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We compare theoretical and simulation results for static and dynamic properties for a model of particles
interacting via a spherically symmetric repulsive ramp potential. The model displays anomalies similar to those
found in liquid water, namely, expansion upon cooling and an increase of diffusivity upon compression. In
particular, we calculate the state points P�� ,T� from the simulation and successfully compare it with the state
points P�� ,T� obtained using the Rogers-Young �RY� closure for the Ornstein-Zernike �OZ� equation. Both the
theoretical and the numerical calculations confirm the presence of a line of isobaric density maxima, and lines
of compressibility minima and maxima. Indirect evidence of a liquid-liquid critical point is found. Dynamic
properties also show anomalies. Along constant temperature paths, as the density increases, the dynamics
alternate between slowing down and speeding up, and we associate this behavior with the progressive struc-
turing and destructuring of the liquid. Finally we confirm that mode coupling theory successfully predicts the
nonmonotonic behavior of dynamics and the presence of multiple glass phases, providing strong evidence that
structure �the only input of mode coupling theory� controls dynamics.
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I. INTRODUCTION

Water and some other liquids exhibit anomalous behavior
close to their freezing lines �1,2�. Their phase diagrams have
regions characterized by a negative thermal expansion coef-
ficient, i.e., these liquids expand upon cooling at certain tem-
peratures and pressures. Besides the density anomaly, such
liquids also have other peculiar thermodynamic and dynamic
behaviors �3�. For example, the isothermal compressibility
increases upon cooling and the diffusivity increases upon
pressurizing. Usually, the region of the diffusion anomaly is
wider than the region of the density anomaly, so that the
latter is completely contained in the former �4�. The anoma-
lous behavior of the thermodynamic properties of water has
been connected to the existence of a hypothetical liquid-
liquid critical point in deeply supercooled states �5–8�. In the
case of water, this critical point is located in an experimen-
tally unaccessible region. Recently, using the potential en-
ergy landscape formalism, it has been argued �8� that under
certain assumptions on the statistical properties of the poten-
tial energy landscape, the existence of a density anomaly
must lead to the existence of a liquid-liquid critical point.

In the case of water, anomalies are thought to be related to
the tetrahedrality of the interparticle potential. On average,
each water molecule has four nearest neighbors connected by
hydrogen bonds. However, tetrahedrality is not a necessary
condition for anomalous behavior and several spherically
symmetric potentials that are able to generate density and/or
diffusion anomalies have been proposed �9–16�. Interest-
ingly, such potentials may be purely repulsive, providing evi-
dence that different microscopic mechanisms can generate
density anomalies. These potentials can be regarded as the
simplest models which yield water-type thermodynamic and
dynamic anomalies and it is important to fully characterize
their thermodynamic and dynamic behavior. An additional

advantage in studying spherical potentials is that their behav-
ior can also be studied within a theoretical framework, for
their thermodynamic properties can be calculated using ac-
curate integral equation closures.

Here we study, using extensive molecular dynamics �MD�
simulations, a specific, spherically symmetric repulsive po-
tential introduced by Jagla �11–15,17� with the aim of fully
characterizing both static and dynamic extreme loci in the
temperature-density plane. We complement the MD study
with integral theory calculations based on the �thermody-
namically consistent� Rogers-Young �RY� closure, which is
known to give accurate results for other repulsive potentials,
such as the square shoulder potential �18� and the star poly-
mer potential �19–21�. We also compare numerical results in
the low T region with predictions based on the ideal mode-
coupling theory �MCT� �22,23�, which we solve using the
RY static structure factors as input. We find that MCT is able
to predict the nonmonotonic behavior of dynamics and the
presence of multiple glass phases, providing further evidence
that structure �the only input of MCT� controls dynamics in
this system.

II. METHODS

A. Discrete molecular dynamics simulations

We study the linear ramp potential introduced by Jagla
�11–15� �see Fig. 1�

U�r� = �� , r � �0,

U0��1 − r�/��1 − �0� , �0 � r � �1,

0, r � �1
� �1�

focusing on the specific choice of ���1 /�0=1.76, which
has been studied previously by Jagla �11�. Using Monte
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Carlo simulations, Jagla showed that a density maximum is
found in the liquid phase. For this choice of �, the potential
in Eq. �1� is a good candidate for studying the connection
between thermodynamic and dynamic quantities. In order to
study the dynamic properties, we apply the discrete MD
method, approximating the continuous potential by a se-
quence of step functions with n small vertical steps,

Un�r� = �
� , r � �0,

k�U , �1 − �k + 1
2��r � r � �1 − �k − 1

2��r ,

0, r � �1 −
�r

2
, �

�2�

where �r���1−�0� / �n+1/2� ,�U�U0 / �n+1/2�, and k
=1,2 ,3 ,… ,n. The unit of length is �0, while U0 is the unit
of energy. Temperature is measured in units of energy, i.e.,
kB=1. Simulation time is measured in units of �0

