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Non-Gaussian energy landscape of a simple model for strong network-
forming liquids: Accurate evaluation of the configurational entropy
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We present a numerical study of the statistical properties of the potential energy landscape of a
simple model for strong network-forming liquids. The model is a system of spherical particles
interacting through a square-well potential, with an additional constraint that limits the maximum
number of bonds Nmax per particle. Extensive simulations have been carried out as a function of
temperature, packing fraction, and Nmax. The dynamics of this model are characterized by Arrhenius
temperature dependence of the transport coefficients and by nearly exponential relaxation of
dynamic correlators, i.e., features defining strong glass-forming liquids. This model has two
important features: �i� Landscape basins can be associated with bonding patterns. �ii� The
configurational volume of the basin can be evaluated in a formally exact way, and numerically with
an arbitrary precision. These features allow us to evaluate the number of different topologies the
bonding pattern can adopt. We find that the number of fully bonded configurations, i.e.,
configurations in which all particles are bonded to Nmax neighbors, is extensive, suggesting that the
configurational entropy of the low temperature fluid is finite. We also evaluate the energy
dependence of the configurational entropy close to the fully bonded state and show that it follows
a logarithmic functional form, different from the quadratic dependence characterizing fragile
liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and
the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile
behavior. © 2006 American Institute of Physics. �DOI: 10.1063/1.2196879�
I. INTRODUCTION

When a liquid is fastly supercooled into a metastable
state under the melting point, its structural relaxation time �
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increases over 13 orders of magnitude with the decreasing
temperature T. Below some given temperature, equilibration
is not possible within laboratory time scales, and the system
becomes a glass.1,2 The glass transition temperature Tg is
operationally defined as that where �=100 s, or the viscosity

13
�=10 P.
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Angell has introduced a useful classification scheme3 for
glass-forming liquids. According to the definition of kinetic
fragility, a liquid is classified as “strong” or “fragile” depend-
ing on how fast its relaxation time increases when approach-
ing Tg. Liquids that show a weak dependence, well described
by an Arrhenius law ��exp�A /T�, where A is a temperature
independent quantity, are classified as strong. Strong liquids
form open network structures that do not undergo strong
structural changes when decreasing temperature. In general,
polymeric or low molecular weight organic liquids are frag-
ile liquids. In these systems, where interactions show a less
directional character than in strong liquids, dynamics are
very sensitive to temperature changes, and relaxation times
show strong deviations from Arrhenius behavior 4,5 Several
empirical functions have been proposed for the T depen-
dence of � in fragile liquids—the Vogel-Tammann-Fulcher
�VTF� law, ��exp�A / �T−T0��—having gained more
acceptance.6 In this equation T0 is the VTF temperature.

Kauzmann noted7 that when extrapolating to low tem-
peratures the experimental T dependence of the configura-
tional entropy Sconf, the latter became zero at a certain tem-
perature TK �“Kauzmann temperature”� somewhere below
Tg. Experiments1,8,9 often provide the result TK�T0. Given
the Arrhenius character of strong liquids, this comparison
would also suggest that TK is zero for these systems.

However, it must be stressed that the values of TK and T0

are the result of an extrapolation of experimental data, which
in principle is not necessarily correct. In particular, an ex-
trapolation below TK would lead to an “entropy catastrophe:”
a disordered liquid state with less entropy than the ordered
crystal. In practice, the equilibrium liquid state at the puta-
tive TK is never reached in experiments because the liquid
falls out of equilibrium at Tg�TK. The fate of the configu-
rational entropy in an ideal situation where arbitrarily long
equilibration time scales could be accessed is one of the key
�and controversial� questions associated to the glass transi-
tion problem. One solution states that crystallization is un-
avoidable when approaching TK in equilibrium.7,10 It has also
been proposed that Sconf changes its functional form below
Tg, remaining always positive.11 Another solution is that Sconf

reaches zero at TK and remains constant below it.12–15

Some insight into this latter question, in the physical
origin of the fragility and, in general, in the relation between
dynamic and thermodynamic properties of glass-forming liq-
uids, can be obtained by investigating the potential energy
landscape �PEL�,16–21 i.e., the topology of the potential en-
ergy of the liquid U=U�rN�. According to the inherent struc-
ture �IS� formalism introduced by Stillinger and Weber,17 the
PEL is partitioned into basins of attraction around the local
minima of U. These minima are commonly known as the
“inherent structures.” The free energy is obtained as a sum of
a “configurational” contribution, resulting from the distribu-
tion and multiplicity of the different IS’s, and another “vi-
brational” contribution, resulting from the configurational
volume available within the basin around each individual IS.
The introduction of the IS formulation has motivated a great
theoretical and computational effort in order to understand

the connection between the statistical properties of the PEL
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and the dynamic behavior of supercooled liquids,22–46 and
nowadays it has become a key methodology in the field of
the glass transition.

From a series of numerical investigations in models of
fragile liquids, it is well established that for such systems the
distribution of inherent structures is well described by a
Gaussian function, at least in the energy range that can be
probed within the equilibration times permitted by computa-
tional resources.23,29,46 It can be formally proved13,47 that for
a Gaussian landscape the energy of the average visited IS
depends linearly on T−1, a result that has been verified in
several numerical studies of fragile liquids.24,29,34–36 Recent
studies of the atomistic BKS model for silica,31,43 the arche-
type of a strong liquid behavior, have shown instead that
deviations from Gaussianity take place in the low energy
range of the landscape, and indeed, at low temperatures, the
average inherent structure progressively deviates from linear-
ity in T−1. The existence of a lower energy cutoff and a
discrete energy scale, as it would be expected for a con-
nected network of bonds, has been proposed as the origin of
such deviations from Gaussianity.43 These investigations also
suggest that Sconf cannot be extrapolated to zero at a finite T,
and as a consequence, strong liquids would not show a finite
TK. However, long equilibration times prevent the determi-
nation of the lowest energy state and its degeneracy, and
therefore an unambiguous confirmation of this result.

