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Abstract
Recently we have studied, using numerical simulations, a limited valency
model, i.e. an attractive square well model with a constraint on the maximum
number of bonded neighbours. Studying a large region of temperatures T and
packing fractions φ, we have estimated the location of the liquid–gas phase sep-
aration spinodal and the loci of dynamic arrest, where the system is trapped in a
disordered non-ergodic state. Two distinct arrest lines for the system are present
in the system: a (repulsive) glass line at high packing fraction, and a gel line at
low φ and T . The former is essentially vertical (φ controlled), while the latter
is rather horizontal (T controlled) in the (φ–T ) plane. We here complement the
molecular dynamics results with mode coupling theory calculations, using the
numerical structure factors as input. We find that the theory predicts a repul-
sive glass line—in satisfactory agreement with the simulation results—and an
attractive glass line, which appears to be unrelated to the gel line.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, investigation of structural arrest in colloidal systems has witnessed a renewed
and large interest in the scientific community since new phenomena have been identified, in
particular when the particles interact via an attractive potential of range short enough compared
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to the size of the colloid [1]. Theoretical [2–4], numerical [5–7] and experimental [8–13]
studies have shown the existence of two different mechanisms responsible for the slowing down
characteristic of structural arrest. At high temperature T and high packing fractions φ of the
dispersed phase, caging effects prevail and produce the typical repulsive glass behaviour. At
low T , and slightly smaller φ, another mechanism sets in, due to the stickiness of the particles,
and generates a so-called attractive glass [14]. It was hypothesized at the beginning that the
latter mechanism could be one of the routes to the formation of a gel at low densities [3]. Many
investigations of these phenomena have been made [15, 16], but most of them were faced with
difficulties related to the existence of a two-phase region at low φ. In fact it was unambiguously
shown, for the case of short-range attractive potentials, that the arrest line intersects the binodal
line at its high-volume-fraction side [17, 18]. The crossing may be avoided if a lowering and
shrinking of the two-phase coexistence region is achieved.

One possibility to limit or suppress phase separation is to consider the effects of a
long-range repulsion complementing the short-range attraction. This type of potential,
able to mimic effects of screened electrostatic interactions, properly describes interactions
in charged colloidal suspensions. This route has been actively pursued very recently in
experiments [19–21], simulations [22–26] and theory [27–30].

Another possibility to limit or suppress phase separation, which does not invoke the
presence of repulsive long-range repulsion, is offered by saturation of bonding, i.e. by a
limit on the maximum number of bonded interactions. To prove this mechanism, we have
devised a model where an ad hoc constraint is adopted, in addition to a square well (SW)
interaction. We studied numerically a saturated SW model first introduced by Speedy and
Debenedetti [31, 32]7, also named the limited valency model. In this model, the square well
attraction between two particles is constrained to a maximum number of bonds nmax that
particles can form. By reducing nmax to low values such as 3, 4, 5, we found that the location
of phase separation is progressively shrunk both in φ and T [33]. Hence, reduction in the
number of bonds may avoid the crossing between the dynamic arrest and the binodal lines, or
move the crossing to much lower φ and T . Simulating this model, we showed that indeed the
avoidance of phase separation allows the emergence of arrested states at low φ, which have
quite different physical features than glasses, both of attractive and repulsive type. Completing
the study up to very large densities in [34], we detected the presence of two distinct arrest lines:
a gel line, practically flat in T , governed by Arrhenius dynamics, and a glass line, practically
constant in φ, corresponding to the standard hard sphere glass transition. All along the gel
line, the dynamic features are not reducible to those of attractive glasses, suggesting that the
two states in attractive systems do not necessarily correspond to the same phenomenon, and a
simple extension of the attractive glass line may not be always appropriate.

The purpose of the present work is to use the MCT in order to check the conclusions
obtained through numerical simulations, to clarify in particular the possibility of describing
the low φ equilibrium gel formation. To this aim, we compare here our numerical results of
references [33, 34] with predictions of mode coupling theory (MCT) for the same model, using
as input of the theory the ‘exact’ structure factors for the nmax model, calculated numerically.

