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We introduce a simple spherical model whose structural properties are similar to the ones generated
by models with directional interactions, by employing a binary mixture of large and small hard
spheres, with a square-well attraction acting only between particles of different sizes. The small
particles provide the bonds between the large ones. With a proper choice of the interaction
parameters, as well as of the relative concentration of the two species, it is possible to control the
effective valence. Here we focus on a specific choice of the parameters which favors tetrahedral
ordering and study the equilibrium static properties of the system in a large window of densities and
temperatures. Upon lowering the temperature we observe a progressive increase in local order,
accompanied by the formation of a four-coordinated network of bonds. Three different density
regions are observed: At low density the system phase separates into a gas and a liquid phase; at
intermediate densities a network of fully bonded particles develops; at high densities—due to the
competition between excluded volume and attractive interactions—the system forms a defective
network. The very same behavior has been previously observed in numerical studies of nonspherical
models for molecular liquids, such as water, and in models of patchy colloidal particles. Different
from these models, theoretical treatments devised for spherical potentials, e.g., integral equations
and ideal mode coupling theory for the glass transition, can be applied in the present case, opening
the way for a deeper understanding of the thermodynamic and dynamic behavior of low valence
molecules and particles. © 2007 American Institute of Physics. �DOI: 10.1063/1.2799522�

I. INTRODUCTION

The study of dynamic arrest in atomic and molecular
systems is an active field of research.1 Close to the glass
transition, in a small window of values of the external pa-
rameters �temperature or density/pressure� the dynamics of
the system slows down by 15 or more orders of magnitude.
The slowing down of the dynamics varies in the temperature
or density/pressure dependence from an Arrhenius law for
the so-called strong network glass-forming liquids to a more
complex super-Arrhenius behavior for fragile glass-forming
liquids.2 Signatures of the slowing down of the dynamics are
observed at temperatures higher �or density lower� than the
calorimetric glass transition and have been interpreted as the
genuine precursor of the arrest phenomenon by the ideal
mode coupling theory �MCT�.3 The study of the dynamics in
colloidal systems4–7 has added new fuel to the discussion on
dynamic arrest. Experimental realizations of simple models
amenable to theoretical investigation have considerably
boosted the understanding of the glass phenomenon and
opened up an ampler view by adding to the arena the gela-
tion issue, i.e., the possibility of observing arrest at low den-
sity, driven by the formation of interparticle attractive bonds.
Indeed, nowadays it is possible to realize colloidal systems,
which closely follow the hard-sphere equation of state, as

well as to control an additional attractive interaction, both in
range and in strength, moving the field of colloidal liquids
toward molecular systems.8

Recent studies have shown that when the hard core is
complemented by a spherical attractive potential, phase sepa-
ration preempts the possibility of continuously approaching
the slowing down of the dynamics at low density. For
Lennard-Jones particles, Sastry9 showed that the glass line
intersects the liquid-gas spinodal on the liquid branch, sug-
gesting that homogeneous arrested states are only possible
for significantly large densities. More recently, the same sce-
nario has been shown to hold even in the limit of very short-
ranged spherical attractions,10,11 down to the Baxter limit �in-
finitesimal attraction range�. On the other hand, a series of
studies has suggested that a progressive arrest at small pack-
ing fraction can be observed if the interparticle interactions
are highly directional �patchy interactions�, when the effec-
tive valence becomes small.12 On decreasing the valence be-
low six, the gas-liquid unstable region progressively shrinks
to smaller densities, opening up an intermediate region
where a stable network of bonded particles forms. The
shrinking of the unstable region can be tuned continuously
down to vanishing densities on decreasing the valence down
to two.13 When the average valence is slightly larger than
two, it is possible to observe empty liquids, i.e., states with a
temperature smaller than the critical temperature but with an
extremely small liquid-state density. Numerical studies of thea�Electronic mail: emanuela.zaccarelli@phys.uniroma1.it
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dynamics of liquids with patchy interactions have shown that
the bond lifetime of the liquid network progressively in-
creases upon cooling, providing evidence of the possibility
of approaching arrested states continuously. The slowing
down of the dynamics in the newly accessible density region
follows an Arrhenius law.14–16 The arrest transition can be
simultaneously interpreted in terms of equilibrium gelation
in the colloid community7,14 and of strong-glass formation in
the supercooled liquids community.15,16 These studies have
clearly shown that reduction of valence is an essential ingre-
dient for extending the glass line from the high density/
pressure region, dominated by repulsion, to intermediate re-
gions where attraction and repulsion cooperate, down to the
region of lower densities where attraction becomes the domi-
nant arrest mechanism. The recent availability of patchy col-
loidal particles17–19 or colloids with valence20 will probably
make possible, in the near future, to verify experimentally
such findings. Particularly relevant for the present model
could be experimental studied involving mixtures of differ-
ent particles with specific adhesion.21,22