Recently, we have proposed a minimal model which we
believe capture the essence of the prototype strong liquid
behavior. In this model,48 particles interact via a spherical
square-well potential with an additional constraint on the
maximum number of bonded neighbors, Nmax, per particle.
The lowest energy state is the fully bonded network, and its
energy is thus unambiguously known. Within the equilibra-
tion times permitted by present day numerical resources,
configurations with more than 98% of the bonds formed can
be properly thermalized. As a result, no extrapolations are
required to determine the low T behavior. This model is par-
ticularly indicated for studying the statistical properties of
the landscape. In analogy with the Stillinger-Weber formal-
ism, we propose to partition the configuration space in basins
which, for the present case, can be associated with bonding
patterns. A precise definition of the volume in the configura-
tion space associated to each bonding pattern can be pro-
vided, since a basin is characterized by a flat surface with an
energy proportional to the number of bonds. Crossing be-
tween different basins can be associated to bond-breaking or
bond-forming events. In contrast to other systems previously
investigated, the vibrational contribution of the PEL can be
expressed in a formally exact way. No approximation for the
shape of the basins is requested. As we discuss in the follow-
ing, the precision of the evaluation of the basin volume, only
limited by the numerical accuracy of statistical averages, al-
lows us to evaluate, with the same precision, the configura-
tional entropy.

In this article we report the study of the statistical prop-
erties of the Nmax model for the cases Nmax=3, 4, and 5 and
for a large range of packing fractions �, extending the results
limited to a fixed � and Nmax=4 previously reported in a

48
short communication. The range of � values here investi-
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gated are �0.2–0.35� for Nmax=3, �0.3–0.5� for Nmax=4, and
0.35 for Nmax=5. The article is organized as follows. In Sec.
II we introduce the model and provide computational details.
In Sec. III we briefly summarize the IS formalism and apply
it to the present model. Dynamic and energy landscape fea-
tures are shown and discussed in Sec. IV. Conclusions are
given in Sec. V.

II. MODEL AND EVENT-DRIVEN MOLECULAR
DYNAMICS

The model we investigate is similar in spirit to one pre-
viously introduced by Speedy and Debenedetti.49 In the
present model, particles interact through a spherical square-
well potential with a constraint on the maximum number of
bonds each particle can form with neighboring ones. Namely,
the interaction between any two particles i and j, each having
less than Nmax bonds to other particles, is given by a spheri-
cal square-well potential of width � and depth u0:

Vij�r� = �� , r � 	

− u0, 	 � r � 	 + �

0, r � 	 + � ,
� �1�

with r is the distance between i and j. When 	�r�	+�,
particles i and j form a bond, unless at least one of them is
already bonded to other Nmax particles. If this is the case
Vij�r� is simply a hard-sphere �HS� interaction:

Vij�r� = �� , r � 	

0, r � 	 .
	 �2�

In the original model introduced by Speedy and
Debenedetti49 an angular constraint was imposed by avoid-
ing three particle bonding loops. In an effort to grasp the
basic structural ingredients producing strong liquid behavior,
we have not implemented this additional constraint. The po-
tential given by Eqs. �1� and �2�, despite its apparent simplic-
ity, is not pairwise additive, since at any instant the interac-
tion between two given particles does not only depend on r
but also on the number of particles bonded to them �if 	
�r�	+��. Hence, to propagate the system not only the
coordinates and velocities are requested but also the list of
bonded interactions.

We also note that the model is not deterministic. Con-
sider a configuration in which particle i is surrounded by
more than Nmax other particles within a distance of 	�r
�	+�. Of course, only Nmax of these neighbors are bonded
to i, i.e., feel the square-well interaction. If one of the bonded
neighbors moves out of the square-well interaction range
�i.e., to a distance of r�	+��, a bond-breaking process oc-
curs. According to Eq. �1�, a new bond can be formed with
one of the other nonbonded particles whose position is in the
range of 	�r�	+�. If several candidates are available—
where a candidate is defined as a particle whose distance
from i is in the range of 	�r�	+� and which is engaged
in less than Nmax bonds to other distinct particles—then one
of them is randomly selected to form the new bond with the
particle i. Of course, in each bond-breaking or bond-

formation process the velocities of the two involved particles
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are changed to conserve energy and momentum �see also
below�.

Despite these complications, the model given by Eqs. �1�
and �2� can be considered as among the simplest ones for
simulating clustering and network formation in fluids.50,51 It
does not require three-body angular forces or nonspherical
interactions. The penalty for retaining spherical symmetry is
the complete absence of geometrical constraints between the
bonds.

The maximum number of bonds per particle is controlled
by tuning Nmax. For a system of N particles, the lowest en-
ergy state, corresponding to the fully bonded network, has an
energy Efb=−NNmaxu0 /2. If Nbb is the number of broken
bonds for a given configuration of the network, the energy of
that configuration is given by E=Efb+Nbbu0.

The model parameters have been set to � / �	+��
=0.03, u0=1, and 	=1. In the following, entropy S will be
measured in units of kB. Setting kB=1, potential energy E and
temperature T are measured in units of u0. Distances are
measured in units of 	. Diffusion constants and viscosities
are respectively measured in units of 	�u0 /m�1/2 and
�mu0�1/2	−2. We have simulated a system of N=10 000 par-
ticles of equal masses m=1, implementing periodic boundary
conditions in a cubic cell of length Lbox. We have evaluated
the PEL properties for several values of Nmax, in a wide
range of T, and packing fraction �=
N /6Lbox

3 . The system
does not exhibit phase separation for the state points here
investigated.52–54