�m /U0,
with m as the particle mass, and pressure in units of U0 /�0

3.
The number density is defined as ��N /L3, where L is the
size of the simulation box and N is the number of particles.

Standard discrete molecular dynamics �DMD� algorithm
has been implemented for particles interacting with step po-
tentials �24–26�. Between collisions, particles move along
straight lines with constant velocities. When the distance be-
tween the particles becomes equal to the distance for which
U�r� has a discontinuity, the velocities of the interacting par-
ticles instantaneously change �see Fig. 1.� The algorithm cal-
culates the shortest collision time in the system and propa-
gates the trajectories of particles from one collision to the
next. Calculations of the next collision time are optimized by
dividing the system into small subsystems, so that collision
times are computed only between particles in neighboring
subsystems. Since the total energy E is rigorously conserved,
it is best to study the NVE ensemble in the cubic box of a
fixed volume V=L3 with periodic boundary conditions. This
method is more efficient at low densities compared to the
regular molecular dynamics simulation since the velocities
and positions of the atoms are updated only when they go
through a collision. Another reason for choosing DMD is
that it is difficult to implement continuous molecular dynam-
ics for a hardcore potential.

We consider N=1728 particles in our simulation. For con-
stant temperature simulations, the Berendsen thermostat is
used. Berendsen thermostat with T0=0.01 and a small heat
exchange coefficient less than 10−4 can also be used for
slowly cooling the system. During this process, the tempera-
ture of the system gradually decreases from T=0.2 to T
=0.01. The average pressure in any interval of time approxi-
mates the equilibrium pressure for the corresponding average
temperature. These cooling simulations allow us to quickly
obtain the entire isochore in a single run. We compared few
state points obtained using standard NVE ensemble with the
state points obtained using cooling and we do not find any
difference between them. Analogously we can simulate the
process of slow heating, which we use to estimate an upper
limit of melting line.

Configurations in the NVE ensemble are saved for further
processing namely at times tjk��jsm+sk��t, where k
=0,1 ,… ,m and j=0,1 ,… , jmax. For the majority of our
state points we use �t=0.0308,m=14, jmax=100, and s=2.

For each run we discard an initial equilibration period for
a time larger than the correlation time at a particular state
point.

The diffusion coefficient D, measured in units of
�0

�U0 /m, is calculated as

D = lim
t→�

	�r�t� + t� − r�t���2
t�

6t
, �3�

where 	¯
t� denotes an average over all particles and over
all t�. The dynamic structure factor for a given vector q is
defined as

S�q,t� � � 1

N
�
i,j

N

expiq · �ri�t� + t� − r j�t�����
t�

, �4�

where 	¯
t� denotes the average over all t� and S�q�
�S�q ,0� is the static structure factor. The normalized struc-
ture factor

��q,t� �
S�q,t�
S�q,0�

�5�

is called the density correlator. The isotropy of the liquid
allows us to average S�q , t� over different q with the same
modulus. In the following, we bin together all q within a
mesh �q=	 /L.

B. Rogers-Young closure

Integral equation theories are powerful tools for studying
the structure and thermodynamic properties of liquids
�27,28�. One assumes a two-body interaction potential for
the particles and introduces the total pair correlation function
h�r�, related to the pair distribution function g�r��h�r�+1,
and the direct correlation function c�r�. The goal is to solve
the Ornstein-Zernike equation using a thermodynamically
consistent closure,

FIG. 1. Schematic representation of the repulsive ramp potential
�1� and its discontinuous version �2�.
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h�r� = c�r� + �� dr�c��r − r���h�r�� , �6�

where both c�r� and h�r�–or, equivalently, g�r�—are un-
known. Equation �6� in Fourier space takes the form

h̃�q� = c̃�q� + �c̃�q�h̃�q� , �7�

where c�q� is related to S�q� as c̃�q�= �1−1/S�q�� /�.
According to the particular form of the interaction poten-

tial U�r�, one can choose a certain ansatz for c�r�, which
relates it to the interaction potential and to h�r� and allows
one to solve Eq. �6� analytically in some cases �28� and
numerically otherwise. The two frequently employed clo-
sures, Percus-Yevick �PY� or the hypernetted chain �HNC�
�27�, suffer from being thermodynamically inconsistent �28�.
This means that although they can provide good estimates of
the static structure factor, they cannot be reliably used for
determining the state points P�� ,T� of the system. More so-
phisticated closures have thus been developed in recent
years, which have a built-in thermodynamic consistency.
This is achieved by introducing an extra parameter in the
ansatz, which can then be determined to fulfill such a condi-
tion.