Simulations constitute a well documented technique for
studying the static and dynamic properties of nonspherical
models. Differently, theoretical approaches are still not well
developed when the geometry of the bonding pattern is such
that interparticle correlations propagate over several neigh-
bors. The situation is even worse for microscopic theories of
the glass transition, requiring structural quantities as input
data. For the case of molecules, molecular23–26 and
site-site27–29 extensions of MCT have been developed, but
their use has been limited due to the nature of the approxi-
mations and to the complexity of the calculations. An effec-
tive spherical approximation for nonspherical potentials has
also been recently reported.30 For these reasons, the theoret-
ical evaluation of the MCT glass line for patchy nonspherical
models has never been attempted so far. For the case of water
�at ambient pressure� a molecular-MCT calculation has been
reported.24,31 Besides water, the only network-forming sys-
tem whose slow dynamic properties have been
investigated—starting from appropriate structural
properties—is silica.32–34 In the investigated model of silica,
the network is formed by a binary mixture of two spherically
interacting particles and hence all the complications associ-
ated with angular constraints are missing. Theoretical studies
of silica have been limited to one specific value of the den-
sity and no clear picture of the glass line in the T-� plane has
been provided.

As a first step toward a simple network-forming model
for which theoretical calculations of the location of the arrest
line in the phase diagram are in principle feasible, we intro-
duce here a simple binary mixture model of particles inter-
acting via short-range square-well potentials and which is
able to reproduce the same pattern �both for structural and
dynamic quantities� of the previously studied nonspherical
patchy models. The idea is borrowed from existing models
for silica based on pairwise additive interactions35 but with a
much simpler interaction potential. Due to the absence of the
long-range electrostatic interactions, the model can be simu-
lated in the entire phase diagram and the slowing down of
the dynamics can be followed over a window of more than

five orders of magnitude. The present article provides an
evaluation of the structural properties of this model, based on
extensive event-driven molecular dynamics simulations. A
future companion article36 will report the dynamic properties
of the model. The manuscript is organized as follows: Sec. II
introduces the model; Sec. III reports the results for the
structural, energetic, and geometric properties. Section IV
discusses the phase diagram, complemented by the study of
various thermodynamic loci, while Sec. V is devoted to
conclusions.

II. THE MODEL

Previously studied simple models for network-forming
liquids are based on many-body interactions12,37 or angular
constraints.13,38 Here we introduce a simple model retaining
both pairwise additivity and spherical interactions, but which
is capable of producing geometrical arrangement into a lo-
cally ordered network structure. The oxymoron spherical
model with directional interactions is realized through the
introduction of a second species in the mixture that repre-
sents a sort of floating bond. In this way, an effective one-
component directional potential for the colloidal particles is
obtained.

In more details, we consider N1 hard-sphere colloids �for
which we reserve the name particles in the following� with
diameter �11. We mix them with N2 small particles with
hard-sphere diameter �22 �named floating bonds in the fol-
lowing�. Particles and floating bonds interact via a nonaddi-
tive �NA�, short-ranged, attractive square-well potential of
depth −u0 and range �. Thus, the floating bonds link particles
providing a connection between them. More precisely the
interaction potential is

V11�r� = �� r � �11

0 r � �11,
�

V12�r� = �� r � �12
NA

− u0 �12
NA � r � �12

NA + �

0 r � �12
NA + � ,

� �1�

V22�r� = �� r � �22

0 r � �22
�.

We choose the potential parameters in such a way that �i�
each floating bond binds no more than two particles and �ii�
the maximum number of floating bonds binding to a single
particle is fixed, providing the valence of the model. To en-
force condition �i�, we recall that three identical touching
hard spheres of diameter �11 create a cavity which can in-
corporate a hard sphere with diameter up to dc= �2/	�3�
−1��11=0.1547�11, making contact with each of the three
spheres. Hence, if the geometric condition �12

NA+�� ��11

+dc� /2 is met, the floating bond can only be simultaneously
involved in two attractive interactions. We choose �12

NA

=0.55�11 and �=0.03�12
NA so that 2��12

NA+��−�11

=0.134�11�dc. As a result of this choice, a floating bond
can be isolated �with potential energy zero�, bonded to one
particle �potential energy −u0�, or bonded to two distinct par-
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ticles �potential energy −2u0�. Only in the last case, the float-
ing bond provides a link between the two particles, which are
thus considered bonded and belonging to the same cluster.