Dynamic properties are calculated by molecular dynam-
ics simulations. We use a standard event-driven algorithm55

for particles interacting via discontinuous step potentials.
The algorithm calculates, from the particle positions and ve-
locities at a given instant t0, the instants tcoll and positions for
all possible collisions between distinct pairs and selects the
one which occurs at the smallest tcoll. Then the system is
propagated for a time tcoll− t0 until the collision occurs. Be-
tween collisions, particles move along straight lines with
constant velocities. Collisions can take place at a relative
distance of r=	 �in which case velocities of colliding par-
ticles are reversed according to hard-sphere rules� and, only
for bonded interactions, at a distance of 	+� �in which case
velocities are changed in such a way to conserve energy and
momentum�. Starting configurations are selected from previ-
ously generated hard-sphere configurations with a hard-
sphere radius 	+�. In this way, we start always from a con-
figuration where no bonds are present. After thermalization
at high T using the potential defined in Eqs. �1� and �2�, the
system is quenched and equilibrated at the requested tem-
perature. Equilibration is achieved when energy and pressure
show no drift and when particles have diffused, in average,
several diameters. We also confirm that dynamic correlators
and mean squared displacements show no aging, i.e., no time
shift when being evaluated starting from different time ori-
gins. Once the system is equilibrated, a constant energy run
is performed for the production of configurations, from
which diffusivities and dynamic correlators are computed.
Statistical averages are performed over typically 50–100 in-

dependent samples. Standard Monte Carlo �MC� simulations
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are carried out for the calculation of the vibrational contri-
bution of the PEL �see Sec. III�, using previously equili-
brated configurations.

III. INHERENT STRUCTURE FORMALISM

If U=U�rN� is the potential energy of a system of N
identical particles of mass m, the partition function is given
by the product Z=ZigZex, where Zig is the purely kinetic ideal
gas contribution, and Zex is the excess contribution resulting
from the interaction potential. The ideal gas contribution to
the free energy Fig=−kBT ln Zig is given by

�Fig/N = ln�N/V� + 3 ln � − 1, �3�

where V is the system volume, �= �kBT�−1, and �
=h�2
mkBT�−1/2 is the de Broglie wavelength, where h is the
Planck constant. The excess contribution to the partition
function is

Zex =
 drN exp�− �U�rN�� . �4�

The IS formalism introduced by Stillinger and Weber17

provides a method for calculating Zex. According to Stillinger
and Weber the configuration space is partitioned into basins
of attraction of the local minima of the PEL, the so-called
inherent structures. If �EIS� is the degeneracy of a given IS,
i.e., the number of local minima of U�rN� with potential en-
ergy EIS, the configurational entropy is defined as Sconf�EIS�
=kB ln��EIS��. To properly evaluate Zex, besides the infor-
mation of the number of distinct IS’s, it is necessary to
evaluate the partition function Zvib

ex �T ,EIS� constrained in the
volume of each of these basins. The quantity Zvib

ex �T ,EIS� pro-
vides a measure of the configurational volume explored at
temperature T by the system constrained in the basin of
depth EIS. Averaging over all basins with the same depth EIS

one obtains17

Zvib
ex �T,EIS� =

1

�EIS� �
basins�EIS�



basin

drNe−��U−EIS�, �5�

where the notation “basins �EIS�” recalls that the sum is per-
formed over all the basins whose potential energy minimum
is EIS, and each integral runs over the configurational volume
associated to the corresponding basin. It is convenient to
express Zvib

ex �T ,EIS� as

Zvib
ex �T,EIS� = e−�fvib

ex �T,EIS� �6�

to stress that the “free energy” fvib
ex �T ,EIS�, commonly re-

ferred as the vibrational PEL contribution, accounts for the
vibrational properties of the system constrained in a typical
basin of depth EIS.

Within the above framework, the excess partition func-
tion is given by

Zex = �
IS

e−��EIS−TSconf�EIS�+fvib
ex �T,EIS��. �7�

In the thermodynamic limit the excess free energy
ex ex
F =−kBT ln Z can be evaluated as

Downloaded 12 Jul 2006 to 141.108.6.154. Redistribution subject to 
Fex�T� = E�T� − TSconf�E�T�� + fvib
ex �T,E�T�� , �8�

where E�T� is the average IS potential energy at temperature
T. Therefore, the excess free energy is the sum of three con-
tributions. The fist term in Eq. �8� accounts for the average
value of the visited local minima of the potential energy. The
second term is related to the degeneracy of the typical mini-
mum. The third term accounts for the configurational volume
of the typical visited basin.

The IS formalism has been applied in the past to several
numerical studies of models of liquids. Indeed, simulations
offer a convenient way to evaluate Fex�T�, E�T�, and
fvib

ex �T ,E�T�� and to derive, by appropriate substractions, the
configurational entropy. The only approximation performed
in these studies refers to the vibrational free energy, which is
usually calculated under the harmonic approximation—by
solving the eigenfrequencies of the Hessian matrix evaluated
at the IS—or, in the best cases, including anharmonic contri-
butions under the strong assumption56 that these corrections
do not depend on the value of EIS.

In the case of the Nmax model, the evaluation of the free
energy in the Stillinger-Weber formalism is straightforward.
The partition function can be formally written as a sum over
all distinct bonding patterns—i.e., over all configurations
which cannot be transformed by deformation to each other
without breaking/forming bonds—in a way that is formally
analogous to the IS approach once one identifies a bonding
pattern with an IS basin. Different from the standard IS ap-
proach, the present specific stepwise potential does not re-
quire a minimization procedure to locate the local minimum.
Each bonding pattern can be associated to a basin character-
ized by a flat surface with an energy proportional to the
number of bonds. Crossing between different basins requires
bond-breaking or bond-forming events. While in the IS for-
malism the partition function is associated to local minima,
in the Nmax model Zex is evaluated by expanding around all
distinct bonding patterns. The flat surface of the basin and
the clear-cut basin boundaries make it possible to evaluate
the vibrational contribution of the PEL in a formally exact
way, in contrast to other systems previously investigated. No
approximation for the shape of the basins is requested. In the
Nmax model, the excess vibrational free energy fvib

ex is purely
entropic.