The RY closure �29� belongs to the thermodynamically
consistent group of closures obtained by appropriately mix-
ing PY and HNC through the parameter 
. The ansatz for
c�r� in terms of h�r� becomes

c�r� = exp�− �U�r���1 +
exp�h�r� − c�r��z�r�� − 1

z�r�
�

− �h�r� − c�r� + 1� , �8�

where z�r� is the mixing function,

z�r� � 1 − exp�− 
r� . �9�

For 
=0, one recovers PY closure, while for 
→� Eq. �8�
reduces to the HNC condition.

The OZ equation can be solved using Eq. �8� for a given
value of 
. The correct solution corresponds to that value of

 for which the compressibilities KT, calculated using the
“virial” and the “fluctuations” routes agree, ensuring thermo-
dynamic consistency. This allows us to reliably use the RY
closure not only to calculate the static structure factor, but
also the state points P�� ,T�, as we will do in the following.
Moreover, RY gives particularly good results for a purely
repulsive potential, such as the studied ramp potential. It has
already been successfully tested against simulations for
square shoulder potentials �18�, and for both experiments and
simulations for the star polymer effective potential
�19–21,30�.

C. Mode coupling theory

The density correlator defined in Eq. �5� is the fundamen-
tal quantity of interest in MCT, a set of generalized coupled
Langevin equations which can be closed within certain ap-
proximations �22,23�. Interesting behavior of these observ-
ables arise when the dynamics of the system becomes

slower, i.e., when the dynamical behavior is of the “super-
cooled” type �31�. A typical two-step relaxation occurs for
the density correlators on approaching dynamical arrest, in-
dicating the emergence of two distinct time scales in the
system’s structural relaxation �23,32�. A first relaxation pro-
cess, the � relaxation, occurs at short times, and is due to
particles exploring the cages formed by their nearest neigh-
bors. A second relaxation, the � relaxation, occurs at longer
time scales, when particles are able to escape the cages.
MCT predicts the existence of a glass transition at a charac-
teristic temperature TMCT, where the time scale of this second
relaxation diverges so that the particles will always remain
trapped in their cages. For T�TMCT the correlators do not
relax any more, reaching a finite plateau value at long t,
defined as the nonergodicity parameter f�q�� limt→� ��q , t�
jumps discontinuously from zero at T�TMCT to a finite
�critical� value fc�q� at T=TMCT, signaling the occurrence of
an ergodic �fluid� to a nonergodic �glass� transition. The tran-
sition is kinetic, i.e., nothing happens to the thermodynamic
properties of the system close to close to TMCT.

MCT predictions are often found to be in agreement with
experimental �33� and simulation results �34�, although in
real systems the �-relaxation time does not diverge, but only
becomes increasingly larger. This is due to the intervention
of other processes, commonly termed “hopping” processes,
which restore ergodicity and are not included in the MCT
treatment of the ideal glass transition described above.

In mathematical terms, the nonergodicity parameters f�q�
are the long time solutions of the MCT equations, i.e.,

f�q�
1 − f�q�

= m�q� , �10�

where the memory kernel m�q� is quadratic in the correlator

m�q� =
1

2
� d3k

�2	�3V�q,k�f�k�f��q − k�� , �11�

where k= �k�. The vertex functions V are the coupling con-
stants of the theory, which are given only in terms of the
static structure factor and number density of the system,

V�q,k� =
�

q4 �q · �q − k�c��q − k�� + q · k c�k��2

 S�q�S�k�S��q − k�� . �12�

Equations �10� and �11� define a system of nonlinear equa-
tions with a trivial solution f�q�=0. However, for certain
values of the vertex functions, the solutions have a bifurca-
tion point, locating the glass transition. At this transition
point a solution f�q��0 emerges. The time evolution of the
density correlators is found by solving the full MCT equa-
tions,

�̈�q,t� + �2�q���q,t� + �
0

t

m�q,t − t���̇�q,t��dt� = 0,

�13�

where �2�q��q2 / ��mS�q�� and m�q , t� is the time-
dependent memory kernel
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m�q,t� �
1

2
� d3k

�2	�3V�q,k���k,t����q − k�,t� . �14�

The two-step relaxation is well described by MCT
through an asymptotic study of the correlators near the ideal
glass solutions. The � relaxation is effectively described by a
stretched exponential,

��q,t� = Aq exp�− �t/�q��q� , �15�

where �q is the q-dependent �-relaxation time �autocorrela-
tion time�. The amplitude Aq determines the plateau value
and �q�1.

MCT predicts a power-law divergence of the �-relaxation
time as well as a power-law decrease of the diffusivity as the
system approaches the ideal glass transition. In this study, we
compare the dynamic behavior evaluated from the MD simu-
lations with corresponding MCT predictions based on the
static structure factor obtained from RY closure.