To satisfy the limited valence condition �ii� we fix the
hard-sphere diameter of the floating bonds �22, determining
the closest distance between them. To model a system with
valence four �with tetrahedral ordering� we choose �22

=0.8�11 �and hence, the mixture considered here has a nega-
tive nonadditive parameter �=�12

NA/ ��11+�22�−1
−0.69�.
This choice is dictated by geometric considerations. Indeed,
the distance between vertices of a perfect tetrahedron is
2	6/3 times the distance between the center and the vertex.
The distance of an interacting floating bond from the center
of a particle varies between �12

NA and �12
NA+�. Hence, a tetra-

hedral arrangement requires a value of �22�2	6/3��12
NA

+��
0.93�11. To prevent the possibility of a planar square
arrangement of bonds �a geometry which would allow a va-
lence of six, with four bonds on the equatorial plane and two
bonds on the poles� we need to impose �22� ��12

NA+�� /	2

0.802�11. We have checked that our choice �22=0.8�11

never generates particles connected to more than four float-
ing bonds. Finally, we fix the number ratio between particles
and floating bonds following the stoichiometry of the system,
i.e., by imposing that in the fully bonded ground state all
particles participate to four bonds and that all floating bonds
have energy −2u0, i.e., N2 /N1=2.

We study a system of N1=1000 particles and N2=2000
floating bonds, and perform standard event-driven molecular
dynamics simulations in the NVE ensemble. For the smallest
studied temperatures, equilibration requires several months
of CPU time. Packing fraction is defined as �
=	N1��11/L�3 /6, i.e., as the fraction of volume occupied
only by the particles. In these units, taking into account the
minimal and maximal bond distances, between two particles,
the diamond crystal is mechanically stable between 0.233
���0.255 �since a diamond crystal of touching hard
spheres has �
0.340�. Units of length and energy are �11

and u0, while the Boltzmann constant kB is set equal to 1. We
equilibrated the mixture for a wide range of � and T, up to
�=0.56 and down to T=0.065. We notice that only for �

0.52 crystallization �into a fcc structure� was sometimes
�but not always� detected at low T.

The use of a square-well potential to model the interac-
tions makes it possible to unambiguously define the exis-
tence of a bond between two large particles. Indeed, if the
energy of a floating bonding particle is −2u0, then the two
large particles interacting with the floating bond particle are
considered bonded. In this way, large particles can be parti-
tioned into different clusters and the connectivity properties
of them can be examined. More explicitly, to test for perco-
lation, the simulation box is duplicated in all directions, and
the ability of the largest cluster to span the replicated system
is controlled. If the cluster in the simulation box does not
connect with its copy in the duplicated system, then the con-
figuration is assumed to be nonpercolating. The boundary
between a percolating and a nonpercolating state point is
then defined as the probability of observing infinite clusters
in 50% of the configurations.

III. STATIC PROPERTIES

A. Radial distribution functions

To visualize how directional interactions build up for
large particles upon decreasing temperature, we report the
behavior of the particles radial distribution function g11�r� in
Fig. 1.

At large T, no significant correlations are present and the
system behaves almost as a hard-sphere fluid mixture. The
first peak of g11�r� is found at �11. However, as T is lowered,
more and more particles are bonded within the attractive well
via a floating bond, so that for �11�r�2��12

NA+�� a larger
and larger correlation is built up. For r�2��12

NA+�� an anti-
correlation develops. When T�0.1, the peak of g11�r� shifts
from �11 to 2�12

NA, a signature of the progressive role played
by the floating bonds in structuring the particles: While the
growth at �11 saturates, that at 2�12

NA continues to increase.
A clear signal of the progressive structuring upon cool-

ing is provided by the increase of the nearest neighbor peaks.
The second peak is centered at a distance �1.78�11, while
the third one is found at �2.53�11. Such a sequence of peak
positions, with noninteger ratios, is typical of network-
forming systems with tetrahedral arrangement.39–41 It is also
important to notice that, for T�0.09, such peaks do not
show a significant variation in intensity, indicating that the
structuring process is essentially completed and that the sys-
tem has approached an almost perfect long-range tetrahedral
arrangement.

The density dependence of the partial radial distribution
functions is reported, for T=0.09, in Fig. 2. We first focus on
the evolution of g11�r� in the main panel. Data show that the
tetrahedral order, clearly visible at small and intermediate
densities �0.225���0.40�, is progressively lost with in-
creasing �. At this T, the curve corresponding to �=0.30
already shows small deviations in the location of the second
peak. For larger � the location of the second peak moves to
smaller distances and its amplitude decreases, while the first
peak is always found at �11 rather than �12

NA for �
0.30. A
similar shift and rearrangement is observed for secondary
peaks, as well as for the evolution of the other partial distri-
bution functions g12�r� and g22�r�, shown in the insets.