To calculate fvib
ex we make use of the Perturbed Hamil-

tonian approach introduced by Frenkel and Ladd57,58 which
provides an exact analytical formulation for the excess free
energy of a given system by integration from a reference
Einstein crystal. In brief, to calculate the free energy of a
system defined by a Hamiltonian H, one can add a harmonic
perturbation, H��rN ;�max�=�max�i=1

N �ri−ri
0�2, around a disor-

dered configuration rN0 = �r1
0 , . . . ,rN

0 �. It can be demonstrated
that the excess free energies of the perturbed, Fex�T ;�max�,
and unperturbed, Fex�T ;�=0�, systems are related as57–59

Fex�T;� = 0�

= Fex�T;�max� − 

−�

ln��max�

���
i=1

N

�ri − ri
0�2

�

d ln��� . �9�
Brackets denote ensemble average for fixed �. Due to the
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presence of the harmonic perturbation, particles in the per-
turbed system �H+H�� remain constrained around rN0. As a
consequence, ��i=1

N �ri−ri
0�2�� is finite. For a sufficiently large

value of �max �so that H is negligible as compared to H��, the
perturbed system behaves like an Einstein crystal, i.e., like a
system of 3N independent harmonic oscillators with elastic
constant �max. The excess free energy for the latter system is
given by

�Fex��max�/N = �E/N −
3

2
ln�
kBT

�max
� + 1 − ln�N/V� .

�10�

In this expression E is the energy of the system in rN0. If the
condition �max��i=1

N �ri−ri
0�2��max

=3NkBT /2 is fulfilled, the
harmonic limit is recovered and will be also valid for �max�
��max. Hence, �max can be taken as an upper cutoff for the
integration in �, since selecting a larger value �max� leads to a
trivial cancelation in Eqs. �9� and �10�.

Next we discuss how the perturbed Hamiltonian ap-
proach can be used for evaluating the excess vibrational free
energy fvib

ex of a typical bonding pattern in the Nmax model.
We start from an arbitrary equilibrium configuration rN0 at T
and with its associated bonding pattern. We then calculate,
via MC, the quantity ��i=1

N �ri−ri
0�2��, imposing the constraint

that bonds can neither break nor reform. In the limit �→0
the system samples the volume in configuration space asso-
ciated to the selected bonding pattern. Hence, we can iden-
tify fvib

ex �T ,E�T�� with Fex�T ;�=0�. By retaining the con-
straint on the bonding pattern, we simulate the perturbed
system for several values of � to properly evaluate the inte-
grand of Eq. �9� and estimate the value of fvib

ex �T ,E�T��. To
improve statistics, an average over several starting configu-
rations rN0 is performed.

Within the above framework, the corresponding expres-
sion for the excess vibrational entropy Svib

ex is

Svib
ex

NkB
=

3

2
ln�
kBT

�max
� − 1 + ln�N

V
�

+ �

−�

ln��max�

���
i=1

N

�ri − ri
0�2

�

d ln��� . �11�

We stress that Eq. �11� is an exact relation for Svib
ex for the

present Nmax model. Hence, the precision in the evaluation of
this quantity does not depend on any approximation, but only
on the numerical accuracy of the MC calculation and the
statistical average.

The total excess entropy Stot
ex�T� can also be calculated

with an arbitrary precision by a thermodynamic integration
from a reference state at T=Tref, where Stot

ex is already known.
One possible choice is to select as reference point the ideal
gas and integrate along a path which does not cross any
phase boundary or, in the present case, to integrate from very
high temperatures. Indeed, at sufficiently high Tref, the model
is equivalent to a hard-sphere system, whose free energy is
well known. An accurate estimate of the hard-sphere excess

60
entropy is provided by the Carnahan-Starling formula:
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SHS
ex

NkB
=

��3� − 4�
�1 − ��2 . �12�

The excess entropy at finite T can then be obtained by inte-
grating along a constant volume V path as

Stot
ex�T� = SHS

ex + 

Tref

T � �E

�T
�

V

dT

T
. �13�

From the two accurate evaluations of Stot
ex �Eq. �13�� and

Svib
ex �Eq. �11�� an accurate estimate of the configurational

entropy Sconf can be obtained as Sconf=Stot
ex −Svib

ex . The result-
ing Sconf can be related to T or, parametrically, to E�T� �i.e.,
to the number of bonds�. In the rest of the article, all the
thermodynamic functions � will be expressed as “quantities
per particle,” but for simplicity of notation we will drop the
factor 1 /N. Hence, in the following � will be understood as
� /N.

IV. RESULTS AND DISCUSSION

A. Dynamics

In this section we show that the dynamics in the Nmax

model meet the criteria defining strong liquids. The key fea-
ture is the Arrhenius behavior of the transport coefficients.
Figure 1 shows the T dependence of the diffusivity D and the

FIG. 1. T dependence of the diffusivity D, the viscosity �, and the product
D� /T for the cases Nmax=3, �=0.20 �a�, and Nmax=4, �=0.30 �b�. Dotted
lines correspond to the expected value �3
	�−1 from the Stokes-Einstein
relation. Dashed lines are fits to Arrhenius laws. An error bar is included for
the viscosity at high T.
viscosity � for different values of Nmax and �. The diffusiv-
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ity is calculated as the long time limit of ��i=1
N �ri�t�

−ri�0��2� /6Nt. The viscosity � is determined as

� =
1

2VkBT
lim
t→�

d

dt
��A�t� − A�0��2� , �14�

where A�t�=m�i=1
N ṙi

�ri
�, as explained in Ref. 61. Greek sym-

bols denote the x, y, and z coordinates of the position ri of
particle i. An average is done over all the permutations with
���. As shown in Fig. 1, at low temperatures both quanti-
ties display Arrhenius behavior. The activation energies for
D and � are approximately u0, suggesting that all bonds
break and reform essentially in an independent way. This is
consistent with the absence of angular constraints in this
model. Despite the limited simulations in time by computa-
tional resources, the fact that the Arrhenius form covers more
than three orders of magnitude and the observed value of the
activation energy strongly suggest that this functional form
will be retained at lower T. We also find �see Fig. 1� that the
Stokes-Einstein relation62 D� /T= �3
	�−1 is fulfilled essen-
tially at all temperatures, independently from the Nmax value.

