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A molecular dynamics study of chemical gelation in a patchy particle model
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We report event-driven molecular dynamics simulations of the irreversible gelation of hard ellipsoids of

revolution containing several associating groups, characterizing how the cluster size distribution

evolves as a function of the extent of reaction, both below and above the gel point. We find that over

a very large interval of values of the extent of reaction, parameter-free mean-field predictions are

extremely accurate, providing evidence that in this model the Ginzburg zone near the gel point, where

non-mean field effects are important, is very limited. We also find that the Flory’s hypothesis for the

post-gelation regime properly describes the connectivity of the clusters even if the long-time limit of the

extent of reaction does not reach the fully reacted state. This study shows that irreversibly aggregating

asymmetric hard-core patchy particles may provide a close realization of the mean-field model, for

which available theoretical predictions may help control the structure and the connectivity of the gel

state. Besides chemical gels, the model is relevant to network-forming soft materials like systems with

bioselective interactions, functionalized molecules and patchy colloids.
I. Introduction

Irreversible polymerization is a mechanism of self-organization

of molecules that proceeds via the formation of covalent bonds

between pairs of mutually-reactive groups.1–3 If monomers with

functionality (number f of reactive groups on a monomer)

greater than two are present, branched molecules grow by reac-

tions and convert the system from a fluid of monomers into a well

connected cross-linked network, giving rise to a chemical gela-

tion process. At the gel point, a persistent network spanning the

sample first appears; the system is then prevented from flowing,

yet not arrested on a mesoscopic length scale. The development

of a network structure results, for example, from step polymer-

ization, chain-addition polymerization and cross-linking of

polymer chains.4,5 The same phenomenon is also observed in

colloids and other soft materials when the thermodynamics and

the molecular architecture favor the formation of a limited

number of strong interactions (i.e., with attraction strength much

larger than the thermal energy) between different particles.

Chemical gelation has been extensively studied in the past,

starting from the pioneering work of Flory1 and Stockmayer6

who developed the first mean-field description of gelation,

providing expressions for the cluster-size distribution as a func-

tion of the extent of reaction and the critical behavior of the

connectivity properties close to gelation. More appropriate

descriptions based on geometric percolation concepts have, in

the late seventies, focused on the non-mean field character of the

transition, which reveals itself near the gel point, extending to
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percolation the ideas developed in the study of the properties of

systems close to a second-order critical point. Several important

numerical studies,7–18—most of them based on simulations on

lattice—have focused on the critical behavior close to the

percolation point, providing evidence of the percolative nature of

the transition and accurate estimates of the percolation critical

exponents. As in critical phenomena, a crossover from mean-

field to percolation behavior is expected close to the gel transi-

tion.19 But, how the microscopic properties of the system control

the location of the crossover (i.e., how wide is the region where

the mean-field description applies) and how accurate is the mean-

field description far from the percolation point is not completely

understood. Another important open question regards the

connectivity properties of chemical gels well beyond percola-

tion.20 Even in the mean-field approximation, several possibilities

for the post-gel solutions have been proposed, based on different

assumptions on the reactivity of sites located on the infinite

cluster.20,21 Different propositions predict different cluster-size

distributions above the gel point and a different evolution with

time for the extent of reaction.

Here we introduce a model inspired by stepwise polymeriza-

tion of bifunctional diglycidyl ether of bisphenol A (B particles in

the following) with pentafunctional diethylenetriamine (A

particles).22 To incorporate excluded volume and shape effects,

each type of molecule is represented as hard homogeneous

ellipsoid of appropriate length, whose surface is decorated in

a predefined geometry by f identical reactive sites per particle (see

Fig. 1). In this respect, the model is also representative of

colloidal particles functionalized with a limited number of patchy

attractive sites,23 where the selectivity of the interaction is often

achieved building on biological specificity.24–26 The off-lattice

evolution of the system is studied via event-driven molecular

dynamics simulations, using a novel code that specifically

extends to ellipsoidal particles the algorithm previously designed

for patchy spheres.27 Different to previous studies, we do not

focus on the critical properties close to the gel-point, but study in
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Fig. 1 Graphic description of the A and B particles (left) and snapshot

of the simulated system (right). The centers of the small spheres locate the

bonding sites on the surface of the hard-core particle.
detail the development of the irreversible gelation process and

the properties of the cluster size distribution in the pre- and post-

gelation regime.