2. Overview of the simulation results

The limited valency model described above has been recently studied in detail and we
summarize here the main results of the numerical investigation [33, 34]. Molecular dynamics
was performed in a square well attractive system of N = 104 particles of unit mass and hard

7 However, differently from [31, 32], we do not impose any constraint on minimal bonded loops.
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Figure 1. Spinodal and percolation lines (dashed and solid lines respectively) of the limited valency
model for nmax = 3 (circles), nmax = 4 (squares), nmax = 5 (triangles) and nmax = 12 (no
symbols).

core σ = 1 with a range of the well � such that (σ+�)/σ = 1.03 and depth u0. Temperature is
measured in units of u0, with the Boltzmann constant kB = 1. The maximum number of bonds
was limited to nmax = 3, 4, 5 as compared to the unconstrained SW, where nmax = 12. Indeed,
for nmax > 6, no significant difference in the phase behaviour was observed with respect to the
standard square well model. The main findings are reported in the following list summarizing
our results.

(i) The coexistence region in the (φ, T ) plane reduces in size as nmax decreases; the values of
φ above which the spinodal disappears are φ ≈ 0.20 and φ ≈ 0.30 for nmax = 3 and 4
respectively. The loci of percolation also shift to lower T values, and cross the two-phase
region on the low φ side, as shown in figure 1.

(ii) The bonds formed due to the attraction show a lifetime which follows an Arrhenius
behaviour in T .

(iii) The mean squared displacement develops a plateau at low T which defines a localization
length of the order of the particle size, much larger both than the length typical of a
repulsive glass due to caging (of the order of 0.1σ ) and than that of an attractive glass
(of the order of the well width). The diffusivity shows a power-law behaviour in φ along
constant temperature paths, while it displays an Arrhenius dependence on T for constant
volume fraction.

(iv) The normalized intermediate scattering functions show a corresponding plateau at low T
only for values of the momentum transfer q smaller than the value corresponding to the
first peak of the structure factor. This feature is rather different from the standard behaviour
close to a glass transition, and is similar to the behaviour of a chemical gel [35].

(v) The height of the plateau for the normalized intermediate scattering functions, i.e. the
non-ergodicity factor fq , has a different shape in q for the gel than both its attractive and
repulsive glass counterparts.

Based on these facts we concluded that the system shows a glass line at high φ and a gel
line at low T and low φ. More important, the dynamical behaviour observed close to the gel
line does not seem to allow the identification of the gel with the attractive MCT glass.
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3. Mode coupling theory

We solve the MCT equations to locate the ideal glass line(s) in the (φ–T ) plane. The
MCT, starting only from the structural information contained in the static structure factor
S(q), provides indication of the onset of non-ergodic behaviour [36]. Although the theory
is not strictly based on the hypothesis of pair additivity for the interaction potential, its
main (uncontrolled) approximation is the factorization of higher-order correlation functions
into products of pair correlation functions [36, 37]. Since the nmax model incorporates
many-body terms in the Hamiltonian [33, 34], we cannot expect the theory to work at its
best. Perhaps higher-order correlations should also be considered, as in the case of silica, a
tetrahedral network-forming liquid, where the triplet correlation function c3 provides a relevant
contribution to the MCT kernel [38]. Here, we limit ourselves to the standard version of MCT
calculation, because the random nature of the nmax bonds along the particle surface does not
produce any angular constraint, retaining the full sphericity for the model. However, it would
be interesting to check in a future work whether the inclusion of the corresponding three-point
correlators calculated within MD simulations produces any significant difference in the MCT
results.