FIG. 1. �Color� Partial radial distribution function of particles g11�r� along a
low-� isochore, i.e., �=0.25, upon decreasing T.
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We further notice �not shown� that the �-value where
tetrahedricity starts to get progressively lost slightly in-
creases with T. However, for �=0.40, the structure even at
the lowest equilibrated T, which is actually the closest point
to the ground state structure that we could determine in our
long-running simulations �see below�, remains always far
from that of a tetrahedral network.

These results suggest that geometric frustration due to
packing acts against the formation of a tetrahedral network
above a certain �, giving rise to a competition between
energetic �directional attraction� and entropic �excluded vol-
ume� interactions.

B. Static structure factor

The structural properties of network-forming liquids
close to the glass transition have been widely investigated
experimentally,42–45 elucidating the presence of local order,
due to the orientations of the bonds between molecules,
within the disorder of the network. Here we study
the behavior of the normalized partial static structure
factors, i.e., Sij�q�= �� j�q��i�q�*� / �NiNj�1/2, where � j�q�
=�m=1

Nj exp�iq ·rm� is the wave vector q component of the
density of species j �and the sum runs over all Nj particles of
type j�. We focus only on the partial structure factor of par-
ticles S11�q�, aiming to emphasize those features that are
characteristic of the establishment of a fully connected net-
work of bonds.

Figure 3 shows the behavior of S11�q� as a function of T
at �=0.35. We notice that, at high T, S11�q� displays a near-
est neighbor peak centered around q�11�7, characteristic of
the hard-sphere interactions and of all simple liquids. As T is
decreased the height of such a peak also decreases, eventu-
ally giving rise at low T to a splitting in two peaks: One for
larger length scales at q�11�5 and one at smaller length
scales q�11�8.5. The first one seems to saturate at low T,
while the second continues to increase in amplitude. The
splitting of the main peak into two components is character-
istic of network-forming tetrahedral liquids39,46 and it is as-
sociated with the formation of an open local structure.

Simple integral equation theories are not able to predict
the splitting of the peak on cooling. We solved numerically
the binary Ornstein-Zernike equation for our mixture within
Percus-Yevick �PY� approximation47 at the same packing
fraction �=0.35 upon lowering T. Results are shown in the
inset of Fig. 3, together with a high-T numerical curve.
While at high T PY provides a good description of the sys-
tem, it fails severely upon lowering T, where the splitting of
the main peak is not at all captured. Moreover, numerical
convergence of the PY solution cannot be achieved for T
�0.125. Hence, the PY solution is only able to capture a
small decrease of the peak, without accounting for the for-
mation of the tetrahedral network, as expected due to the
symmetric approximation contained in PY. This stresses the
importance to develop more elaborated integral equations
which are able to account for the angular correlations intro-
duced by the bonding. In this respect, a step forward could
be made by exploring PY approximation applied to the asso-
ciative Ornstein-Zernike equation which generally provides
better results, compared to simulations, for network-forming
liquids.48,49

The structure factor also provides information on the
proximity to an unstable region since the low q behavior is
related to the system compressibility. Indeed, close to an un-
stable state of the particles, S11�q� increases significantly at
small q. Figure 4 shows S11�q� as a function of packing frac-
tion, from �=0.225 �just close to the phase separation liquid
boundary� to �=0.54 along a low temperature isotherm �T
=0.09�. On increasing �, the critical low q fluctuations dis-
appear, giving rise to the network two-peak structure, then
crossing continuously to a single-peaked standard S11�q� that
finally resembles that of high density simple liquids for �
�0.40.

The study of the structural properties reported so far
clearly indicates that the possibility of forming a well-
connected disordered tetrahedral network arises only in a fi-
nite window of intermediate densities, i.e., 0.225���0.40.
For smaller � values, particles are not close enough to form
a fully bonded structure and phase separation into a gas and
a bonded liquid is preferred. For larger values, the local den-
sity around each particle becomes more and more incompat-

FIG. 2. �Color� Partial radial distribution functions of particles g11�r� at
fixed low T=0.09 and varying �. In the insets also partial radial distribution
functions of floating bonds g22�r� and of mixed type g12�r� are shown.

FIG. 3. �Color� Normalized S11�q� for �=0.35 and varying T. Inset: Com-
parison with PY theoretical results.
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ible with the open structure which is characteristic of tetra-
hedral networks and packing becomes the leading driving
mechanism controlling the structure.

