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We report theoretical and numerical evaluations of the phase diagram for a model of patchy
particles. Specifically, we study hard spheres whose surface is decorated by a small number f of
identical sites �“sticky spots”� interacting via a short-ranged square-well attraction. We theoretically
evaluate, solving the Wertheim theory, the location of the critical point and the gas-liquid
coexistence line for several values of f and compare them to the results of Gibbs and grand
canonical Monte Carlo simulations. We study both ordered and disordered arrangements of the sites
on the hard-sphere surface and confirm that patchiness has a strong effect on the phase diagram: the
gas-liquid coexistence region in the temperature-density plane is significantly reduced as f
decreases. We also theoretically evaluate the locus of specific heat maxima and the percolation
line. © 2008 American Institute of Physics. �DOI: 10.1063/1.2888997�

I. INTRODUCTION

Patchy particles are particles interacting via a limited
number of directional interactions. The anisotropy of the in-
teraction leads to collective behaviors different from those of
simple liquids. Gelation,1–5 gas-liquid phase separation,6,7

crystallization,8–10 and clustering are strongly affected by
patchiness.11–15 Recently, a new generation of colloidal par-
ticles with chemically or physically patterned surfaces has
been designed and synthesized in the attempt to provide va-
lence to colloids.11,16–20 This relevant synthesis effort aims to
generate superatoms—atoms at the nano- and microscopic
level—in order to reproduce and extend the atomic and mo-
lecular behavior on larger length scale. It also offers the pos-
sibility to export the supramolecular chemistry ideas21–23 to
new colloidal materials, opening the new field of suprapar-
ticle colloidal physics. Thus, a general effort to develop a
deeper understanding of self-assembly and to construct a
more unified theoretical underpinning for this technologi-
cally and scientifically important field is crucial. The out-
come of this effort may also have an impact in our under-
standing of the phase behavior of protein solutions due to
their intrinsic patchy character.24–27

Our recent work7 has shown that the Wertheim
theory28,29 describes rather well the critical properties of par-
ticles decorated on their surface by a predefined number of
attractive sites. The Wertheim theory is a thermodynamic
perturbation theory introduced to describe association under
the hypothesis of a single-bond per patch, which means that
an attractive site on a particle cannot bind simultaneously to
two �or more� sites on another particle. The single-bond per
patch condition can be naturally implemented in colloids by
choosing an appropriate small ratio between the range of the

attractive patches and the particle size. The single-bonding
condition results also from DNA complementarity30,31 as
well as from complementary “lock-and-key” interactions as-
sociated with biological specificity.32,33 These types of inter-
actions provide a versatile way of controlling interparticle
binding. An extension of the Wertheim thermodynamic per-
turbation theory to interpret and/or to predict the behavior of
a wide range of substances with potential industrial applica-
tions is provided by the statistical associating fluid theory34,35

and by its developments.36,37 Approaches extending integral
equation theories to models of patchy particles have also
been attempted.71–73

In previous works, we have shown6,7,38 that for patchy
colloidal particles with a small number of sticky sites, the
critical point of the gas-liquid phase separation moves to-
ward small packing fraction ��� and temperature �T� with
decreasing the number of patches. According to this study,
liquid phases of vanishing density can be generated once a
small fraction of polyfunctional particles is added to a sys-
tem of bifunctional ones. Indeed, the study of binary mix-
tures of patchy particles with different functionalities allows
one to explore also the range of noninteger valence down to
2. This means that with the new generation of nonspherical
sticky colloids,16,19 it should be possible to realize “empty
liquids,”7 i.e., states with an arbitrarily small occupied pack-
ing fraction at temperature lower than the liquid-gas critical
temperature. The shift with valence of the critical point, both
in density and temperature, leads to substantial changes in
phase behavior with branching: the reduction of the number
of bonded nearest neighbors is accompanied by an enlarge-
ment of the region of stability of the liquid phase in the
�T ,�� plane. This fact could favor the establishment, at low
T and at small �, of homogeneous disordered materials, i.e.,
equilibrium disordered states in which particles are intercon-
nected in a persistent network. At such low T, the bond life-a�Electronic mail: francesco.sciortino@phys.uniromal.it.
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time will become comparable to the experimental observa-
tion time. Under these conditions, it should be possible to
approach dynamical arrested states continuously from equi-
librium and to generate a state of matter as close as possible
to an ideal gel.3,5

In this article, we extend the preliminary study in Ref. 7
reporting a Monte Carlo investigation of the f dependence of
the critical point location for a model with a disordered ar-
rangement of patches. The present study confirms the trend
discussed in Ref. 7 for the corresponding ordered case. To
evaluate the role of the valence on the coexistence region, we
also numerically investigate the shape of the gas-liquid bin-
odal line for the ordered case and compare it with the theo-
retical predictions based on the Wertheim theory. Finally, we
analytically calculate several equilibrium properties, such as
the energy per particle, the specific heat, the extent of poly-
merization, and the percolation line, to get insights on their f
dependence.