We find that the dynamic evolution of the system produces an

irreversible (chemical) gelation process whose connectivity

properties can be described, in a very large window of the extent

of reaction, with the Flory–Stockmayer (FS) predictions.1,2,6 This

offers to us the possibility to address, in a well controlled model,

the kinetics of the aggregation and to evaluate the extent of

reaction at which the breakdown of the Flory post-gel solution

takes place.
Fig. 2 Time dependence of the fraction of bonds p. Symbols: simulation

results (averaged over 40 independent realizations). For the chosen

stoichiometry, p coincides with the reacted fraction of A reactive sites, i.e.

the A conversion, or equivalently with the reacted fraction of B sites, i.e.

the B conversion. p¼ 1 would indicate that all possible bonding sites have

reacted. Time is measured in arbitrary units. Line: p(t) ¼ kt/(1 + kt), with

the fit-parameter k fixing the time scale. This functional form is expected

when any pair of reactive groups in the system is allowed to react, but

loops do not occur in finite size clusters.21
II. Method

We study a 5 : 2 binary mixture composed ofNA ¼ 480 ellipsoids

of type A and NB ¼ 1200 ellipsoids of type B, for a total of N ¼
1680 particles. A particles are modeled as hard ellipsoids of

revolution with axes a ¼ b ¼ 2s and c ¼ 10s and mass m; B

particles have axes a ¼ b ¼ 4s and c ¼ 20s, mass 3.4m. Simu-

lations are performed at a fixed packing fraction f ¼ 0.3. Five

(two) sites are rigidly anchored on the surface of the A (B)

particles, as described in Fig. 1. Sites on A particles can only react

with sites on B particles. Every time, during the dynamic

evolution, the distance between two mutually-reactive sites

becomes smaller than a pre-defined distance d ¼ 0.2s, a new

bond is formed between the particles. To model irreversible

gelation, once a bond is formed, it is made irreversible by

switching on an infinite barrier at distance rijAB ¼ d between the

sites i and j involved, which prevents both the formation of new

bonds in the same sites and the breaking of the existing one.

Hence, the newly formed bond cannot break any longer, and the

maximum distance between the two reacted sites is constrained

to remain smaller than d. Similarly, the two reacted sites cannot

form further bonds with available unreacted sites. The compo-

sition of the system and the particle functionality are such that

the reactive sites of type A and B are initially present in equal

number, fANA¼ fBNB, which in principle allows the formation of

a fully bonded state in which all the sites have reacted. This offers

a way to properly define the extent of reaction as the ratio p

between the number of bonds present in a configuration and the

maximum number of possible bonds fANA.
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Between bond-formation events, the system propagates

according to Newtonian dynamics at temperature T ¼ 1.0. As in

standard event-driven codes, the configuration of the system is

propagated from one collisional event to the next one. Note that

temperature only controls the time scale of exploration of space,

by modulating the average particle’s velocity. An average over 40

independent starting configurations is performed to improve

statistics.

III. Results

In the starting configurations no bonds are present by

construction. As a function of time, the fraction p of formed

bonds—a measure of the state of advancement of the reaction—

increases monotonically, until most of the particles are connected

in one single cluster (Fig. 2). As a result, p saturates around 0.86,

despite the fact that an equal number of reactive sites of type A

and B is initially present in the system.

Flory1 and Stockmayer6 laid out the basic relations between

extent of reaction and resulting structure in step polymerizations,

on the assumptions that all functional groups of a given type are

equally reactive, all groups react independently of one another,

and that ring formation does not occur in molecular species of

finite size. Only when p exceeds a critical value pc infinitely large

molecules can grow.1 In this respect the FS theory describes the

gelation transition as the random percolation of permanent

bonds on a loopless lattice.28 The present model satisfies the

conditions of equal and independent reactivity of all reactive

sites. The absence of closed bonding loops in finite size clusters is

not a priori implemented; as we will show in the following,

however, such a condition—favored by the poor flexibility of the

bonded particles and their elongated shape, the absence of an

underlying lattice and the asymmetric location of the reactive

sites—is valid in a surprisingly wide region of p values.