Long time decays of dynamic correlators in supercooled
states are usually well described by the phenomenological
Kohlrausch-Williams-Watts �KWW� function exp�−�t /����,
where � is the corresponding relaxation time and � is a
stretching exponent which takes values of 0���1. The ex-
perimental evidence for a collection of chemically and struc-
turally very different glass-forming liquids4 shows that the
smaller the fragility index �i.e., the closer the system is to a
strictly strong behavior�, the closer to unity the values of �
are. Figure 2 shows that this is indeed the case for the Nmax

model. The long-time dependence of the normalized coher-
ent intermediate scattering function �q�t�= ��q�t��−q�0��
/ ��q�0��−q�0��, where �q�t�=�i=1

N exp�iq ·ri�t��, can be well
described by KWW fits, with values of ��0.85 in all the q
range and for all studied �. Such a behavior is observed at all
T where the system shows Arrhenius behavior. As shown in
Ref. 4, these � values are very different from the ones typical
of fragile liquids ���0.5�.

Results reported in Figs. 1 and 2 provide a convincing
evidence that Eqs. �1� and �2� define a simple and satisfac-

FIG. 2. Symbols: Coherent intermediate scattering function for Nmax=4, �
=0.30, and T=0.1 for different values of the wave vector q. Dashed lines are
KWW fits. The stretching exponents � are indicated for the corresponding
q’s.
tory minimal model for a strong glass-forming liquid.
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B. Energy landscape

Figure 3 shows the T dependence of the potential energy
�i.e., the energy of the typical bonding pattern� per particle,
E. In the present model, the potential energy of each configu-
ration coincides with the energy of the bonding pattern and
can be directly associated, in the Stillinger-Weber formalism,
with the IS energy. Within the times accessible by the simu-
lations, equilibrium states can be reached for configurations
characterized by a number of broken bonds smaller than 2%;
i.e., the lowest energy state, Efb, is approached from equilib-
rium simulations.

From the low T behavior of E, one sees that the ap-

FIG. 3. T dependence of the potential energy per particle E for the cases
Nmax=3, �=0.20 �a�, Nmax=4, �=0.30 �b�, and Nmax=5, �=0.35 �c�. Full
lines at low T are fits to Arrhenius behavior with the activation energy u0 /2
�see text and Table I�. Dashed lines at high T correspond to linear behavior
in T−1 �see text�.
proach to Efb is well described by an Arrhenius law:
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E − Efb = A�
f exp�− � f/kBT� . �15�

The activation energy � f, determined by a free fit, is close to
u0 /2. Indeed, by forcing the Arrhenius activation energy to
be exactly u0 /2 a satisfactory representation of the data is
recovered, with one simple fitting parameter A�. Figure 3
shows the result of a fit to E−Efb=A� exp�−u0 /2kBT�. The
corresponding best-fitting values, with two �A�

f ,u0� and one
�A�� free parameters are reported in Table I. The observed
value u0 /2 is consistent with theoretical predictions based on
the thermodynamic perturbation theory developed by
Wertheim63 to study association in simple liquids. It is not a
coincidence since in Wertheim’s theory bonds are also geo-
metrically uncorrelated. Similar values are also predicted by
more intuitive recent approaches.64

The clear low T Arrhenius dependence and the explicit
value of the activation energy provide a convenient way to
evaluate the T dependence of the energy for lower T. While
in T it might appear as a wide extrapolation procedure, we
recall that in E the interpolation extends only over a small
�2%� range of energies between the fully bonded state �E
=Efb� and the lowest equilibrated state studied in simula-
tions. Equation �15� provides a convenient expression for the
low T behavior of E and, by using Eq. �13�, a way of calcu-
lating the total excess entropy down to the fully connected
state.

We note in passing that at intermediate temperatures the
T dependence of E is consistent with a 1/T law, as expected
for a Gaussian distribution of energy levels. The 1/T law
crosses to the Arrhenius dependence on cooling. This cross-
ing has been also observed in the study of the T dependence
of the IS energy in a realistic �atomistic� model for silica.31,43

The low T Arrhenius dependence of E �Eq. �15�� has a
practical implication in the T dependence of the isochoric
configurational specific heat CV

conf�T�= ��E /�T�V. Hence,
from Eq. �15�, at low T we have CV

conf�T�=A�
f � fkB

−1T−2

�exp�−� f /kBT�, which has a maximum at T=� f /2�u0 /4.
Figure 4 shows that, indeed, numerical data for CV

conf display
a peak at T�0.25. A peak in CV

conf�T� has also been observed
in recent simulations of atomistic models of two different
network-forming liquids: silica31 and BeF2.65

We note that a strong correlation is observed between the
T dependence of the diffusivity and the T dependence of
the potential energy. Figure 5 shows, for Nmax=4 and several

TABLE I. Fit parameters for the low T Arrhenius dependence of the poten-
tial energy E �see text�.

�Nmax,�� A� A�
f � f

�3, 0.20� 2.69 2.70 0.506
�3, 0.30� 1.74 1.72 0.499
�3, 0.35� 1.38 1.37 0.498
�4, 0.30� 2.59 2.73 0.508
�4, 0.35� 2.15 2.12 0.498
�4, 0.40� 1.70 1.67 0.498
�4, 0.45� 1.28 1.23 0.495
�4, 0.50� 0.900 0.884 0.498
�5, 0.35� 3.14 3.73 0.539
� values, that on cooling, D crosses to an Arrhenius law at
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T�0.25. This temperature is the same at which the specific
heat shows a maximum. This correlation holds at all the
investigated � values.