We find that the reduction of valence is accompanied by
a significant shift of the coexistence curve toward low tem-
perature and density. The percolation line is always found to
lie above the critical point, merging with the gas-liquid spin-
odal at low density �. The liquid state is thus always charac-
terized by an infinite spanning network. This confirms the
possibility of observing, for large attraction strengths, dy-
namical arrested states driven by bonding �as opposed to
packing� in single phase conditions, i.e., homogenous ar-
rested states at low density.

We also provide in Appendix A a physical insight of the
Wertheim theory by showing that the theoretical expression
for the free energy in Refs. 28 and 29 is formally equivalent
to the free energy of a system of noninteracting clusters dis-
tributed according to the Flory–Stockmayer cluster size
distribution.39

II. THE MODEL

We focus on a system of particles modeled as hard
spheres of diameter � �our unit of length�, whose surface is
decorated by f bonding sites at fixed locations. Sites on dif-
ferent particles interact via a square-well potential. The in-
teraction V�1,2� between particles 1 and 2 is

V�1,2� = VHS�r12� + �
i=1

f

�
j=1

f

VSW�r12
ij � , �1�

where the individual sites are denoted by i and j, VHS is the
hard-sphere potential, VSW�x� is a square-well interaction �of
depth −u0 for x�� ,0 otherwise�, and r12 and r12

ij are, respec-
tively, the vectors joining the particle-particle and the site-
site �on different particles� centers. Geometric considerations
for a three touching sphere configuration show that the
choice �=0.5��5−2�3−1���0.119� guarantees that each
site is engaged at most in one bond. Hence, with this choice
of �, each particle can form only up to f bonds. We note that
in this model, bonding is properly defined: two particles are
bonded when their pair interaction energy is −u0. Distances
are measured in units of �. Temperature is measured in units
of the potential depth �i.e., Boltzmann constant kB=1�.

We study two different arrangements of the f sites on the
particle surface. In the first case, sites are arranged in a regu-
lar structure �see Fig. 1 of Ref. 7�. In the second case, the
distribution of the sites is random and different for each par-
ticle. In this latter case, the only constraint on the site posi-
tion is formulated on the basis of a minimum distance dmin

criterion between different sites on the same particle: the
choice of dmin aims to minimize the possibility of double
bonding between the same pair of particles as well as the
shading of a bonding site by the presence of a nearby bonded
site. We choose dmin=0.4.

III. THE THEORY

The first-order thermodynamic perturbation Wertheim
theory28,29,40 provides an expression for the free energy of
particles with a number f of attractive sticky sites on their
surface, independently of the specific geometric arrangement
of the sites. The theory assumes that all sites have the same
probability of forming bonds and that the correlation be-
tween adjacent sites is missing.

The Helmholtz free energy of the system is written as a
sum of the hard-sphere reference free energy FHS plus a bond
contribution Fbond. The Helmholtz free energy due to bond-
ing derives from a summation over certain classes of relevant
graphs in the Mayer expansion.40 In the sum, closed loops
graphs are neglected. The fundamental assumption of the
Wertheim theory is that the conditions of steric incompat-
ibilities are satisfied: �i� no site can be engaged in more than
one bond and �ii� no pair of particles can be double bonded.
These steric incompatibilities are satisfied in both our mod-
els, thanks to �i� the small � chosen for the short-ranged
square-well attraction and to �ii� the location of the sticky
sites on the hard-sphere particles surface. In the formulation
of Ref. 34, the bond free energy density of a system of
f-functional particles is

�Fbond

V
= � ln�1 − pb� f + 1

2�fpb, �2�

where �=1 /kBT, �=N /V is the particle number density, and
pb is the bond probability. Since we assume equal reactivity
for all sites, the bonding process can be seen as a chemical
reaction between two unsaturated sites in equilibrium with a
pair of bonded sites. In this respect, one can write

pb

�1 − pb�2 = �e−�Fb�3, �3�

where Fb is the site-site bond free energy, i.e., the free en-
ergy difference between the bonded and the unbonded states.

The Wertheim theory predicts an expression for Fb in
terms of the liquid state correlation functions and spherically
averaged Mayer functions. More precisely,

�3e−�Fb = f� , �4�

where � refers to a single site-site interaction �since all
bonding sites are identical� and it is defined as
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� = 4��
�

�+�

gHS�r12�	f�12�
	1,	2
r12

2 dr12. �5�

Here, gHS�r12� is the reference hard-sphere fluid pair
correlation function, the site-site Mayer function is
	f�12�
=exp�−VSW�r12

ij � /kBT�−1, and 	f�12�
	1,	2
represents

an angle-average over all orientations of particles 1 and 2 at
fixed relative distance r12. Since the Wertheim theory is in-
sensitive to the location of the attractive sites, the number of
interacting sites on each particle is encoded only in the factor
f before � in Eq. �4�. For a site-site square-well interaction,
the Mayer function can be calculated as41

	f�12�
	1,	2
= �exp��u0� − 1�S�r� , �6�

where S�r� is the fraction of solid angle available to bonding
when two particles are located at relative center-to-center
distance r �r�r12�, i.e.,