MCT is able to predict the full time evolution for the density–density autocorrelation
function �(q, t) as a function of the momentum transfer q and t , through coupled non-linear
integro-differential equations. For a given interaction potential, through the knowledge of S(q),
the memory kernel entering the nonlinear term of the MCT equations can be evaluated and the
equation solved for various values of q . In particular, the non-ergodicity transition leading to
structural arrest is obtained by performing the limit t → ∞ in the equations. Defining the
non-ergodicity factor as the long-time limit of � correlator limt→∞ �(q, t) = f (q), f (q) is
found to be the solution of [36],

f (q)

1 − f (q)
= m(q) (1)

where the memory kernel m(q) is quadratic in the correlator itself,

m(q) = 1

2

∫
d3k

(2π)3
V(q, k) f (k) f (|q − k|). (2)

The vertex functions V , the coupling constants of the theory, are

V(q, k) = ρ

q4
[q · (q − k) c(|q − k|) + q · k c(k)]2 S(q)S(k)S(|q − k|) (3)

and depend only on the Fourier transform of the direct correlation function c(q), or equivalently
on S(q), and on the number density ρ. In the A2 bifurcation scenario of MCT [36] the solutions
of equation (1) jump from zero to a finite value at the ideal glass transition. The locus of the
fluid–glass transition can be calculated varying the control parameters of the system, φ and T .
For a square well model, there is an additional control parameter, that is the range of attraction
�. In this case, higher order bifurcations of the solutions arise when � < �∗ ∼ 0.041 [4]. In
this case, two distinct glassy solutions appear, a repulsive and an attractive glass respectively,
with different non-ergodicity parameters and mechanical properties [39].

We calculate the MCT ideal glass transition line for nmax = 3 using as input the numerical
S(q), ‘exact’ within numerical precision. In the evaluation of the MCT kernel of equation (2), it
is crucial to integrate over all q contributing to the memory function. For short-range attractive
potentials, it is important to integrate up to very large q values, since the information of the
potential shape is coded into the large q region. From a numerical point of view, it is convenient
to evaluate S(q) at large q by Fourier transforming the pair distribution function g(r), and at
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Figure 2. Inset: static structure factor for φ = 0.20 and T = 0.2 used as input in MCT calculated
directly from simulations (points), and by Fourier transform of the g(r) (line). Main: enlargement
of the large-q behaviour displaying ‘beats’. For comparison we also report the corresponding
asymptotic SW (differing only by a factor A in amplitude) and HS (out of phase) results.

small q by direct evaluation of S(q) in q-space. Indeed, bonding in g(r) is reflected by a very
large and constant signal between σ and σ +�, which fully accounts for the large-q behaviour
of S(q). For the same reason, the large-q ‘beats’ [40] in S(q) have the same shape as the
standard SW and carry information on the short-range potential. The asymptotic form of S(q)

for large q , both for the SW and the nmax model, is

Sasympt(q) = 1 − A

q3
{sin (qσ) − qσ cos (qσ) + (eβu0 − 1)[q(σ + �) cos (q(σ + �))

− sin (q(σ + �)) + sin (qσ) − qσ cos (qσ)]}. (4)

The amplitude A (which depends on T and φ) is different for the SW and nmax models,
being smaller in the nmax case, due to the reduced number of bonded neighbours. Combining
information from S(q) and g(r), an accurate description of S(q) over the entire relevant q
range is obtained, as shown in figure 2. In the SW case, the large-q oscillations resulting from
the narrow width of the square well potential are largely responsible for the MCT attractive
glass transition [4]. We solve the MCT equations in q-space in the window from 0 to 600σ−1,
with a mesh of about 0.3σ−1, for a total of 2000 q-vectors. We bracket the MCT arrest line
by locating two adjacent state points along isochores where a liquid and glassy solutions are
respectively found. The resulting MCT predictions are reported in figure 3.