C. Energy

In the present model, attraction takes place only between
particles and floating bonds. Moreover, the interaction range
is such that each floating bond can interact simultaneously
only with up to two distinct particles. This has the very im-
portant consequence that, for the chosen N1 /N2 ratio, the
energetic ground state of the system is known, being equal to
two times the number of floating bonds �in units of −u0�. In
the present model, this means that a fully bonded configura-
tion has a ground state energy Egs=−2u0N2 or equivalently
Egs=−4u0N1. We notice that an energetic gain is at hand both
when a particle sticks to a floating bond �of contribution −u0�
and when a true bond is established between two particles
�of contribution −2u0�. To differentiate between these two
situations, we use E to indicate the potential energy of the
system �i.e., proportional the number of connections between
a particle and a floating bond�, while we use Eb to count the
potential energy associated with particle-particle bond con-
tributions �i.e., proportional to the number of floating bonds
with potential energy −2u0�. Of course, the two quantities
tend to become identical as T is lowered. We then define the
bond probability as pb��Eb−Egs� /Egs.

The possibility of knowing theoretically the ground state
of the system �a property shared with other limited valence
models13,15,16,50,51� offers the possibility of unambiguously
tracking the approach to the fully bonded state and detect the
range of densities where indeed the system may reach con-
tinuously Egs. It has been previously suggested50 that the
ability to reach in equilibrium almost fully bonded states is
indeed a specific feature of network-forming liquids.

Figure 5�a� shows the potential energy relative to the
ground state energy, expressed as E /Egs, as a function of �
for all studied temperatures. A magnification in semilogarith-
mic scale of the low-T isotherms is offered in Fig. 5�b� for
the positive ratio �E−Egs� /Egs. Except for high temperatures,
for which the � dependence of E is monotonic �as in simple
square-well models�, a minimum in density appears. Since

here the excluded volume interaction is modeled via a hard-
core interaction, the increase of E at large � can arise only
from a progressive breaking of the bonds. For intermediate
T, when the average number of bonds per particle is still
small, the minimum is met only at very large �. However,
upon lowering T, bonding becomes more and more extensive
and the density at the minimum progressively decreases,
reaching ��0.35 at the lowest studied T. The T dependence
of the density minimum is shown in the phase diagram
reported below �see Fig. 10�.

Figure 5�b� also shows that, in a large window of densi-
ties, the system is able to essentially reach the disordered
ground state. Indeed, up to �99% of the bonds �intended as
Eb� are formed. This window of densities is roughly the same
for which structural properties suggested the presence of a
tetrahedral network of bonds. Since particles have already
formed almost all possible bonds at the lowest studied tem-
peratures, a further decrease in T, beyond the ones which we
have been able to investigate, will not lead to further signifi-
cant structural changes.

Being the ground state energy a priori known, it is pos-
sible to investigate the T dependence of the energy on ap-
proaching the fully bonded state. To this aim, Fig. 6 shows
E−Egs versus 1/T in an Arrhenius plot for all investigated

FIG. 4. �Color� Normalized S11�q� for T=0.09 and varying �.

FIG. 5. �Color� Density dependence of the potential energy per particle
relative to the ground state energy along different isotherms: �a� E /Egs for
all studied state points and �b� �E−Egs� /Egs in a magnification of the low T
region in semilogarithmic scale.
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densities. Low � data are limited to the T region above the
liquid-gas instability. In the region where phase separation is
not encountered, a clear Arrhenius dependence is found.
However, for large enough densities, the energy decrease
tends to saturate to a finite constant value. Only at interme-
diate densities �0.225���0.40�, it appears to be possible to
reach a fully bonded �defect free� network. At larger densi-
ties the lowest energy state appears to be larger than the fully
bonded one, suggesting that the total volume constraint im-
poses the presence of a finite number of defects in the fully
bonded network. This is not surprising in view of the fact
that the establishment of a tetrahedrally coordinated environ-
ment enforces a constraint on the local density.

To quantify the Arrhenius behavior in an unbiased way,
we fit the T dependence of the potential energy with the
functional form

�E − Egs� = E0 + B exp�Ea/T� �2�

in the region where a sufficient bonding is present. To realize
this condition, we consider only state points where
�E−Egs� /Egs�0.825, in order to have the same fitting con-
ditions for all studied isochores. With the chosen fitting func-
tion, we can fully reproduce the behavior of E both in the
region where a fully connected network state is reached as
well as that for states where frustration comes into play.
Three fitting parameters are involved: E0, B1, and the activa-
tion energy Ea. The results of the fits for E0 and Ea are
summarized in Fig. 7 for all studied �. We observe that the
system approaches the expected ground state �E0=0� up to
roughly ��0.40, while a consistent increase of E0 is found
at larger �. Hence, beyond such � value, the system cannot
reach a fully bonded configuration due to the excluded vol-
ume contributions in the free energy. Even at vanishing tem-
peratures, when minimization of the energy is the dominant
driving force, it is impossible for geometric reasons to reach
a fully bonded state and the effective ground state, reached
along a constant � cooling path, is characterized by a non-
zero fraction of unformed bonds. Data in Fig. 6 show that it
is possible to unambigously define an optimal region for net-
work formation for 0.235���0.40 �the lower bound being

fixed by the presence of phase separation�. In this density
window, the fully bonded ground state can be reached in
equilibrium on isochoric cooling.