III. RESULTS

A. Dependence on the number of steps in the ramp

We first study how the results of molecular dynamic simu-
lations for the potential Un�r� in Eq. �2� converge to the
results for the continuous ramp potential U�r� in �1�, as n
→� where n is the number of approximating steps. The
exact state points P�� ,T� for systems described by a pair
potential can be calculated from the partition function, i.e.,
by the integral ��¯�exp�−�i�jU�ri−r j� /kBT��i=1

N dri. Re-
placing the continuous potential U�ri−r j� by a step function
is analogous to replacing an integral by a sum in a rectangu-
lar approximation which is known to converge to the integral
as 1 /n2. Thus we can expect that the pressure Pn obtained in
the discrete molecular dynamics for given n converges to the
value for the continuous potential P� as 1/n2. On the other
hand, the probability for a particle to jump over a step of size
�U is proportional to exp�−�U /kBT�=1−U0 /nkBT
+ �U0 /kBT+ �U0 /kBT�2� /2n2− ¯ · . The diffusion coefficient
must be a differentiable function of this probability. Thus we
can expect that the diffusion constant Dn in discrete MD
approaches its limiting value D� as 1/n+O�1/n2�. Figures
2�a� and 2�b� confirm these predictions. Particularly in Fig.
2�b�, we fit D�n� with polynomials of 1 /n of various degrees
and find that the leading term does not depend on the degree
of the polynomial. In the following, we limit ourselves to the
case n=144 which, as shown in Figs. 2�a� and 2�b�, is suffi-
ciently close to the n→� case.

B. Structure factors and comparison with RY

Figure 3 shows the density dependence of the structure
factor, as calculated from the MD at T=0.063. At this low T
the liquid, even at low densities, is significantly structured,
as shown by the large amplitude of the first peak. On increas-
ing the density, contrary to the normal liquid behavior, the
amplitude of the first peak is reduced. As discussed below,
the destructuring of the liquid is associated with a speed-up
of the particle dynamics. If � is further increased, the second

peak becomes dominant and �as discussed in the following�
its increase correlates with a slowing down of the dynamics.
The first peak is significantly reduced and acts as a prepeak
on the major peak. The crossover of the leading amplitude
from the first to the second peak resembles the behavior pre-
viously discovered in star polymers of large functionality
�35�. In these systems, the star-star interaction can be effec-

FIG. 2. �a� Pressure P as a function of n−2 �where n is defined in
Eq. �2�� for T=0.063 and �=0.260. �b� Diffusion coefficient D as a
function of n−1 for the same state point. The curve is a second
degree polynomial fit to the points.

FIG. 3. Density dependence of the structure factor at T=0.063.
Note the progressive reduction of the amplitude of the first peak and
the progressive increase of the second peak on increasing �. Differ-
ent curves refer to �=0.272, 0.296, 0.322, 0.352, 0.384, 0.421,
0.464, 0.512, 0.567, 0.629, and 0.702.
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tively reduced to an ultrasoft repulsive logarithmic interac-
tion. However, the peak positions of S�q� change positions
with density in this case, as opposed to what is found in the
ramp potential.

Figures 4�a�–4�d� compare the static structure factor cal-
culated using simulation data along with the results of the
RY closure for several densities at T=0.063. A tolerance of
510−5 is used for the thermodynamic consistency. MCT
with the structure factor predicted by RY integral theory pro-
vides a correct description of the � dependence of the dy-
namics. RY correctly predicts the structure factor at high
densities, while for intermediate and low densities RY gives
a fairly good estimate of the structure factor except that the
first peak in the structure factor is lower than the one calcu-
lated from simulation. RY thus tends to underestimate the
structure of the liquid.

C. Phase diagram

Figure 5 shows the state points P�� ,T� of the model ob-
tained by slow cooling as discussed in Sec. II A�thin lines
representing isochores� and by accurate simulations of indi-
vidual state points �circles�. The simulations for each density
and temperature are initialized with random configurations
and are equilibrated to the desired temperature using Ber-
endsen’s thermostat for a sufficient period of time. The
equilibration time was estimated as the time when the den-
sity correlator ��q , t� at the first peak of S�q� decays to zero.
After equilibration, each configuration was left to run at con-
stant energy for a time dependent on the speed of the dynam-
ics, covering at least 10 equilibration times. The temperature
of maximal density �TMD�, shown by a bold line, was ob-
tained by connecting the points on each isochore correspond-

ing to the minimal pressure, since these points correspond to
the points of minimal volume due to the general relation

� �V

�T
�

P

= − � �P

�T
�

V
� �V

�P
�

T

�16�

and ��V /�P�T�0 for a mechanically stable system. Thus,
volume increases upon cooling at constant pressure in the
region to the left of the TMD line.