The FS theory predicts the p dependence of the cluster-size

distribution in the very general case of a mixture of monomers

bearing mutually reactive groups.6 In the present case, the

number nlm of clusters containing l bifunctional particles and m

pentafunctional ones can be written as:
This journal is ª The Royal Society of Chemistry 2008



Fig. 3 Distribution of finite size clusters ns for different fractions of

bonds p (a) below and (b) above percolation. Points are simulation data

and lines are the corresponding theoretical curves according to FS. The

dashed line represents the power law ns � s�2.5.

Fig. 4 (a) Gel fraction PN and its partition between particles of type A

(PA,N) and B (PB,N) vs. the fraction of bonds p (i.e. the extent of reaction

in the system). The inset shows the proportion of B particles to A particles

in gel (NB,N/NA,N – left axis) and in sol (NB,sol/NA,sol – right axis) vs. p. (b)

Number- and weight-average cluster size (xn and xw) prior to gelation and

for the sol after gelation vs. the fraction of bonds p. (c) Relation between

the number of finite size clusters (molecules in the sol) nsol and the frac-

tion of bonds p. The inset shows the number of loops nloop vs. p. In all

panels, symbols are simulation results and solid lines are FS predictions.
nlm ¼ NBNAp
lþm�1ð1� pÞ3mþ2

wlm

wlm ¼ ð4mÞ!
ðl �mþ 1Þ!ð4m� l þ 1Þ!m!

(1)

and the number ns of clusters of size s is obtained by summing

over all contributions such that l + m ¼ s, i.e., ns ¼P
lm,l + m ¼ snlm. As shown in Fig. 3a, on increasing p, the ns

distribution becomes broader and broader and develops

a power-law tail. The theory predicts a gelation transition when

pc ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfA � 1ÞðfB � 1Þ

p
¼ 0:5.1,6 Even close to p ¼ 0.5, the FS

prediction—which conforms to the prediction of random

percolation on a Bethe (loopless) lattice where ns � s�2.5 at the

percolation threshold—is consistent with the numerical data. On

further increasing p (Fig. 3b), the distribution of finite size

clusters progressively shrinks, and only small clusters survive.

Data show that eqn (1), with no fitting parameters, predicts

rather well the numerical distribution at any extent of polymer-

ization, both below and above the point where the system is

expected to percolate, including details such that the local

minimum at s ¼ 2.

To compare with the mean-field prediction of gelation at pc ¼
0.5, we examine the connectivity properties of the aggregates for

each studied value of p, searching for the presence of clusters that

are infinite under periodic boundary conditions. We find that

configurations at p ¼ 0.497 � 0.008 have not yet developed

a percolating structure while configurations at p ¼ 0.513 � 0.007

have. Hence, we locate the gel point at pc ¼ 0.505 � 0.007, in

close agreement with the theoretical mean-field expectations.

Beyond this point, the material that belongs to the infinite

(percolating) network NN constitutes the gel, while the soluble

material formed by the finite clusters that remain interspersed

within the giant network constitutes the sol. Fig. 4a shows that

the fraction of gel PN ¼ NN/N and even its partition between

particles of type A (PA,N ¼ NA,N/N) and B (PB,N ¼ NB,N/N)
This journal is ª The Royal Society of Chemistry 2008
calculated according to the FS theory,29 properly represent the

simulation results throughout the polymerization process.