S�r� =
�� + � − r�2�2� − � + r�

6�2r
. �7�

The evaluation of � requires only an expression for gHS�r� in
the range where bonding occurs ��
r
�+��. We use the
linear approximation42

gHS�r� =
1 − 0.5�

�1 − ��3 −
9

2

��1 + ��
�1 − ��3 � r − �

�
 �8�

�where �= �� /6��3��, which provides the correct
Carnahan–Starling43 value at contact. This gives

� =
Vb�e�u0 − 1�

�1 − ��3 �1 −
5

2

�3�2 + 8�� + 3�2�
��15� + 4��

�

−
3

2

�12�� + 5�2�
��15� + 4��

�2 , �9�

where we have defined the spherically averaged bonding vol-
ume Vb�4���

�+�S�r�r2dr=��4�15�+4�� /30�2. We note
that the above expression of � simplifies in the low density
limit. Indeed, when �→0, the hard-sphere pair correlation
function tends to the ideal gas limit value gHS�r��1. In this
limit, � does not depend on �, i.e., �=Vb�e�u0 −1�. We note
that bonding takes approximatively place when exp��u0�
�1. Indeed, bond formation arises from a balance between
the energetic gain of forming a bond ��Ub=−u0� and an
entropy loss ��Sb�, which is expressed in the theory as loga-
rithm of the ratio between Vb and the volume per bonding
site, V / �fN�.44 Since Vb�V / �fN�, bonding becomes relevant
when �u0�1. In the following, we will thus approximate
�e�u0 −1� with e�u0 to simplify the theoretical expressions.

Once the free energy is known, it is possible to derive
various equilibrium properties of the system through thermo-
dynamic relations. We find expressions for the energy per
particle, the specific heat maxima, the extent of polymeriza-
tion, and the pressure of the system in terms of pb, which is
a function of T and � from Eq. �3�. The potential energy per
particle E /N is given by

E

N
=

���Fbond/N�
��

= − 1
2 fu0pb, �10�

i.e., it is exactly the fraction of bond times −u0f /2. The con-
stant volume specific heat CV can be calculated as

CV =
��E/N�

�T
=

1

2
f
u0

2

T2

pb�1 − pb�
1 + pb

. �11�

At each �, the specific heat has a maximum �whose ampli-
tude increases with f� at finite T, which defines a line of
specific heat extrema in the �T ,�� plane. The CV

max line can
be used as an estimate of the polymerization transition
line.45–50

In the characterization of the self-assembly of particles,
experimentalists often consider a quantity called extent of
polymerization �t�, which is normally measured by spec-
troscopy:  is defined as the fraction of particles bonded in
clusters. This quantity plays the role of order parameter in
the polymerization transition: it changes continuously from
the value of 0 at high T, when all particles are in the mono-
meric state, to the value of 1 at low T, when particles are
bonded in clusters. This crossover becomes sharper and
sharper upon decreasing �. Since the monomer density is
simply obtained by the observation that all of the sticky spots
on each particle must be unbonded, i.e., �1=��1− pb� f, the
extent of polymerization is given by

 =
� − �1

�
= 1 − �1 − pb� f . �12�

As a function of pb, the branched polymerization transition
becomes sharper and sharper upon increasing the functional-
ity of the system.

The pressure P of the system can be evaluated by deriv-
ing, respect to the volume, the Wertheim free energy, i.e.,
�P=−���F /�V�T. Thus, the bonding contribution to P is

�Pbond

�
= �f�1

2
−

1

1 − pb
 �pb

��
. �13�

In the low � limit �gHS�r��1�, it is possible to neglect the �
dependence of � and �Pbond /� becomes equal to − 1

2 fpb. Ap-
pendix A provides a physical understanding of this expres-
sion. The hard-sphere contribution to the pressure can be
evaluated via the Carnahan–Starling equation of state43

�PHS

�
=

�1 + � + �2 − �3�
�1 − ��3 . �14�

From the resulting V and T dependence of P, it is pos-
sible to evaluate the liquid-gas coexistence region in the
phase diagram, by solving the following set of equations:

Tg = Tl � T*,

Pg = Pl � P*, �15�

�
Vl

Vg

�P�V,T*� − P*�dV = 0,

where Tg, Pg, Vg, and Tl, Pl, Vl are the temperature, the
pressure, and the volume of the two coexisting phases, re-
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spectively. The third equation corresponds to the Maxwell
construction.

The main assumption of the Wertheim theory is that
molecule �or particles� cluster in open structures without
closed bond loops. The hypothesis of the absence of closed
bonding loops is also at the heart of the Flory–Stockmayer
theory, developed to model aggregation in chemical gelation.
The Flory–Stockmayer theory39 provides expressions for the
number density of clusters of n particles �n as a function of
the bond probability �the extent of the reaction in the Flory–
Stockmayer language�. For functionality f

�n = ��1 − pb� f�pb�1 − pb� f−2�n−1	n,

�16�

	n =
f�fn − n�!