At low T, the system spontaneously crystallizes during the
time of the simulation in different crystalline forms. We ana-
lyze the crystalline structures for all densities using XBS
software �36�. We compare the symmetries of spontaneously
grown crystalline structures with the ideal crystalline struc-
tures, proposed by Jagla �FCC, HCP, BCC, rombohedral,
simple cubic, and hexagonal� and were able to clearly iden-
tify in the majority of cases the corresponding Bravis type.
Note that in our simulations we have 1728 atoms, thus we
have more than 10 crystalline cells in each dimension even if
the crystal has significant amount of defects. This is suffi-
cient to check all possible symmetries by rotating structures
by the specified angles and comparing projections with those
of the ideal crystals. However this procedure did not allow us
to clearly identify the crystalline structures in the density
range between 0.26 and 0.30. In this density range, the sys-
tem crystallizes with too many defects. These structures are
clearly neither FCC nor rhombohedral. Consistent with Jag-
la’s calculation �11�, we find the following.

�i� At low densities ��0.260, the system crystallizes into
a face centered cubic crystal structure upon slow cooling �as
discussed above�, when the temperature reaches the values
indicated by squares �36�. The crystallization is marked by a
sharp drop in the potential energy, associated with a fast

FIG. 4. Comparison of the
static structure factor, obtained in
simulations and in the RY closure
for �a� low density �=0.260, �b�
and �c� intermediate densities �
=0.340 and �=0.502, and �d� high
density �=0.702.
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release of latent heat. The line connecting these points can be
regarded as a line of homogeneous nucleation. It has a
marked negative slope, corresponding to the smaller density
of the crystalline phase compared to liquid. An approximate
estimation of melting line, which also has negative slope, is
located at much higher temperatures, so that a large portion
of the density anomaly region lies in the supercooled state.
This situation is completely analogous to the situation in
water, in which the region of the density anomaly is located
near the negatively sloped freezing line. In the ramp model,
the anomaly does not exist below �=0.2432, where the line
of the minimal density merges with the line of the maximal
density. Interestingly, the slope of the homogeneous nucle-
ation line becomes positive below this density, as in a normal
liquid where the where the crystal phase has a larger density
than in the liquid phase. This behavior may exist in stretched
water at negative pressures but has never been observed ex-
perimentally or in simulations.

�ii� In the region of intermediate densities 0.317��
�0.352 the liquid does not crystallize and enters the glassy
state below T�0.037. We are not able to equilibrate the
system below this temperature.

�iii� For ��0.352, the system crystallizes into a rhombo-
hedral crystal after being equilibrated for a long time at T
=0.041. Interestingly, the density anomaly vanishes at densi-
ties slightly lower than the density at which this crystal phase
emerges. This crystalline phase is characterized by parallel
columns formed by equidistantly spaced atoms. The spacing
among these atoms is slightly larger than the hard core dis-
tance. Thus in this crystalline phase each atom has two
neighbors in its repulsive ramp. The projection of these col-
umns onto a perpendicular plane forms a triangular lattice
with spacing approximately equal to the diameter of the re-
pulsive ramp. The columns are shifted with respect to each
other by one third of the nearest-neighbor spacing so that the
atoms form three crystalline planes, perpendicular to the col-
umns. In each of these planes atoms form a triangular lattice
with a spacing �3 times larger than the spacing in the trian-
gular lattice formed by the projection of the columns.

�iv� A third distinct �hexagonal� crystalline phase is ob-
served for ��0.7865 �outside the range of densities explored
in Fig. 5�. At this state point the liquid, after some initial
equilibration, crystallizes into a crystalline phase character-
ized by a hexagonal symmetry of one of its crystalline
planes. This crystalline type is also formed by parallel col-
umns consisting of equidistantly spaced atoms. The spacing
among these atoms is slightly larger than the hard core dis-
tance. The projection of these columns onto a perpendicular
plane forms a hexagonal lattice with spacing slightly smaller
than the hard core. This spacing is equal to �3/2 of the
distance between atoms in the columns. The neighboring col-
umns are shifted with respect to each other by one-half of the
atom spacing in the columns, so that the atom and its two
neighbors in the neighboring column form an equilateral tri-
angle. Thus in this crystalline type, each atom has eight near-
est neighbors in its repulsive ramp, two in the same column
and six in the three neighboring columns.

�v� For even larger densities not studied in this work,
hexagonal close packed and finally hard-sphere face cubic
centered crystals are expected �11�.