It is interesting to observe that the presence of a mini-
mum in E��� along isotherms is consistent with a defect-free
ground state, but only in a small region of densities. The
optimal network-forming region largely coincides with that
where the structural properties also show tethrahedral ar-
rangement, with the exception of the state points close to
�=0.40, where still E0→0 even though the network begins
to be deformed due to the increase in packing. Such feature
is only possible in the present model due to the flexibility of
the chosen interaction parameters.

The � dependence of the activation energy �bottom
panel� is also instructive. It is observed that Ea is slightly
larger than −0.5 within the optimal network-forming region,
showing an almost monotonic decrease up to ��0.50, then
a reversal of trend is observed at the highest studied values.
Note that the value 0.5 is the theoretical value expected for
the breaking process of independent bonds.52

The low T Arrhenius behavior carries with it another
important thermodynamic feature, the presence of a maxi-
mum in the constant volume V specific heat CV. The behav-
ior of CV along the studied isochores is reported in Fig. 8. In
this respect, the present model confirms the suggestion51 that
a line of CV maxima in the phase diagram is present when
bonding is the relevant driving force. Different from the
model in Ref. 51, a monotonic increase of the T value of the
CV maxima is observed upon increasing �. It is not a coin-
cidence that maxima in CV are also characteristic of revers-
ible self-assembly processes,53,54 i.e., of systems in which
bonding plays the leading role. The locus of CV maxima
extracted from these results will be discussed in Sec. IV.

D. Angular distribution of bonds

A direct measure of the tetrahedral structure of the net-
work is offered by the evaluation of the distribution of the
angle � between bonded triplets of large particles, repeating
the analysis that is usually performed for similar models.55–57

FIG. 6. �Color� Potential energy per particle E−Egs vs 1 /T. Note that at
intermediate densities an Arrhenius approach to the ground state is observed.
The dashed line is a reference curve with activation energy −0.5.

FIG. 7. �Color online� Effective ground-state energy ratio E0 /Egs �top� and
activation energy Ea �bottom� resulting from fits of �E−Egs� modeled as
Arrhenius law Eq. �2�.
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The angle distribution P��� is shown as a function of � for
T=0.075 in Fig. 9�a�. For ��0.30, P��� is almost indepen-
dent of �, suggesting the approach to a tetrahedral network
with almost fully connected particles. A peak close to the
tetrahedral angle is found, and an average value of the triplet
angle of �108.2. Also, around �=0.60 a secondary peak is
observed, a geometric signature of the presence of a small
number of three-particle rings.55,56 A Gaussian fit is at-
tempted �dashed curve in Fig. 9�a��, which works well only
in the large-� region, due to the presence of rings. In agree-
ment with the structural indicators discussed previously, P���
deviates more and more from the typical tetrahedral shape on
increasing �. When the excluded volume contribution be-
comes dominant over the attractive interactions, the main
tetrahedral peak is progressively lost and a wider distribution
is observed, accompanied also by a smaller average angle
and by an increase of three-particle loops.

In Fig. 9�b� a comparison of P��� for different four-
coordinated models is offered, completing the data already
presented in Ref. 16. In that work, P��� for a model without
any geometric correlation in the location of the bonding sites
�the Nmax model14,58,59�—showing a rather flat distribution of
angles due to the lack of preferred orientation between the
bonds �i.e., random bond organization�—was compared with
P��� for two models with well defined locations of the bond-
ing sites on the particles surface, the so-called primitive
models of water60 �PMW� and of silica �PMS�.61 The PMW,
at its optimal density, displays a quite sharp and narrow peak,
with an average angle 
109°, due to the rigid organization
of the bonding sites modeling the hydrogen atoms and the
lone pairs of the water molecule, with a roughly Gaussian
shape of P���. On the other hand, the PMS at its optimal
network-forming density has a wider and more asymmetric
distribution, which is peaked at lower angles ��90°. In
addition, the Nmax model was found to exhibit a dominant
contribution of three-particle loops or touching triplets
��=60° �, a feature that was absent in PMW and negligible in
PMS. Comparing the results for the present binary model to
the existing data, we observe that, within the optimal
network-forming region, the organization of particles is very

reminiscent of that of PMS, except for a shift of the peak
position, which is closer to the tetrahedral position, as well
as for a more pronounced presence of loops. Interestingly,
when � is increased, local tetrahedral order is lost, as for the
reported �=0.56 curve, and P��� tends to the Nmax distribu-
tion, confirming that the organization of the bonds becomes
increasingly random.