�fn − 2n + 2�!n!
,

where ���nn�n=N /V is the total number density. In Appen-
dix A, we show that the Wertheim free–energy of Eq. �2� is
equivalent to the free energy of a system of noninteracting
clusters distributed according to Eq. �16�. Here, we make use
of the Flory–Stockmayer theory for providing an expression
to be used in conjunction with the bond probability derived
using the Wertheim theory to evaluate the location in the
�T ,�� plane of the percolation line �see also Ref. 74�. The
bond probability at percolation pb

p is

pb
p =

1

f − 1
. �17�

Figure 1 shows the resulting phase diagram evaluated
according to the Wertheim theory for three different values
of f . More specifically, it shows the relative location of the
phase coexistence line, the percolation, and the maxima of
specific heat line. According to the Wertheim theory, the co-
existence region becomes wider on increasing f . For the case
f =5, at low T the gas coexists with a liquid with number
density ��0.8, a value significantly smaller than the one

commonly observed for particles interacting via spherical
potentials. The percolation line merges into the coexistence
curve on the left of the critical point, confirming that a span-
ning cluster of bond is a prerequisite for the development of
a critical phenomena.51 For the shown f values, the locus of
CV

max is located below the corresponding percolation line, in
agreement also with the recent findings for a spherical model
with f =4.52 However, in the limit where f →2, realized via a
mixture of f =2 and f =3 particles with average functionality
2.055,38 the percolation line lies below the CV

max line. The
intersection of the CV

max line with the coexistence curve pro-
gressively moves from the left to the right of the critical
point on increasing f . Already for f =5, the density at which
the CV

max line meets the coexistence line is more than twice
the critical density. While it is not reasonable to extend the
Wertheim theory to large f values, it is tempting to speculate
that, on further increasing f , the intersection point will keep
on moving to larger densities so that in the spherical limit
case �with analogous range of interaction� the entire CV

max

line lies in a physically inaccessible region �due to packing-
driven kinetic arrest�.

IV. MONTE CARLO SIMULATION

We perform simulations of the first model discussed in
Sec. II �in which the sticky spots location is regular� with the
aim of evaluating the gas-liquid coexistence lines. We aim to
provide a definitive proof that reducing valence generates a
region of thermodynamic stability of the liquid phase down
to vanishing temperatures in a wide range of densities. Pre-
vious studies of the same models were indeed focused only
on the location of the critical point.7 We perform Gibbs en-
semble Monte Carlo �GEMC� simulations in order to evalu-
ate the phase coexistence region of one component systems
with functionality f . The GEMC method53 allows us to study
coexistence in the region where the gas-liquid free energy
barrier is sufficiently high to avoid crossing between the two
phases. We simulate for about 5�106 MC steps, where a

FIG. 2. �Color online� Gas-liquid coexistence regions in the �T ,�� plane on
varying f from 3 to 5. Points are GEMC numerical results for the model in
which the sticky sites are geometrically arranged on the particles surface.
Solid lines are Wertheim theoretical predictions for the coexistence curves
obtained from Eq. �15�. The numerical �stars� and theoretical �crosses� criti-
cal points from Ref. 7 are reported to help visualizing the critical behavior.

FIG. 1. �Color� Theoretical predictions for the phase diagram of patchy
systems on varying the particle’s functionality from f =3 to 5. Coexistence
curves and CV

max lines are evaluated according to the Wertheim theory, re-
spectively, from Eq. �15� and by finding the zeroes of the temperature de-
rivative of Eq. �11�, i.e., ��CV /�T�V=0. Percolation lines are evaluated ac-
cording to the Flory–Stockmayer theory as the locus of points in the �T ,��
plane such that pb�T ,��= pb

p �see Eq. �17��.
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MC step is defined as N�=105 attempts to translate and ro-
tate a randomly chosen particle, NN=103 attempts to swap a
particle between the gas and the liquid boxes and NV=100
attempts to modify the volumes. A translational/rotational
move is defined as a displacement in each direction of a
random quantity distributed uniformly between �0.05� and
a rotation around a random axis of random angle distributed
uniformly between �0.1 radiant. The choice of such a large
ratio between translation/rotation and swap attempts,
N� /NN=100, is dictated by the necessity of ensuring a
proper equilibration. In the case of particles with short-
ranged and highly directional interactions, this choice is rel-
evant since the probability of inserting a particle with the
correct orientation and position for bonding is significantly
reduced as compared to the case of spherical interactions.