FIG. 5. �color online� �a� State points P�� ,T� of a system of
particles interacting via the potential defined in Eq. �2� with n
=144. Thin solid lines indicate P�T� for several isochores at the
following values of �, from top to bottom: 0.378, 0.364, 0.352,
0.340, 0.328, 0.317, 0.306, 0.296, 0.287, 0.277, 0.269, 0.260, 0.252,
0.244, 0.242, 0.240, 0.237, 0.229, 0.223 obtained by slow cooling
and small circles indicate state points obtained by long equilibration
runs. At low �, lines terminate when the system crystallizes or does
not equilibrate within the available simulation time. Square, tri-
angle, and diamond symbols correspond to the temperature of spon-
taneous crystallization for FCC, unknown �see text� and rhombohe-
dral crystals, respectively, while the cross symbols mark the melting
of these crystals in the process of slow heating. This approximate
melting line and the homogeneous nucleation line bound the region
of equilibrium melting line. Note that different crystals FCC, un-
known, and rhombohedral, are found for ��0.260,0.26��
�0.317, and ��0.352, respectively. The extrapolated isochores at
large � cross at a finite T �open box�, consistent with the possibility
of a liquid-liquid critical point in the region of low temperatures
which cannot be investigated numerically. Also shown are the locus
of density maxima ��V /�T�P=0��bold blue line�, the locus of com-
pressibility maxima and minima ��V−1��V /�P�T� /�T�P=0 �dashed
red line�, and the locus �D /�P�T=0 �bold dotted line�. �b� State
points P�� ,T� corresponding to the low densities from 0.223 to
0.252. �c� Corresponding state points P�� ,T� obtained within the
RY closure. An extrapolation of the isochores also shows the pos-
sibility of a very low temperature liquid-liquid phase transition.
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We now discuss the possibility of a liquid-liquid critical
point in this model. By quadratically extrapolating the isoch-
ores into the glassy state, we observe a crossing at very low
temperatures. This crossing of the near density isochores is
equivalent to �P /�V�T=0 and hence predicts the existence of
a critical point with coordinates T�0.025, P�0.838, and �
�0.346, close to the largest density at which an isochore
develops a negative slope. Interestingly, the TMD line, if
extrapolated, appears to go directly to this putative critical
point.

Another characteristic feature is the behavior of the iso-
thermal compressibility, which shows an anomalous increase
upon cooling between the lines of maximal and minimal
compressibility, is shown in Fig. 5�a�. The part of the low
density branch with a positive slope corresponds to a com-
pressibility minima, while the high density branch corre-
sponds to the compressibility maxima. As in water and other
materials with density anomaly, the isothermal compressibil-
ity line crosses the TMD line at the point of its maximal
temperature �vertical slope� due to the mathematical proper-
ties of the second derivative of the equation of state �37�.
Again, as in water, the line of compressibility maxima, if
extrapolated, seems to approach the putative critical point.

Since the RY closure is thermodynamically consistent, it
is possible to evaluate the state points P�� ,T� theoretically as
well. Indeed, once the static structure factor S�k� is obtained,
the pair correlation function g�r� can be calculated by taking
the inverse Fourier transform of S�k�. All other thermody-
namic quantities are calculated using the interparticle poten-
tial function U�r� and g�r�. In Fig. 5�c� we show the state
points P�� ,T� consisting of eight isochores of the system
calculated using RY. Comparing Figs. 5�a� and 5�c�, we can
see that the RY predicts a smaller value of the pressure and
also that the density maxima points are shifted to higher
volumes. Despite this discrepancy in P, the shape of the
isochores is very well reproduced. Even in the RY case, den-
sity maxima line appears in the phase diagram. While in the
simulation, extremely slow dynamics prevents access to the
region where the critical point is probably located, in the RY
calculations, no convergence of the parameter 
 is achieved
in the same region. Again, a smooth extrapolation of the
calculated isochores is consistent with a crossing point, and
hence a critical point.

The thermodynamic behavior discussed above is analo-
gous to the behavior of the one-dimensional model for which
an exact solution can be obtained �see the Appendix �.

D. Dynamics

Next we focus on the dynamic properties of the model.
Figure 5�a� shows the lines of diffusivity maxima and
minima, i.e., the locus of points where �D /�P�T=0 in the
phase diagram. The region of the anomalous increase of D
upon compression ��D /�P�T�0� embraces the region of
density anomaly as it does in two-dimensional models as
well as in water �4,26�.

Figure 6�a� shows the density dependence of D calculated
from MD along several isotherms in a density range extend-
ing to �=0.7. One minimum and one maximum are observed

at high T �also shown in the inset of Fig. 6�a��. At low T, for
the range of densities 0.492���0.579, we cannot reliably
measure the diffusion coefficient, because the system does
not equilibrate within the simulation time. Interestingly, the
system again equilibrates well for the higher densities �38�.