E. Liquid-gas unstable region

Although we do not perform accurate phase coexistence
studies, we can provide a rough estimate of the location of
the liquid-gas phase separation region and of the associated
critical point by a combined check of the time evolution of
the large length-scale structural properties, such as S�q→0�,
as well as of the pressure behavior along different isotherms.
The lowest investigated � where phase separation can be
ruled out at all studied temperatures is �=0.25. For lower �,
we detect an increase of S�q→0� as well as the development
of maxima and minima in the behavior of P��� �coming,
respectively, from small and large ��. We define, for each T,

FIG. 9. �Color� Distribution of the angle � between bonded particles triplets.
Full thin lines are guides to the eye. �a� P��� for various � at T=0.075. The
thick dashed line is a Gaussian fit to the low-� states, suggesting an average
angle �107.4 and variance �29.0, �b� Comparison of P��� in the optimal
network-forming density ��=0.25, T=0.075 triangles� with different four-
coordinated models: PWM �dot-dashed line�, PSM �full line�, Nmax �dashed
line� �all from Ref. 16�, as well as for the present model at two different
state points �triangles and circles�.

FIG. 8. �Color� Constant volume specific heat CV= ��E /�T�V for all studied
isochores.

174501-7 A spherical model with directional interactions. I. J. Chem. Phys. 127, 174501 �2007�

Downloaded 08 Feb 2008 to 141.108.6.119. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the location in � of such maxima and minima as the spinodal
points. We note that at T=0.1 the pressure dependence on �
does not show any loop, while at T=0.095 a small instability
region seems to be present �within our numerical resolution�
close to ��0.10. These two temperatures thus bracket the
critical temperature Tc. Hence, we estimate Tc

=0.095±0.005, while �c=0.10±0.025. A more accurate
evaluation of the critical parameters, with appropriate tech-
niques should be undertaken in future studies. We also note
that the value of � at which no critical fluctuations are ob-
served in the entire investigated T range is in close agree-
ment both with the Nmax model12 with coordination number 4
as well as with the PMW �Ref. 15� and PMS �Ref. 16� mod-
els, reinforcing the view that the valency is the control pa-
rameter for the location of the liquid-gas spinodal,13 under
single-bond conditions.

IV. A GLOBAL LOOK AT THE PHASE DIAGRAM

To summarize the static properties and to provide a co-
herent picture of the system behaviour, we discuss here the
phase diagram of the model, in combination with other rel-
evant thermodynamic and connectivity loci.

Figure 10 shows the liquid-gas spinodal, the locus en-
compassing the region of thermodynamic instability. It is
worth emphasizing that such instability region is confined to
densities much smaller than those observed in spherical at-
tractive potentials. Liquid densities are roughly half of the
typical value of normal liquids, highlighting the large empty
spaces which characterize the formation of a tetrahedral net-
work. At the same time, the small-� location of the liquid
branch of the spinodal shows that, in this model, it is pos-
sible to find a region of intermediate densities where, on
lowering T, the system remains homogeneous down to very
small T, a feature which is not possible with spherically sym-
metric attractive potentials. Moreover, the liquid branch of

the spinodal terminates in a region which is compatible with
the window of stability of the diamond crystal.62,63 This to-
pology of the liquid-gas coexistence is typical of models
with directional interactions, and it is here confirmed through
the use of our spherical binary mixture.

To provide an indication of the degree of bonding ob-
served in different regions of the phase diagram, Fig. 10 also
shows constant bond-probability lines �iso-pb lines�, i.e.,
lines of constant number of bonds per particles. Here a bond
is defined as a floating bond with potential energy −2u0. The
lines have positive slope, signaling that on increasing density
bond formation becomes favored. Only at very large � and
very large pb �only visible for pb=0.95 in the figure for the
highest density point�, a sharp change of slope �flat, then
negative at even larger pb� is found, associated with the dis-
ruptive effect of increasing density beyond the values for
optimal network formation.

Figure 10 also shows the percolation line and the locus
of CV maxima. State points on the right-hand side of the
percolation line are characterized by the presence of an infi-
nite cluster in �50% of the configurations. This definition of
percolation locus is strictly a geometric measure and does
not provide any information on the lifetime of the spanning
cluster.7 The percolation locus coincides, within numerical
resolution, with the pb=0.45 locus, suggesting that a constant
fraction of bonds is requested to percolate independently of
�. The pb value at percolation, pb

perc�0.45, is slightly larger
than the one for random bond percolation on a diamond lat-
tice, known to be pb=0.388,64 an effect which can be attrib-
uted to the disordered distribution of particles in the fluid.
The percolation locus is located above the critical point, con-
firming that the development of long-range correlated critical
fluctuations requires as a prerequisite the existence of a span-
ning network of bonded particles.65 The locus of Cv maxima
is located well inside the percolation region and, by compar-
ing with the iso-pb curves, it takes place when the bond
probability is �0.75. Compared with published data of mod-
els with different valencies,51,53,54 it appears that the CV

maxima line progressively moves to larger and larger pb val-
ues with increasing valence. The trend is thus opposite to the
one characterizing the valence dependence of pb

perc. Finally,
Fig. 10 also shows the locus of potential energy minima
along isotherms, i.e., for which ��E /���T=0, a line marking
the crossover from an unconstrained network of bonds to a
state in which bonding cannot be any longer optimized due
to volume constraints.