We also study the model in which the sticky spots are
nonregularly distributed on the surface �see Sec. II�. In par-
ticular, we focus on the location of the critical point since the
values of critical temperature and density for the correspond-
ing ordered arrangement have already been studied.7 To as-
sess the effect of the randomness on the location of the criti-
cal point, we perform standard grand canonical MC �GCMC�
simulations. In this ensemble, the chemical potential �, the
temperature T, and the volume V are fixed. MC moves in-
clude the insertion and deletion of particles as well as par-

ticle translation and rotations. Translational and rotational
moves are identical to the one described above for GEMC. In
each particle insertion move, a particle with a different real-
ization of the location of the spots is placed in the box.
GCMC simulations are extremely helpful in the study of the
behavior of the system close to the critical point, since they
allow for a correct exploration of the large range of densities
experienced by systems in the vicinity of a critical point. To
locate the critical point, we perform simulations at fixed T,
�, and V, and we tune T and � until the simulated system
shows ample density fluctuations, signaling the proximity to
the critical point. Once a reasonable guess of the critical
point in the �T ,�� plane is reached, we start at least eight
independent GCMC simulations to improve the statistics of
the fluctuations in the number of particles N in the box and
of the potential energy E. The location of the critical point is
performed through a fitting procedure associated to histo-
gram reweighting54 and a comparison of the fluctuation dis-
tribution of the ordering operator M at the critical point with
the universal distribution characterizing the Ising class.55 The
ordering operator M of the gas-liquid transition is a linear
combination M��+su, where � is the number density, u is
the energy density of the system, and s is the field mixing
parameter. Exactly at the critical point, fluctuations of M are
found to follow the Ising model universal distribution.55

V. NUMERICAL RESULTS AND COMPARISON
WITH WERTHEIM PREDICTIONS

We first focus on the effect of patchiness on the phase
coexistence region when the particle’s functionality f is
small. Figure 2 shows the numerical phase coexistence
curves for systems with a number f =3,4 ,5 of attractive sites
geometrically distributed on the particle surface. The figure
clearly shows a strong reduction of the phase separation re-
gion, i.e., an extention of the region of stability of the liquid
phase on decreasing f . Similar behavior is shown by the
Wertheim predictions, despite the agreement gets worse on
increasing f . Hence, both theory and simulations confirm6,7

that the existence of a region of densities which is not af-
fected by phase separation is a characteristic of patchy inter-
acting particles systems. The reduction of the valence is thus
crucial for suppressing the low temperature ubiquitous pro-
cess of separation in a dense and dilute solution of particles
always observed with spherical potentials.

TABLE I. Values of the relevant parameters at the critical point for the geometric �Ref. 7� �f =3,4 ,5� and
random �f =4,5 ,6� cases: Tc is the critical temperature, �c is the density of the critical point, �c is the critical
chemical potential, s is the field mixing parameter, and L indicates the largest studied box size. B2

c /B2
HS is the

value of the reduced second virial coefficient at the critical point.

f Tc �c �c s L B2
c /B2

HS

3 geometric 0.094 0.141 −0.471 0.46 9 −28.772
4 geometric 0.118 0.273 −0.418 0.08 7 −5.080
5 geometric 0.132 0.351 −0.410 0 7 −2.866

4 random 0.102 0.208 −0.531 0.46 8 −21.978
5 random 0.118 0.258 −0.500 0.25 8 −8.500
6 random 0.133 0.310 −0.482 0.22 7 −4.258

FIG. 3. �Color online� Gas-liquid coexistence curves in terms of the reduced
temperature T /Tc and the reduced density � /�c for systems with f =3,4 ,5
sticky sites. Points are GEMC results for the geometric arrangements of the
patches while solid lines are the Wertheim theoretical predictions.
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Figure 2 also suggests that the small functionality of the
particles makes it possible to observe chains and clusters in
long-lived thermodynamic equilibrium. In other words,
patchiness offers a way of sampling equilibrium homoge-
neous states in a large region of intermediate and small den-
sities, where packing is not any longer the leading driving
force controlling the structure of the system. The shrinking
of the unstable region explains why particles interacting via a
limited number of functional groups tend to form, at low
temperature, open homogeneous structures, which are stabi-
lized by an extended network of long-lived bonds.

To assess if the shape of the coexistence curve does de-
pend on f , we show in Fig. 3 the same data of Fig. 2 repre-
sented as a function of reduced variables, T /Tc and � /�c.
While the Wertheim theory predicts a scaled width of the
gas-liquid coexistence that shrinks with f , numerical data
show that, far from the critical point, the curve for f =3 ap-
pears to be significantly wider than the one for f =4 and 5.
Instead, close to the critical point, the shape in reduced units
appears to be rather insensitive on f �in agreement with pre-
vious findings26�.

Next, we focus on the differences between a geometric
and a random distribution of the patches and, in particular,
on the f dependence of �c and Tc in the two different cases.
In the disordered case, we vary f from 4 to 6. The results of
the GCMC simulations are reported in Table I, together with
the corresponding quantities previously calculated for the
geometric case.7 The results for the critical point location in
the two models are also graphically illustrated in Fig. 4. The
same trend with f is shown by both models.

It is interesting to observe that keeping f constant, Tc and
�c both decrease on moving from the geometric to the ran-
dom arrangement of the sticky sites. This decrease suggests
that the propagation of the connectivity is less efficient in the
random patches case, speaking for �i� a waste of bond for-
mation possibilities and/or �ii� a failure in the development
of long range paths of bonds. Concerning point �i�, we note

that a random distribution of patches on the particle surface
may introduce correlation in the formation of adjacent bonds.
Indeed, the presence of a bonded interaction may induce a
screening effect �and, hence, a decrease in the probability of
forming bonds� on sites closeby located due to excluded vol-
ume interactions. Concerning �ii�, we note that a random
distribution of sites may also favor the formation of closed
loops of bonds due to a increase in the number of angular
possibilities which satisfy short ring structures, which are
known to suppress the critical phenomena.56 These observa-
tion can also explain why the Wertheim theory predictions
�which are based on the assumption of both independent
bonds and the absence of ring structures� are closer to the
geometric case model �see Table II�.