Indeed, the proportion of B particles to A particles in gel and in

sol is a function of p (see inset). The relative amount of B

particles in the sol (NB,sol/NA,sol) increases as a consequence of

the preferential transfer of the A particles (having more reactive

sites) to the gel, in a way that the fraction psol of sites B in the sol

that have reacted (extent of reaction in the sol) differs from

the total fraction p of sites B reacted (extent of reaction in the

system). The constitution of the sol (Fig. 3b) results to be the

same as that of a smaller system made of NA,sol particles of type

A and NB,sol particles of type B reacted up to the extent psol.
1,30

The evolution of the cluster size distribution can be quantified

by the number- (xn) and weight-average (xw) cluster sizes of the

sol, defined as xn ¼
P

ssns/
P

sns and xw ¼
P

ss
2ns/

P
ssns. The

numerical results and the FS theoretical predictions are shown in

Fig. 4b. Both averages increase before gelation; then, they regress

in the sol existing beyond the gel point, since large clusters are

preferentially incorporated into the gel network. While xn
increases only slightly up to the gel point, never exceeding 3.5, xw
increases sharply in proximity of pc as well as sharply decreases

beyond this point, consistently with the fact that xw is singular at

percolation being dominated by large clusters. Again, simulation

data agree very well with FS predictions. Discrepancies between

theory and simulation—which reveal the mean-field character of
Soft Matter, 2008, 4, 1173–1177 | 1175



the FS theory—only concern the range of p very near pc,

suggesting that for this model the crossover from mean-field to

percolation is very close to the gel point—i.e., the Ginzburg

zone19 near the gel point, where non-mean field effects are

important, is very limited. A finite-size study very close to the

critical point would be requested to accurately locate the

percolation point and the critical exponents, a calculation

beyond the scope of the present work.

From a physical point of view, the change from mean-field to

percolation universality class is rooted in the presence of bonding

loops in the clusters of finite size, which pre-empts the possibility

to predict the cluster-size distribution. The realistic estimate of

the percolation threshold and the agreement between theory and

simulation (Fig. 3) suggest that the present model strongly

disfavors the formation of loops in finite clusters, at least for

cluster sizes probed in this finite-size system. As a test, we eval-

uate the total number of finite (sol) clusters nsol ¼
P

sns as

a function of the extent of reaction. If finite clusters do not

contain closed loops, nsol equals the number of particles in the sol

minus the number of bonds, since each added bond decreases the

number of clusters by one. This applies equally to the system

preceding gelation, or to the sol existing beyond the gel point.

Thus, at p < pc (pre-gelation) the relation between nsol and p is

linear, i.e. nsol ¼ N � 2NBp. At p > pc (post-gelation), nsol can be

calculated as nsol ¼ Nsol � 2NB,solpsol, where nsol is the number of

particles in the sol fraction (NB,sol of which bear reactive sites of

type B), and psol s p is the reacted fraction of sites B in the sol.

Hence, the relation between nsol and p crosses to a nonlinear

behavior, so that the number of clusters becomes one when p¼ 1.

As shown in Fig. 4c, the number of finite clusters found in the

simulation data conforms to the theoretical expectation for all p

values, both below and above the gel point. Hence, as a first

approximation, loops are only present in the infinite (percolating)

cluster and do not significantly alter the distribution of the finite

size clusters, both below and above percolation. The difference

between nsol found in simulation and the value predicted by the

FS theory counts the number of loops in the sol, nloop. Such

a quantity is shown in the inset of Fig. 4c. The maximum value of

nloop, achieved for p� pc, corresponds to 0.2% of the total number

of bonds. This demonstrates that intramolecular bonds within

finite clusters can be neglected, consistent with the Flory

hypothesis for the post-gelation regime.20 Fig. 4c also shows that

the linear relation between nsol and p is valid also after the gel

point (up to pz 0.6). This finding is in full agreement with recent

experimental studies22,31,32 on the polymerization of bifunctional

diglycidyl ether of bisphenol A with pentafunctional diethylene-

triamine, also suggesting that the number of cyclic connections in

the infinite cluster is negligible well above pc.

As a further confirmation of the absence of closed loops we

compare the time evolution of p with the prediction of the mean-

field kinetic modeling of polymerization, based on the solution of

the Smoluchowski coagulation equation.33,34 For loopless

aggregation, p(t) is predicted to follow

pðtÞ ¼ kt

1þ kt
; (2)

where the fit-parameter k, which has the meaning of a bond

kinetic constant, fixes the time scale of the aggregation process.