The quality of the low T Arrhenius fits for the diffusivi-
ties are worse at high �. Indeed, low T data at high � show
some bending �Fig. 5�a��. This result suggests that the system
will become more fragile with the increasing density. This is
not surprising, since the influence of the square well will be
weaker at a higher packing, and the system will approach a
dense hard-sphere liquid, which is a fragile system.

Next we turn to the evaluation of the statistical proper-
ties of the PEL, and more precisely the total excess entropy

FIG. 4. Full lines: T dependence of the isochoric configurational specific
heat for several values of �Nmax,��. Dashed lines are an extrapolation to
high T of the low T behavior A�

f � fkB
−1T−2 exp�−� f /kBT� �see text�.

FIG. 5. T dependence of the diffusivity �a� and the isochoric configurational
specific heat �b� for Nmax=4 at several values of �. Dashed lines in the panel

�a� are Arrhenius fits.
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and its vibrational and configurational contributions. As ex-
plained in Sec. III �Eq. �13��, the total excess entropy Stot

ex is
evaluated by an isochoric integration from the hard-sphere
limit at a sufficiently high Tref. We use a value Tref=100.
Figure 6 shows Stot

ex as a function of T and E, for different
values of � and Nmax. Due to the presence of the interaction
potential �1� and �2�, Stot

ex is negative �see also below�. As
expected, Stot

ex�T� decays to a constant value at low T, since
the system is very close to the fully bonded state and no
further structural changes are expected to occur. A glass tran-
sition temperature Tg can be operationally defined as the T at
which relaxation becomes longer than the simulation time.
The fact that the system is so close to its lowest energy state
already above this operational Tg implies that a very small
drop of the specific heat is expected at Tg, consistent with the
experimental evidence in strong liquids.5

The evaluation of the vibrational contribution Svib
ex �Eq.

�11�� requires the calculation of the integral over the cou-
pling constants �. Figure 7 shows the calculated � depen-
dence of ���i=1

N �ri−ri
0�2�� /N at several T for one specific

value of Nmax and �. Data for different Nmax and � display a
−6

FIG. 6. E and T dependences of the total excess entropy over the ideal gas
value, Stot

ex, for the cases Nmax=3, �=0.20 �a�, Nmax=4, �=0.30 �b�, and
Nmax=5, �=0.35 �c�. Continuous lines for Stot

ex�E� are obtained as the sum of
the fit functions for Svib

ex �E� � Eq. �16�� and Sconf�E� � Eq. �19��. Continuous
lines for Stot

ex�T� are parametrically obtained from the T dependence of E.
similar behavior. At values of ���min�10 contributions
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to the integral in Eq. �11� are negligible, and �min is taken as
lower cut for integration. At large � values, ���i=1

N �ri

−ri
0�2�� /N approaches the theoretical limit 3kBT /2. This

value is reached at �max�106. Note that �=106 corresponds
to an average displacement per particle of the order of 10−4

for this T range. Hence the harmonic perturbation localize
the particles in a well much narrower than the square-well
width �, so that the presence of the unperturbed potential is
irrelevant for this upper � value.

Figure 8 shows the T and E dependence of Svib
ex for the

same values of � and Nmax of Fig. 6. Close to the fully
connected state, Svib

ex can be well described by a linear depen-
dence on the energy �i.e., on the number of bonds�:

Svib
ex �E� = Svib

ex �Efb� + �vib�E − Efb� . �16�

Interestingly, this linear dependence on the basin depth has
also been observed in previously investigated models of su-
percooled liquids.19,24,29,35,36

Finally, the configurational entropy Sconf is determined as
Stot

ex −Svib
ex . Figure 9 shows Sconf for the same � and Nmax of

Figs. 6 and 8. Some considerations are in order: as for the
total entropy, Sconf approaches a constant value at low T.
Interestingly enough, this constant value is significantly dif-
ferent from zero. The fully connected network is thus char-
acterized by an extensive number of distinct bond configu-
rations �exp�NSconf�. These different network configurations
arise from different bond topologies; i.e., disorder is associ-
ated to the presence of closed loops of different number of
bonds.

To derive a functional form for the E dependence of
Sconf, we start from the thermodynamic relation ��S /�E�V

=1/T, which in the present case can be written as

��Sconf + Svib�
��E − Efb�

=
1

T
. �17�

At low T, from Eq. �15� we obtain 1/T=−�1/� f�ln��E
−Efb� /A�

f � and, making use of Eq. �16�, we find

�Sconf

��E − Efb�
= − �vib −

1

� f
ln

E − Efb

A�
f , �18�

which, after integration, provides the E dependence of the

FIG. 7. � dependence of ����i=1
N �ri−ri

0�2�� /N for Nmax=4 and �=0.30 at
different temperatures. The horizontal line indicates the expected value 3/2
for the harmonic behavior.
configurational entropy:
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Sconf�E� = Sconf�Efb� −
E − Efb

� f
ln�2�E − Efb��

+ �conf�E − Efb� , �19�

where the constant �conf is given by

�conf =
1

� f
− �vib +

ln�2A�
f �

� f
. �20�

As mentioned above, a satisfactory description of the low T
Arrhenius dependence of E is provided by forcing a value
u0 /2 for the activation energy � f. Hence, we can make the
changes � f →u0 /2 and A�

f →A� in Eqs. �19� and �20�. These
changes allow us to obtain a simple expression of Sconf in
terms of the number of broken bonds. Hence, since E−Efb

=Nbbu0, we find

Sconf�E� = Sconf�Efb� − 2Nbb ln�2Nbb� + �confNbb. �21�

This expression suggests that the low-E, T dependence of the
configurational entropy is controlled by a combinatorial fac-
tor related to the number of broken bonds randomly distrib-
uted along the network. The derivation also shows how inti-
mately the logarithmic dependence of the entropy is
connected to the Arrhenius dependence of E at low T. The