We note that Tables I and II also report the reduced
values of the second virial coefficient at the critical point
B2

c /B2
HS. The analytical expression of B2 /B2

HS is as follows:

B2

B2
HS = 1 − f2 3

4�
�e�u0 − 1�

Vb

�3 , �18�

where B2
HS=2��3 /3 is the hard-sphere virial coefficient.

We also evaluate the bond probability at the critical point
pb

c on varing f in both the geometric and random patches
models and we compare �see Table III� the two sets of values
with the Wertheim theoretical predictions. As previously ob-
served, the Wertheim predictions are closer to the regular
case, even if the theory is insensitive to the patches distribu-
tion on the particles surface. We also note that the critical
bond probabilities in the geometric model are comparable
with the ones recently calculated in Ref. 57 for particles with
the same bonding geometry interacting via the Kern–Frenkel
potential.58 On the other hand, pb

c for the random model is
significantly larger than for the ordered case, supporting our
scenario of a less efficient propagation of connectivity in the
random case as compared to the geometric one.

Finally, we report in Fig. 5 the critical fluctuations dis-
tributions P�M� of the order parameter M in both the geo-

FIG. 4. �Color online� Comparison between numerical results for patchy
particles with different number of sticky spots per particle in a geometric
�squares� and random �circles� arrangement. Panel �a� shows the location of
the points in the �T ,�� plane. Panels �b� and �c� compare, respectively, the f
dependence for Tc and �c. Data for the ordered case are reproduced from
Ref. 7.

TABLE II. Critical values of the temperature and density for 3� f �6
evaluated through the Wertheim theory. We also report the corresponding
values of the reduced second virial coefficient.

f Tc �c B2
c /B2

HS

3 theory 0.0925 0.086 −34.378
4 theory 0.1121 0.154 −8.498
5 theory 0.1275 0.212 −4.052
6 theory 0.1411 0.261 −2.414

TABLE III. Critical values of the bond probability pb for f varying from 3
to 6. Theoretical values are obtained solving Eq. �3� at the critical point,
while numerical ones are obtained as the ratio between the potential energy
at the critical point and the energy of the fully bonded system.

f pb
c theory pb

c geometric pb
c random

3 0.633 0.728
4 0.488 0.640 0.737
5 0.417 0.577 0.615
6 0.360 0.539
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metric and random patches models with f =5. The calculated
distributions are compared to the expected fluctuations at the
critical point for systems in the Ising universality class.55 The
comparison provides evidence that the transition belongs to
the Ising universality class in both studied cases. This is true
for each studied value of f . The inset of Fig. 5 shows the
corresponding density fluctuations distributions P��� at the
estimated Tc and critical chemical potential �c. The distribu-
tion becomes more asymmetric on decreasing �c, signaling
an increasing role of the mixing field s �see also Table I�.
This means that at equal f the density fluctuation distribu-
tions are more asymmetric in the random case rather than in
the geometric one.

VI. DISCUSSION AND CONCLUSIONS

In this article we study the f dependence of the critical
behavior in two different patchy models of f-functional par-
ticles. In both models, the patchy particles are hard-spheres
decorated on their surface by a small number of identical
sticky sites, interacting via a short-ranged square-well attrac-
tion. The difference between the two studied models is the
arrangement of the attractive sites on the particles surface. In
the first case, sites are arranged on a regular structure �see
Fig. 1 of Ref. 7� in the same geometry of recently synthe-
sized patchy colloidal particles.16–18 In the second case, the
distribution of the sites is random and different for each par-
ticle.

We compare numerical results and predictions of the
thermodynamic perturbation theory developed by
Wertheim.28,29 This theory assumes the condition of single-
bond per patch and neglects the possibility of forming loops
of bonded particles. As previously suggested in Ref. 35, the
free energy expression provided by the Wertheim theory can
be interpreted as the free energy of noninteracting clusters.
We show in Appendix A that the corresponding cluster size
distribution is the one provided by Flory and Stockmayer in
their seminal work on chemical gelation.39,59 In this respect,

our study provides an effective expression for describing the
density and temperature dependencies of the free energy in
self-assembly of branched structures and networks. The
theory of equilibrium association for systems that form
branched structures is receiving particular attention in the
last years,38,49,56,60–62 since these systems are found in many
technological and biomedical applications, as well as in
many biological processes. Thus, it is crucial to provide a
general approach for describing the thermodynamics of the
branched polymer self-assembly over the whole range of
temperatures, extending to branched system the work devel-
oped in the last decades for the case of self-assembling
chains and wormlike micelles.48,63,64.