It is interesting to compare the � dependence of the relax-
ation times calculated from MD with the prediction of mode
coupling theory using RY results for S�q� �MCT-RY�. A com-
parison with the dynamics predicted by MCT can be per-
formed by comparing the T and � dependence of D with the
corresponding dependence of the inverse of �-relaxation
time. The �-relaxation time can be calculated within MCT,
from the solutions of Eq. �13�. More specifically, for each
wave vector q, the relaxation time can be defined as the
value at which ��q , t� reaches the value 1/e. We define �1

and �2 as the relaxation times corresponding to the q -vector
of the first and second peaks of the structure factor, respec-
tively. Figure 6�b� shows the inverse of �-relaxation time �1

−1

for the wave vector corresponding to the first peak of the
structure factor as a function of � for different T. The same
sequence of minima and maxima characteristic of the MD
diffusivity data is found in the prediction of MCT-RY. This
agreement is consistent with the possibility that the structure
factor, the only input in the MCT, also encodes the system’s
dynamic properties.

FIG. 6. �a� The behavior of the diffusion coefficient as a func-
tion of density � for several isotherms obtained from MD simula-
tions. Inset shows the behavior of high temperatures. �b� The
�-relaxation time �1

−1 from MCT-RY. At low temperatures when the
density is very high or low, �1 increases sharply, showing the tran-
sition to a glassy state. Note the similar behavior of D and �1

−1.
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To better characterize the low temperature dynamics and
investigate the possibility of different glasses, we next study
the decay of the density autocorrelation functions ��q , t� as a
function of t at T=0.063 in Fig. 7, and calculate ��q , t� from
the MD trajectories �Fig. 7�a��. The nonmonotonic behavior
of D and �1 discussed in the previous figure is also seen in
the decay of ��q , t�. At the highest studied density �
�0.787, the correlator does not decay to zero in the time
scale of our simulations. For lower �, the decay becomes
faster until �=0.352 and then it starts to slow down again.
For ��0.26, crystallization prevents the approach to a glass
state. The decay of the correlation functions �at q corre-
sponding to the first peak of the structure factor� can be well
represented via a stretched exponential decay �Eq. �15�� at
very high densities, �=0.702��=0.89�, and by simple expo-
nential decay ��=1� at low �. A similar behavior is seen in
Fig. 7�b� where the predictions of the MCT equations are
shown. Again, on decreasing �, first a speed-up and then a
slowing down of the dynamics is observed.

To illustrate the comparison between MD and MCT-RY,
we show the density dependence of �1 and �2 in Fig. 8. The
two sets of data ��1 and ��2 show the same anomalous be-
havior, with the minimum corresponding to the maximal dif-
fusivity at the same �. The minima for RY are shifted to
lower densities with respect to MD at T=0.041.

It is interesting to observe that while the slowing down of
dynamics can be numerically followed for a large dynamical
range at a high density, a low density crystallization prevents

the generation of a glass structure. Unlike in MD, RY solu-
tions can be found in a wider density range. It is thus inter-
esting to ask whether a glass line is predicted by MCT-RY at
low densities and, if so, how the two glasses differ. By solv-
ing the MCT equations for a wider range of densities, we
find two distinct glasses at T=0.052,�=0.682 and �=0.257.
These two glasses are characterized by different critical non-
ergodicity parameters �shown in Fig. 9�. While the low den-
sity glass nonergodicity factor is similar to the one found in
hard sphere systems, the high density glass is characterized
by large amplitudes both at the first and second peak of S�q�.
This resembles the one found in star polymers at high den-
sity �39�, though the amplitude of the second peak in the
latter becomes larger than that of the first peak.

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented a systematic numerical
study of the static and dynamic properties of a system of
particles interacting with a spherical repulsive potential, with
a range of interaction of the order of the particle’s hard-core
diameter. The simplicity of the model makes it possible to
study it with efficient numerical algorithms and, theoreti-
cally, with self-consistent integral theories �28�. Our results
accomplish the following.

FIG. 7. The behavior of the correlators for the wave vector q1

corresponding to the first peak of the static structure factor for T
=0.063 for �a� MD and �b� MCT-RY. The dashed horizontal line
indicates the 1/e value used to define the characteristic time �1.

FIG. 8. �Color online� The density behavior of the relaxation
times �a� �1, and �b� �2, obtained directly from MD simulations for
T=0.063 and for the MCT calculations based on RY. The behavior
of the diffusion coefficient is also shown. All curves show the
anomalous decrease upon compression for small densities.
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�i� They confirm the previous theoretical calculations by
Jagla �11� concerning the existence of a line of density
maxima in the phase diagram of this potential. Results also
provide an accurate evaluation of this line as well as of the
line of compressibility maxima and minima.

