, is not considered in the fitting, due to the large numerical error in
determining η.
b This value was calculated for a square well with a width of 0.03 diameters.

as a function of the distance to the transition points, φG
c and φG

p [16, 17]. For both the repulsive
and attractive glass transitions, η is well described by a power law, diverging at the same
points as τq . In the attractive case, η shows a minimum for intermediate φp, arising from the
competition of the two arrest mechanisms [1, 22].

Figure 3 also shows τq for qa = 3.5 (the nearest neighbour peak in Sq ), the long time
self-diffusion coefficient, D0, Cσσ (0) and ηD0. For both transitions, both τq and D0 are linear
in the log–log plot and hence can also be well described by power laws. While η ∼ τq ,
as confirmed by the constant ratio η/τq (not shown), the product ηD0 shows a clear trend,
indicating that the power-law exponents are very similar for η and τq but different for D0. The
best-fit exponents are reported in table 1 for both transitions, together with the MCT predictions
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Figure 4. Elastic (upper panel) and viscous (lower panel) modulus for different states approaching
the attractive glass transition at φc = 0.40: from right to left φp = 0.30, 0.35, 0.375, 0.39, 0.40,
0.405, 0.41, 0.415, 0.42.

for the HS case and for a short-ranged square well potential (with attractive width 3% the value
of the total interaction range). From a MCT point of view, short-range attractive potentials
are characterized by γ exponents larger than the HS case, whose actual value depends on the
details of the potential. Data in table 1 confirm that for the attractive glass, the exponents are
larger than the HS case, while for the repulsive glass, the exponents agree with the HS MCT
predictions.

The difference between the exponents γη and γD0 indicates that the Stokes–Einstein
relationship breaks down not only in the form D0τ , as already shown in many different systems,
but also in the form D0η. This breakdown, much more evident in the attractive glass case,
is not consistent with MCT, although the theory correctly predicts the similarity between
the exponents of τq and η. The power-law divergence of η at the attractive glass transition
agrees with recent experimental observations in colloidal gels [13]. It is also consistent with
recent interpretation of data for the repulsive glass transition [12], although this analysis is not
conclusive, since an exponential divergence around φm = 0.64 has also been proposed [10].
The constant Cσσ (0) is the elastic modulus at infinite frequency G ′∞. As both transitions are
approached, it tends to a finite value without showing any divergence, also in agreement with
MCT.

To make direct contact with experiments,we calculate G̃(ω) ≡ iωη̃(ω) = G ′(ω)+iG ′′(ω),
where η̃(ω) is the Fourier transform of Cσσ (t). To minimize numeric noise, we fit Cσσ (t)
using functional forms that capture the fast short time behaviour and a long time stretched
exponential decay6. Figure 4 shows the resulting G̃(ω) for the attractive glass transition
case. Similar qualitative features are observed for the repulsive case. An incipient plateau

6 Short time behaviour: G∞/(1+ At2) for the repulsive glass and G∞ exp{−At2} for the attractive one. The observed
long time scaling property (figure 2) imposes equal values of the stretching exponent for all φp.
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at low frequencies in G ′(ω) and a secondary maximum in G ′′(ω) appear on approaching
φG

p , leaving a minimum at intermediate frequencies. Both features are consistent with MCT
predictions [24, 25] and observed in experiments of hard sphere colloids [26] and attractive
systems [11, 13]. The short time behaviour of Cσσ (t) causes the sharp increase in G ′(ω) at
ω ∼ 101 for φp = 0.30, which thus should not be expected in colloidal systems.

To conclude, we have shown that the viscosity diverges as the repulsive or the attractive
glass transitions are approached, following a power law with the same exponent as the timescale
from the density autocorrelation function. It should be acknowledged, however, that this
behaviour is found ‘far from the transitions’, and we expect corrections entering closer to the
transition, as observed for other correlation functions in many different glass forming systems.
This letter, thus, provides further evidence of the applicability of MCT to slow dynamics in
colloidal systems in this regime, in agreement with some experiments.
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