We explicitly solve the Wertheim theory for the chosen
site-site interaction and we evaluate lines of specific heat
maxima �a signature of the presence of a specific bonding
process� and the gas-liquid coexistence lines for 3� f �5.
Thanks to the mapping between the Wertheim theory and the
Flory-Stockmayer approach, we also provide expressions for
the dependence on f of the percolation line. We find that, for
all studied f , the percolation line merges into the phase sepa-
ration curve on the left hand side of the critical point, while
the intersection between the CV

max line and the coexistence
curve moves from the left to the right of the critical point on
increasing f . Even if the Wertheim basic assumptions cannot
be extended to high valence cases, we speculate that on fur-
ther increasing f the intersection between coexistence and
CV

max line will further shift to larger densities. In this respect,
the absence of a CV maximum in the spherical case could be
due to the fact that the entire CV

max line lies in a region of
large densities, made physically inaccessible by the progres-
sive slowing down of the dynamics on approaching the glass
transition. Indeed, on increasing f , the patchy potential tends
to a spherical square-well model with analogous range of
interaction. For spherical potentials, it has been shown that
the glass line—which provides the large-density limit of sta-
bility of the liquid state65,66—intersects the coexistence line
at a finite temperature and density.

The Wertheim predictions for the gas-liquid coexistence
curve are compared to the results of Gibbs Monte Carlo
simulations of the regular patches arrangement model. We
find that the reduction of the number of patches is accompa-
nied by an enlargement of the region of stability of the liquid
phase in the �T ,�� plane, confirming the scenario suggested
in Ref. 7.

Both the Wertheim theory and the simulations show that
in models of reduced valence, states with u0�kBT can be
approached in equilibrium and reversibly. Thus, in the pres-
ence of patchy interactions, it becomes possible in a wide
range of densities to cool down the system progressively via
a sequence of equilibrium homogeneous states. This is not
possible in systems composed of spherically interacting par-
ticles for which phase separation always destabilizes the for-
mation of a homogeneous arrested system at low T. Explor-
ing homogeneous states at low temperature opens the way
for sampling thermodynamic states characterized by bonds
with very long lifetime. When the bond lifetime becomes
comparable to the experimental observation time, a dynamic
arrest phenomenon at small packing fraction takes place. The

FIG. 5. �Color online� Comparison between the critical fluctuations distri-
butions of M��+su in both the geometric and random cases with f =5.
The calculated P�M� are compared to the expected distributions �full line�
for systems at the critical point belonging to the Ising universality class
�Ref. 55�. The inset shows the comparison between the corresponding den-
sity fluctuations distributions P��� in the two cases.
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reduction of the valence thus makes it feasible to approach
dynamic arrest continuously from equilibrium and to gener-
ate a state of matter as close as possible to an ideal gel.3,5

The relation between arrest in limited valence patchy colloi-
dal particles and arrest in strong network forming molecular
and atomic liquids have been recently discussed in Refs. 14
and 67–69.

Finally, we also study through GCMC simulations the
location of the critical point for disordered arrangements of
sites on the hard-sphere surface. Even in this case, we find
that Tc and �c moves toward the lower temperatures and
densities on decreasing the number of the patches. This con-
firms that the maximum number of bonds per particle plays
an important role in controlling the stability of the liquid
phase. The fact that the shift with valence of the critical point
toward the lower temperature and densities can be accom-
plished with either a geometric or random arrangement of
patches could be particularly significant to experimentalists,
since it indicates that ordered arrangements of patches are
not absolutely necessary to achieve interesting assembly ef-
fects.

We observe that, even if the Wertheim theory is insensi-
tive to the arrangement of the sticky sites, the theoretical
predictions for the critical point location in the phase dia-
gram are closer to the geometric case model rather than the
random one, suggesting that the propagation of the connec-
tivity is less efficient in the random patches case. We recall
that the theory is based on the assumption of �i� independent
bonds and �ii� the absence of closed loops of particles.
Hence, the reduced connectivity of the random model at
equal temperature and density could be related to �i� a reduc-
tion of bond formation possibilities, induced by a correlation
between nearby sites, and/or to �ii� an increase in possibili-
ties of ring structure formation, which disfavor the develop-
ment of branched bonding patterns.

As a side remark, we add in Appendix B the demonstra-
tion that within the Wertheim theory, when particles interact
only via bonds and no hard-core repulsion is present, the
thermodynamic stability line �spinodal� coincides with the
percolation line.
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APPENDIX A: FREE ENERGY OF NONINTERACTING
CLUSTERS

Here, we provide a physical insight of the Wertheim
theory by discussing two equivalent alternative derivations
of the Wertheim bond free energy. Both derivations assume
the system of associating particles to be formally equivalent
to a system of noninteracting clusters in thermodynamic
equilibrium. For simplicity, we assume a de Broglie length
�=�=1 in both derivations.