The time evolution of p is found to perfectly agree with the
1176 | Soft Matter, 2008, 4, 1173–1177
theoretical predictions21 (see Fig. 2) up to pz 0.6, i.e. beyond pc.

While the prediction would suggest that p(t/N) ¼ 1 (dash line

in Fig. 2), the simulation shows that the formation of a perco-

lating structure prevents the possibility of completing the

chemical reaction, leaving a finite number of unreacted sites

frozen in the structure. As shown above (Fig. 3), even in this

frozen state the cluster size distribution is provided by the Flory’s

post-gel hypothesis. Such a feature is not captured by the mean-

field Smoluchowski equation in which spatial information in the

kernels are neglected.
IV. Conclusions

A binary mixture of patchy hard ellipsoids undergoing chemical

gelation displays a very large interval of the extent of reaction in

which parameter-free mean-field predictions are extremely

accurate. The connectivity properties of the model are properly

described—without any fitting parameter—both below and

above percolation by the mean-field loopless classical FS

theory.1,21 The mean-field cluster size distribution for the sol

component is found to be valid for all values of the extent of

reaction, both below and above the gel point, suggesting that for

the present model, the Flory’s hypothesis for the post-gelation

regime properly describes the irreversible aggregation phenom-

enon, despite the explicit consideration of the excluded volume.

The absence of loops in finite size clusters, which is not

assumed by the model, results from the specific geometry of the

bonding pattern and by the presence of the excluded volume

interactions, disfavoring the formation of ordered bonding

domains. Hence, the geometry of the particles and the location of

the reactive sites on them may play a significant role in the

stabilization of the mean-field universality class with respect to

the percolation universality class,35 locating the crossover

between the two classes19 very close to the gel point. The present

study shows that irreversibly aggregating asymmetric hard-core

patchy particles, even if excluded volume effects are properly

taken into account, may provide a close realization of the FS

predictions in a wide range of p values. The model thus offers

a starting point—for which theoretical predictions are avail-

able—for further investigations of the gelation process and for

a more precise control over the structure and connectivity of the

gel state. In particular, full and detailed structural information

can be known along with the dynamics of the system, which may

be potentially useful to investigate the relation between structural

heterogeneity and heterogeneous dynamics,32 and to shed light

on the microscopic aspects of the dynamic crossover from short36

to long relaxation times,37 during irreversible polymerization.

While the structural properties are all well described by the FS

theory, the evolution of the extent of reaction, modeled via the

coagulation Smoluchowski equation, is properly described by the

theory only in the pre-gelation region. After gelation, kinetic

constraints due to the absence of mobility of the reactive sites

anchored to the percolating cluster or to smaller clusters trapped

inside the percolating matrix prevent the completion of the

reaction and the extent of reaction freezes (to p z 0.86 in the

present case) before reaching one (as eqn (2) would predict). A

proper modeling of the long-time behavior will require the

insertion of spatial information inside the kernels entering the

Smoluchowski equation. The freezing of the extent of reaction at
This journal is ª The Royal Society of Chemistry 2008



long times correspondingly freezes the cluster-size distribution to

that predicted by Flory for the reached p value.

In the present model, the entire polymerization process

proceeds via a sequence of FS cluster-size distributions, deter-

mined by p(t). Recently, it has been shown that the FS theory

also properly describes equilibrium clustering in patchy particle

systems when p is a function of temperature and density.38 It is

thus tempting to speculate that for loopless models, irreversible

evolution can be put in correspondence with a sequence of

equilibrium states, which could be sampled in the same system for

finite values of the ratio between temperature and bonding depth.

If this is indeed the case, chemical gelation could be formally

described as a deep quench limit of physical gelation. This

correspondence would facilitate the transfer of knowledge from

recent studies of equilibrium gels39,40 to chemical ones. Concepts

developed for irreversible aggregation of colloidal particles, like

diffusion- and reaction-limited cluster–cluster aggregation, could

be connected to chemical gelation. Work in this direction is

ongoing.
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