Additional information on the T and � dependence of the
properties of the model are reported in Fig. 11. This shows,
in addition to some of the lines reported in the previous
figure, the location of selected isobars with the pressure P
varying by more than two orders of magnitude. From the
constant-P paths, we evaluate the enthalpy H=E+ PV, and
we extract the behavior of the constant-pressure specific heat
CP= ��H /�T�P. We find the presence of clear maxima also in
CP, whose locus is also reported in Fig. 11. The line of CP

maxima is an example of a Widom line,66,67 which starts, by
definition, from the critical point. Its calculation therefore
also confirms the previously discussed estimate of the critical
point within our numerical resolution. Finally, we observe

FIG. 10. �Color online� Static phase diagram in the �� ,T� plane of the
studied spherical binary model. The reported lines are gas-liquid spinodal
�circles�, percolation line �x symbols�, locus of CV maxima �diamonds�, iso-
pb lines at selected values �triangles�, and energy minima �crosses�. Lines
are guides to the eye. Vertical dashed lines show the liquid boundary of the
spinodal line ���0.235� and the boundary ���0.40� between the optimal
network region, where bonds are primarily directional, and that of a disor-
dered network with defects, where directionality is progressively lost.
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that, in the investigated T region, there is no evidence of
anomalies in the density �constant P density maxima�, which
are commonly found in water models.15,68–70

V. CONCLUSIONS

In this article, we have introduced an opportunely de-
signed, spherical binary mixture model, which is able to gen-
erate a fluid with a effective coordination number of four.
Different from previously studied four-coordinate
models,12–16,71 the particle-particle interactions are spherical,
a feature which is important in order to allow a future com-
parison with theoretical approaches.

We have shown that the static phase diagram of the sys-
tem is very similar to the one reported for patchy
models,14–16,72 as well as for more sophisticated models of
network-forming liquids.35,69 Indeed, the unstable phase-
separating region of the system is confined to low packing
fraction � and small T, consistent with previous studies and
Wertheim theory calculations13 for four-coordinated par-
ticles. This reinforces the statement that, from the point of
view of suppressing phase separation, the arrangement of the
sticky points onto the particle surface is not qualitatively but
only quantitatively relevant.

The unstable gas-liquid region is followed at larger den-
sities by an optimal network region, i.e., a window of densi-
ties where the system can be equilibrated down to very low
temperatures observing a progressive formation of a tetrahe-
dral network of bonds. In this region, the system almost
reaches the fully bonded configuration, i.e., the disordered
ground state of the system and hence a further lowering of
the temperature would not produce any significant structural
change. For even larger densities, we observe a destruction
of the tetrahedral bonding, induced by the packing con-
straints. A signature of this effect is observed in both the
structure factor of the system, which crosses from the

tetrahedral-network form to the hard-sphere form as well
as in the progressive breaking of the bonds on isothermal
increase of the density.

It is also interesting to discuss the relative location of the
percolation locus, the locus of specific heat maxima and the
liquid-gas spinodal. In the present model, the percolation line
provides the first indication of the clustering process upon
lowering T. Successive cooling brings to the presence of a
line of CV maxima, and finally of the spinodal line. The
constant-volume specific heat maxima line appears to be a
characteristic of all bonded systems, since it is observed also
in the case of valence two53 where no percolation is present.
Its relative location has an opposite dependence on the bond
probability as compared to the percolation line, when studied
as a function of the valence. This suggests that, for values of
the valence larger than the one studied here, the line of CV

maxima may become buried in the region where equilibra-
tion is not feasible any longer, i.e., in the glass state. This
could be the reason why it is not observed in standard spheri-
cal models, such as a simple square-well potential.

Finally, we note that the possibility of generating the
complex pattern characteristic of tetrahedral liquids with a
simple binary mixture with pairwise additive square-well in-
teractions opens the possibility of applying the tools of mod-
ern liquid theory �which are nowadays particularly accurate
for spherical potentials� to the present case. It will also be
possible using theoretical and/or numerical structure factors
to investigate the dynamics of the present system using the
formalism of the mode coupling theory for the glass transi-
tion. Work in this direction is underway and a companion
paper on the dynamics will appear shortly.
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