In the first derivation, we assume that the cluster size
distribution is provided by the Flory–Stockmayer expres-
sions �see Eq. �16��, i.e., that the system of N f-functional

associating particles aggregates in clusters characterized by
the absence of closed bonding loops. Bonds are also assumed
to be uncorrelated so that to each bond the same single-bond
free energy Fb is associated. In the absence of loops, the
number of bonds in a cluster of size n is exactly �n−1�, since
each new bond adds one new particle. Hence, the bond free
energy of the cluster is �n−1�Fb. If clusters do not interact,
the system free energy F can be written as sum of the ideal-
gas free energy of each distinct bonding topology cluster
type �accounting for the translational center of mass degrees
of freedom� and a sum over the cluster bond free energies.
Defining �n

k as the number density of clusters with size n and
with bonding topology k, one can write

�F

V
= �

n
�

k

�n
k�ln �n

k − 1� + �
n

�
k

�n
k�n − 1��Fb. �A1�

Here, V is the volume, ��1 /kBT �with kB the Boltzmann
constant� and the sum on n runs over all the possible cluster
sizes, from one �monomers� to infinity, while the sum over k
includes all 	n distinct bonding topology of clusters of size
n. Since clusters with the same size but different bonding
patterns are equiprobable, then �n

k ��n /	n �see Eq. �16��.
Thus, Eq. �A1� becomes

�F

V
= �

n

�n�ln
�n

	n
− 1 + �

n

�n�n − 1��Fb. �A2�

Substituting Eq. �16� in Eq. �A2� and summing over n, one
obtains, for pb
 �f −1�−1 �which expresses the condition that
all clusters are finite39�, the following expression for the sys-
tem free energy in terms of pb and bond free energy:

�F

V
= � ln � − � + � ln�1 − pb� f

−
�fpb

2
�ln

��1 − pb�2

pb
e−�Fb − 1 . �A3�

Such expression can be seen as a high temperature
contribution40 �� ln �−�� plus a remaining bonding term.
The bonding free energy coincides with the Wertheim
expression28,29,40 �� ln�1− pb� f +�fpb /2� when the connection
between pb and Fb is given by Eq. �3�. This simple deriva-
tion can be also extended to binary mixtures.

An even simpler derivation has been suggested in Ref.
35 and it is here reported for completeness. Also, this deri-
vation assumes that the system is an ideal gas of clusters and,
hence, the product �PV is identical to the number of clusters
Nc. The evaluation of Nc is straightforward for pb values
smaller than the percolation threshold pb

p since, in the ab-
sence of closed bond loops, Nc is equal to the number of
particles minus the number of bonds Nb. Calling Nb

max

=Nf /2, the maximum number of possible bonds and noting
that pb is the ratio between Nb and Nb

max, one finds

Nc = N − Nb = N�1 −
f

2
pb� �A4�

and
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�P = ��1 −
f

2
pb� . �A5�

Since the system is in dynamic equilibrium, the particle
chemical potential is independent of the cluster to which the
particle belongs to. Hence, it is identical to the chemical
potential � of the monomer. The ideal-gas hypothesis im-
plies that the activity of the monomer z�exp���� is related
to the monomer number density by z=�1=��1− pb� f. Hence,
the system free energy density can be immediately written as

�F = ��� − �P = � ln���1 − pb� f� − ��1 −
f

2
pb� , �A6�

which coincides with the Wertheim expression when the ref-
erence system is the ideal gas.

We note in conclusion that the above relations are valid
only before percolation. Indeed, the sums over n in Eq. �A2�
as well as Eq. �A4� are valid only for pb
 pb

p. Hence, the
region of validity of the Wertheim theory should be strictly
limited to nonpercolating states. Nevertheless, we observe
that the theory works well even below the percolation
threshold.7,38 In principle, it could be possible to extend the
formalism to pb� pb

p by accounting correctly for the pb de-
pendence of the number of clusters �which is always pos-
sible, analytically for small f and numerically above�, but it
is not clear how to handle the free energy contribution of the
percolating cluster.

APPENDIX B: COINCIDENCE OF PERCOLATION AND
SPINODAL LOCI

In this appendix, we examine the thermodynamic stabil-
ity of a system composed of noninteracting clusters, de-
scribed by the free energy of Eq. �A2�. A stable system is

characterized by a negative volume derivative of the pres-
sure. The region of stability is delimited by the so-called
spinodal line, defined as the locus of points such that
���P /�V�T=0. The volume derivative of the pressure, under
the ideal gas approximation gHS�r�=1, is controlled only by
the volume derivative of pb �see Eq. �A5��. Interestingly, it
gives for the bond probability at the spinodal line pb

s

pb
s =

1

f − 1
, �B1�

i.e., the same condition that defines percolation. Hence, pb
s

= pb
p. The system is thus mechanically stable only in the non-

percolating region. In other words, in the ideal gas approxi-
mation, no dense stable states are possible and the system
exists only in the gas phase. In the Wertheim theory, the
existence of a liquid phase is generated by the significant
increase of the pressure at low V introduced by the hard-
sphere reference contribution. Figure 6 provides an example
of the effect of the hard-sphere contribution on the pressure
for the case f =3.

We conclude noting that the absence of the hard-core
repulsion appears to be essential in formally associating the
percolation line with the spinodal line, providing an analytic
simple example of the possibility of interpreting critical phe-
nomena in terms of percolation.51,70
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