FIG. 8. Similar to Fig. 6 for the excess vibrational entropy Svib
ex . Dashed lines

for Svib
ex �E� are linear fits �Eq. �16��. Continuous lines for Svib

ex �T� are para-
metrically obtained from the T dependence of E �see text�.
final expression for Sconf�E� is very different from the qua-
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dratic energy dependence resulting from the Gaussian distri-
bution of IS energies observed in models of fragile
liquids.23,29,34,35

To provide a further and analysis-free confirmation of
the crossover at low T toward combinatorial statistics of the
bonding energy states, we show in Fig. 10 the T dependence
of E for Nmax=4 at several � values. We show a representa-
tion of E−Efb, both in linear and logarithmic scales, as a
function of 1/T. We note that for all � when E−Efb�0.75
the 1/T law, which is expected to hold in a Gaussian land-
scape, breaks down. Similarly, when E−Efb�0.3 the Arrhen-
ius law sets in. The fact that both crossovers are, at most,
weakly dependent on � suggests that they are esentially con-
trolled by the bonding statistics, and that between E−Efb

�0.75 and E−Efb�0.3 a crossover from Gaussian to loga-
rithmic statistics occurs.

Figure 9 shows the E and T dependence of Sconf for
different values of Nmax. Equation �19� provides a good de-
scription of the data. No fit parameters are involved in com-
paring the numerical estimates of Sconf and the predictions of
Eq. �19�, except for the constant Sconf�Efb�. Note that �conf is
not a fit parameter but a function �Eq. �20�� of parameters

ex

FIG. 9. Similar to Figs. 6 and 8 for the configurational entropy Sconf. Dashed
lines for Sconf�E� are fits to Eq. �19�. Continuous lines for Sconf�T� are para-
metrically obtained from the T dependence of E �see text�. A typical error
bar is shown in the �c� panel.
defining E�T� and Svib�E�. Before discussing the calculated
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values for Sconf�Efb�, we present in Fig. 11 the E dependence
of the configurational and excess vibrational entropies for
Nmax=4 and different packing fractions �. For all �, the
same functional forms of Eqs. �16� and �19� are recovered,
respectively, for Svib

ex and Sconf. The two quantities show an
opposite trend. Curves for Sconf�E� tend to collapse at high �,
while those for Svib

ex �E� tend to collapse at low �. Interest-
ingly, the configurational entropy just shifts with varying �.

Table II summarizes the results of the fits of the vibra-
tional and configurational entropies to Eqs. �16� and �19� for
the studied range of control parameters. Data shown in the
table help in discussing the Nmax and � dependence of the
entropy of the fully bonded state. As can be observed by
comparing the results for Nmax=3 and Nmax=4, increasing
Nmax produces an increase of Sconf�Efb�. This trend is much
weaker between Nmax=4 and Nmax=5. A similar weak trend
is observed for Nmax=4 by increasing �. The weak increase
of Sconf�Efb� obtained by increasing � suggests that when the
system is compressed, neighboring particles progressively
enter in the interaction range of a given one, yielding a major
variety of local configurations of the bonding pattern and,
consequently, more topologically distinct fully bonded net-
works. The trend of the excess vibrational entropy suggests
that increasing � leads to a decrease of the available free

FIG. 10. T dependence of E−Efb at different regions of the energy land-
scape. Top panel: Full lines correspond to linear behavior in 1/T. The hori-
zontal dashed line indicates the departure of such behavior. Bottom panel:
Full lines correspond to Arrhenius behavior. The horizontal dashed lines
indicate the limits of Arrhenius and 1/T behaviors.
volume for a given bonding pattern.
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A summary of the landscape analysis for all studied � is
shown in Fig. 12 for Nmax=4. The figure shows the � depen-
dence of Stot

ex, Svib
ex and Sconf for several different low T iso-

therms, all in the Arrhenius region of energies. It clearly
emerges that the significant reduction of Stot

ex on increasing �
arises essentially from the vibrational component. We also
note that the HS relative contribution to Stot

ex increases on
increasing �. Hence, according to Eq. �12�, SHS

ex ��=0.30�
=−1.90, while SHS

ex ��=0.50�=−5.0. By comparing with data
in Fig. 12, it is clear that Stot

ex is dominated by the square-well
and hard-sphere contributions at, respectively, low and high
packing fractions.

It is also interesting to observe that, within the precision
of the data, Sconf shows a weak maximum, shifting to higher
� on cooling. To test whether the presence of a maximum of
Sconf has some effect on the dynamics we also show in Fig.
12 the behavior of the diffusivity along the same isotherms.

FIG. 11. E dependence of Svib
ex and Sconf for Nmax=4 and different values of

�. Dashed lines in panels �a� and �b� are, respectively, fits to Eqs. �16� and
�19�.

TABLE II. Parameters defining the configurational �Eq. �19�� and excess
vibrational �Eq. �16�� entropies for the studied values of Nmax and �.

�Nmax,�� Sconf�Efb� �conf Svib
ex �Efb� �vib

�3, 0.20� 1.37 −0.79 −6.71 6.16
�3, 0.30� 1.55 −0.336 −6.60 4.83
�3, 0.35� 1.63 −1.02 −6.70 5.05
�4, 0.30� 2.11 1.02 −8.80 4.27
�4, 0.35� 2.26 0.49 −8.79 4.43
�4, 0.40� 2.28 0.93 −8.77 3.52
�4, 0.45� 2.33 0.87 −8.91 3.01
�4, 0.50� 2.33 0.77 −9.27 2.41
�5, 0.35� 2.28 1.84 −10.55 3.83
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We note that D is monotonic in � and hence that the maxi-
mum in the configurational entropy does not provoke a maxi-
mum in the diffusivity. We also note that an isochoric plot
�not shown� of log D vs �TSconf�T��−1 provides a satisfactory
linearization of the data, as suggested by the Adam-Gibbs
theory.66 This is not inconsistent with the observed Arrhenius
dependence of D, since the T dependence of Sconf�T� is only
at most 20% of Sconf�Efb�.