�ii� They confirm that different crystal structures are
found at low temperatures, depending on the density �11�,
and provide estimates of the homogeneous nucleation line
and approximate melting lines for the liquid-crystal transi-
tions.

�iii� They provide evidence of the possibility of a liquid-
liquid critical point at T�0.025, P�0.838, and ��0.346.
The location of the critical point is below the homogeneous
nucleation line or the glass transition line and cannot be ac-
cessed by simulations. A theoretical RY calculation of the
state points P�� ,T� is able to reproduce the thermodynamic
anomalies. These calculations also suggest the possibility of
a liquid-liquid critical point but, again, its precise location
cannot be determined due to the impossibility of equating the

“virial” and “fluctuation” compressibilities with enough ac-
curacy in this region of the phase diagram. Thus the exis-
tence of the critical point proposed by the extrapolation of
the state points P�� ,T� into the deeply supercooled region
remains questionable �40�.

�iv� They show that the RY closure agrees qualitatively
with simulations of the system with the repulsive ramp po-
tential and that it reproduces the static and dynamic anoma-
lies. The RY closure slightly underestimates the pressure,
and shifts the anomalies to a region of lower density.

�v� They provide evidence that dynamic anomalies in this
model have a structural origin and they are indeed captured
by the MCT-RY theory, which uses only structural informa-
tion as input. Diffusion anomalies are encountered before the
density anomalies, consistent with the case of water �4�.

�vi� They suggest the possibility of different types of
glasses in this simple system, consistent with the existence of
different crystalline phases. A more extensive study based on
the MCT-RY may help evaluate the location and the inter-
sections �32,41,42� between different glass transition lines.
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APPENDIX ONE-DIMENSIONAL SYSTEM

Applying the Takahashi method �43�, one can find the
state points P�� ,T� for the one-dimensional system of par-
ticles interacting via the ramp potential �see Eq. �1��. In this
case, the partition function � for the Gibbs potential G�P ,T�
can be factored, so that

G = −
1

�
N ln ��P,T� , �A1�

where �=1kB T

��P,T� = �
0

�

exp− ��U�r� + Pr��dr . �A2�

Substituting Eq. �1� into Eq. �A2� and integrating, we find
that

��P,T� =
exp�− ��P�0 + U0�� − exp�− �P�1�

��P − Pc�

+
exp�− � P�1�

�P
, �A3�

where Pc=U0 / ��1−�0�. Since V���G /�P�T,

� � N/V = −
��

���/�P�T
, �A4�

which, after differentiation, leads to

FIG. 9. The behavior for T=0.052 of the critical nonergodicity
parameter fq for the two critical densities �=0.257 and �=0.682.

FIG. 10. �Color online� The equation of state P�� ,T� of the
one-dimensional system with the ramp potential ��0=1,�1

=1.76,U0=1� defined in Eq. �1�. The thin solid lines are isochores
for �=0.05,0.1,…,0.95 from bottom to top. The bold dotted lines
are isochores for �=1/�1 and �=�c�2/ ��0+�1� between which
the density anomaly region bounded by the temperature of the
maximal density line �bold blue line� is located. The dashed bold
line bounds the region of anomalous increase of isothermal com-
pressibility upon cooling indicating its extrema.
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� =

e−��U0+�0P�

�P − Pc�
+ e−��1P� 1

P
−

1

�P − Pc�
�

e−��U0+�0P�� �0

�P − Pc�
+

1

��P − Pc�2� + e−��1P��1

P
−

�1

�P − Pc�
+

1

�P2 −
1

��P − Pc�2� . �A5�

Note that Pc plays the role of a critical pressure, at which the
equation of state points ��P ,T� becomes discontinuous for
T→0. Indeed,

lim
T→0

� = �1/�0, P � Pc,

2/��1 + �0� , P = Pc,

1/�1, P � Pc.
� �A6�

Hence, an infinitesimal increase of pressure around Pc and
small T leads to a finite increase of density from 1/�1 for
P� Pc to 1 /�0 for P� Pc. Thus, in the one-dimensional sys-
tem, there is an analog of a critical point at T=Tc=0, P= Pc,
and �=�c�2/ ��1+�0�, at which the isothermal compress-

ibility diverges. At P= Pc, Eq. �A5� simplifies to

� =
1 + kBT/U0

��0 + �1�/2 + �kBT/U0��1 + �kBT/U0�2��1 − �0�
.

�A7�

For P� Pc there exists a region in which there is a density
anomaly and a region in which there is a compressibility
anomaly, exactly as in the three-dimensional model studied
in this work.

The isochores described by Eq. �A5� are plotted in Fig.
10. One can see that the temperature of maximal density
approaches the critical point as P→Pc.
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