At high densities, MCT results are very similar to those found for the simple SW [4, 39]
for the � = 0.03 case. Even in the nmax case, the MCT equations predict two distinct glass
lines, respectively an attractive and a repulsive one, and a glass–glass transition ending in an
A3 singularity [41]. A comparison between the MCT predictions for the SW and for the nmax

model is reported in figure 3. The glass lines for both models converge to the hard-sphere result
at high T and to the same locus for φ → 0. This is consistent with the expectation that at high
φ arrest is driven by packing, while at low φ the constraint on the maximum number of bonded
neighbours becomes irrelevant and hence the two models tend to become similar. Differences
with respect to the SW case are observed at intermediate φ.

In the SW case the ideal MCT attractive glass line is rather flat, monotonically decreasing
in T , almost merging into the spinodal on the left side of the critical point [39]. The nmax model
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Figure 3. Comparison of MCT predictions and spinodal lines for the SW case and for the nmax
model with nmax = 3. The inset shows an enlargement of the high-φ region, to visualize the
attractive and repulsive lines and the glass–glass transition.

shows instead a non-monotonicity of the T -dependence of the attractive line with decreasing φ,
causing the presence of a minimum in T for φ ≈ 0.4 and T ≈ 0.24. The significant suppression
of the attractive glass line in the nmax model at intermediate φ arises from the decrease in the
number of bonded nearest neighbours as compared to the SW case. The attractive glass line
has a maximum around φ ≈ 0.10 and T ≈ 0.3, before turning down following the spinodal
as in the SW case, on the left of the critical point. It is possible that the shape for φ � 0.1 in
the MCT line is an echo of the underlying increase of the compressibility at low φ due to the
close-by spinodal, since at low φ the MCT line roughly follows in shape the loci of constant
S(0) (see figure 6).

In the SW, the attractive and the repulsive glass lines differ essentially in the q-dependence
of the non-ergodicity parameter fq . The theory also allows us to calculate fq and its critical
value at the glass transition. As compared to the repulsive glass, the attractive glass is
characterized by much larger fq values, extending to much larger q . These features are also
displayed in the theoretical calculations for the nmax model. Along the attractive glass line,
for all φ values, from about φ = 0.05 up to φ = 0.54, the critical non-ergodicity parameter,
i.e. fq at the MCT transition, does not change significantly. Figure 4 shows the full q-vector
dependence for both types of glasses. We have also verified that in the attractive glass phase fq

is significantly dependent on T .
For comparison, we plot in figure 5 the non-ergodicity parameters estimated from the sim-

ulations, via a stretched exponential fit of the φ correlators [34], along the iso-diffusivity line
DT −1/2 = 0.0005. A transition from a gel to a glass is evident. However, the shape of fq

never resembles that of an attractive glass. The gel is characterized by non-ergodic features
only at large length-scales, due to the mobility of the network in the available free space, while
an attractive glass is strictly confined within the bond length. The main difference between the-
oretical and simulation results is that, although also in the gel bonds are on average permanent
on the timescale of the simulations at low T [34], the limited number of neighbours accounts
for residual motions of the particles. Hence, particles are confined by the attractive well width
only relative to each other, but still can freely explore up to their diameter length without ever
breaking the network. In the theoretical calculations, however, the presence of the short-range
bonds, manifested in the large-q tail of S(q), is responsible for the non-ergodic transition.
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Already at the SW level, the theory strongly overestimates the tendency to form an
attractive glass [42, 43]. Compared with numerical simulation [44], the theoretical attractive
glass line has to be shifted approximatively by a factor of three to four in T , while the repulsive
glass line needs only a 10% adjustment in φ. The correction of the location of the ideal MCT
lines provokes a major effect: the attractive glass line does not lie above the critical point but
meets the spinodal at low T on the right side [17]. If the overestimate of the attractive glass line
is properly taken into account, then one has to conclude that it is not possible to form arrested
states at low φ without the intervention of a phase separation. Recent simulation studies confirm
that this is the case independently from the width of the attraction range [18]. It is also necessary
to recall that the ideal MCT glass lines, especially when energetic caging is dominant, have to
be interpreted as cross-over lines, from a power law to an activated dependence of dynamic
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extrapolated glass, labelled as φc, and gel, labelled as D = 0, lines respectively from power law
and Arrhenius fits (Tc = 0) [34].