V. CONCLUSIONS

This article reports an explicit numerical calculation of
the potential energy landscape for a simple model of strong
liquids. It shows that it is possible to calculate with arbitrary
precision the statistical properties of the landscape relevant
to the behavior of the system at low T, when all particles are
connected by bonds. The model can be seen as a zeroth order
model for network-forming liquids, capturing the limited va-
lency of the interaction and the open structure of the liquid.
By construction, it misses all geometric correlations between
different bonds which are present in network-forming mate-
rials. The simplicity of the model has several advantages,
some of which are of fundamental importance for an exact
evaluation of the landscape properties. Hence, since angular
constraints between bonds are missing, it is possible to
equilibrate the system to very low T, reaching configurations
which are essentially fully bonded. At the lowest studied T,
less than 2% of the bonds are broken on the average. Differ-
ent from other studied models with fixed bonding site
geometries,67–69 the absence of geometric constraints makes

FIG. 12. � dependence of Stot
ex, Svib

ex , Sconf, and D for Nmax=4 along isothermal
0.15, 0.12, and 0.10. Dashed lines are guides for the eyes.
it possible to reach almost fully bonded states in a wide
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range of densities. Moreover, the use of a square-well inter-
action as a bonding potential has the advantage that the en-
ergy of the fully bonded state �the lowest possible energy� is
known.

The present model neglects completely interactions be-
tween particles which are not nearest neighbors. The energy
of a particle is indeed fully controlled by the bonds with the
nearby particles. This element of the model favors a sharp
definition of the energy and a clear-cut definition of basins.
On the other hand, in network-forming liquids, bonding is
often of electrostatic origin and interactions are not limited to
the first shell of neighbors. This produces a much wider va-
riety of local environments and, as a consequence, a spread-
ing of the energy levels. These residual interactions, if
smaller than the bonding interactions, will only contribute to
spreading the distribution of energy states without changing
the landscape features �down to T of the order of the energy
spreading�.

The use of square-well interactions has a major advan-
tage in relation to the possibility of precisely calculating
landscape properties, since the energy of the system becomes
a measure of the number of bonds. A basin in the configura-
tion space can be identified as a bonding pattern, and a tran-
sition between different basins becomes associated to bond
forming and breaking. Under these conditions, the basin
boundaries are properly defined. We have shown that the
method of the Perturbed Hamiltonian can be extended to the
present model, providing a formally exact method to evalu-
ate the vibrational component of the free energy. This is a

es. In all figures, from top to bottom, the isothermals are T=0.22, 0.20, 0.17,
curv
relevant achievement, since the evaluation of the vibrational
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entropy is the only weak point in all estimates of landscape
properties in models with continuous potentials.21,45 Indeed,
when the potential is continuous, the constraint of exploring
a fixed basin cannot be implemented unambiguously in the
Frenkel-Ladd method due to the difficulty of detecting cross-
ings between different basins. Such a difficulty is not present
in the square-well potential, since the crossing of a basin is
detected by a finite energy change.

The two relevant features observed in this study are �i�
the residual value of the configurational entropy for T→0
associated to the exponentially large number of distinct fully
connected bonding patterns and �ii� the logarithmic depen-
dence of the number of bonding patterns on the number
of broken bonds �Eq. �21��. These two features are common
to all investigated values of Nmax and to all studied �.
A consequence of the logarithmic landscape statistics is the
absence of a finite temperature at which the lowest
energy state is reached.70 Indeed from Eq. �19� it is found
that ��S /�E�E=Efb

=�, and hence Efb, is reached only at
T=0.

According to the picture emerging from this study,
strong liquid behavior is connected to the existence of
an energy scale provided by the bond energy, which is dis-
crete and dominant as compared to the energetic contribu-
tions coming from nonbonded next-nearest neighbor
interactions.71 It is also intimately connected to the existence
of a significantly degenerate lowest energy state, favoring the
formation of highly bonded states which can still entropi-
cally rearrange to form different bonding patterns with the
same energy. Of course, the specific value of Sconf�Efb� in the
Nmax model provides an upper bound to the value expected in
network-forming liquids,72,73 since the absence of angular
constraints significantly increases the number of geometric
arrangements of the particles compatible with a fully bonded
state. Recent estimates in glassy water,74 which forms a tet-
rahedral disordered network, suggest a residual value of the
configurational entropy of the order of �0.3kB. Hence the
localization of the bonding sites at specific locations and the
associated geometrical correlations do produce a significant
reduction of Sconf�Efb�.

Results reported in this article suggest that strong and
fragile liquids are characterized by significant differences in
their potential energy landscape properties. A nondegenerate
disordered lowest energy state and Gaussian statistics char-
acterize fragile liquids, while a degenerate disordered lowest
energy state and logarithmic statistics are associated with
strong liquids. These results rationalize the previous land-
scape analysis of realistic models of network-forming
liquids31 and the recent observation by Saksaengwijit et al.
that the breakdown of Gaussian landscape statistics is asso-
ciated with the formation of a connected network.43 While in
atomistic models the lowest energy state is not known and
the very long equilibration times prevent an unambiguous
determination of its degeneracy, both these quantities are ac-
cessible in the present simple model.

A last remark concerns the limit of the Nmax value for
which the fully connected state can be reached. The possibil-
ity of approaching the fully bonded state is limited by the

possibility of avoiding the �T−�� region where liquid-gas
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phase separation is present. It has recently been observed52–54

that the region of unstable states expands on increasing Nmax

and essentially covers, at low T, the entire accessible � range
when Nmax�6. For these large Nmax values, slowing down of
the dynamics is observed only at very large �, and it is
essentially controlled by packing considerations, not by
bonding. In this respect, bond-controlled dynamics are ob-
servable only when the valence of the interparticle interac-
tion is limited.
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