properties [45]. We can summarize the dynamical arrest behaviour in figure 6. One locus of
arrest is found at high φ, rather vertical and corresponding to the hard-sphere glass transition.
This locus is quite well described by MCT. Very different is the situation concerning the low T
slowing down. The isodiffusivity lines suggest a rather flat arrest line. Two different loci could
be associated with arrest at low T : one defined by the Tc of the power-law fits of the diffusivity
and one at T = 0 associated with the vanishing of D according to the Arrhenius law [34].
It would be tempting to associate the Tc-line with the attractive glass line predicted by MCT
and interpret the wide region between the two lines as a region of activated bond-breaking
processes [42].

Results for the present model provide evidence that a gel line cannot necessarily be
considered an extension of the attractive glass line. Here, a gel never transforms into an
attractive glass, but only into a repulsive glass with increasing φ. The competition between the
two arrested states seems also to produce anomalies in the dynamics of the same kind as those
found in the presence of MCT higher-order singularities [34]. In particular, these anomalies
correspond to a logarithmic relaxation for the density correlators in the liquid region close to
the singularity, accompanied by a sub-diffusive behaviour for the mean squared displacement
[44].

4. Conclusions

The aim of this work was to compare results for the dynamical arrest in the nmax model for
nmax = 3 with MCT predictions. Using the numeric S(q), ‘exact’ within the precision of
the statistical averages, we have solved the MCT equations and evaluated the glass lines. The
theoretical results differ only slightly from the SW case and do not provide any indication of
a gel line. According to the theory an attractive glass line (i.e. with the typical features of
the attractive glass as localization length ∼�2 and very wide fq) should be present. From a
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theoretical point of view, such a line arises from the large-q oscillations in S(q), i.e. from the
q-space signature of the short-range bonding. Hence, it has the same origin as in the SW. In the
simulation of the nmax model the bond localization is not observed, either in the MSD or in the
width of fq . We believe this is due to the fact that, although bonding is present, particles are
confined by the potential well only relative to each other. Indeed, at low φ, oscillations of parts
of the connected network are possible, preventing the observation of the MCT mechanism for
arrest. At small φ, even at extremely low T , when the bond lifetime becomes comparable to the
simulation time and bonds between particles are essentially permanent, it was shown in [34]
that the plateau of the MSD remains of the order of the particle size. Of course, the inclusion
in the MCT calculation of higher-order correlation functions could be important in the study
of a many-body interaction and should be considered. However, due to the sphericity of the
model, our opinion is that this should not make a significant change, i.e. the prediction for the
attractive glass transition should be robust in this respect.

In summary, the present study provides a clear indication that in the present model,
where the liquid–gas phase separation can be avoided and arrest at low φ can be explored
in equilibrium conditions, the observed arrested state is substantially different from the the
low-φ extension of the attractive glass. In the present model, in which bonding interactions
are not strongly directionally constrained, large amplitude motions are possible within the fully
bonded network. These modes significantly affect the shape of the correlation functions and
make it impossible to observe the short-range localization characteristic of the attractive glass.

The comparison with the solution of the MCT equations for the nmax model (a possibility
offered by the spherical symmetry of the interaction potential) confirms that MCT significantly
overestimates the role of the bonding, predicting an attractive glass even in the present case.
The present results strongly suggest that the attractive glass is an arrested state of matter which
can be observed in short-range attractive potentials only at relatively high φ, being limited by
the spinodal curve. When the inter-particle potential favours a limited valency, arrest at low
φ in the absence of phase separation becomes possible but with a mechanism based on the
connectivity properties of the particle network. The dynamic features of this slowing down, at
least in this model of geometrically uncorrelated bonds, are clearly different from what would
be the extension of the (attractive) glass line.
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