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We address the crystallization of monodisperse hard spheres in terms of the properties of finite-size

crystalline clusters. By means of large scale event-driven molecular dynamics simulations, we study

systems at different packing fractions f ranging from weakly super-saturated state points to glassy

ones, covering different nucleation regimes. We find that such regimes also result in different properties

of the crystalline clusters: compact clusters are formed in the classical nucleation theory regime

(f # 0.54), while a crossover to fractal, ramified clusters is encountered upon increasing packing

fraction (f$ 0.56), where nucleation is more spinodal-like. We draw an analogy between macroscopic

crystallization of our clusters and percolation of attractive systems to provide ideas on how the packing

fraction influences the final structure of the macroscopic crystals. In our previous work (Phys. Rev.

Lett., 2011, 106, 215701), we have demonstrated how crystallization from a glass (at f > 0.58) happens

via a gradual (many-step) mechanism: in this paper we show how the mechanism of gradual growth

seems to hold also in super-saturated systems just above freezing showing that static properties of

clusters are not much affected by dynamics.

I. Introduction

Following the pioneering computer simulations of Alder and

Wainwright,1 more than 50 years ago, assemblies of hard spheres

in thermal motion have become the subject of intense research

aimed at unveiling the fundamental physics of both thermo-

dynamic and kinetic phase transitions. This numerical work has

been complemented by experimental studies of suspensions of

‘‘hard-sphere’’ colloidal particles (see ref. [2–5]).

Despite the simplicity of the hard-core interactions, the

behaviour of this system is far from trivial and several important

questions still remain unanswered. Concerning thermodynamics,

the location of the fluid-to-crystal transition, occurring in the

packing fraction f range 0.492 < f < 0.543 has been quite well

characterised.1,6–8 However, open issues remain concerning the

effect of polydispersity9–11 and, most importantly, the reported

discrepancy between calculated nucleation rates and those

measured experimentally.12 These issues have recently caused

a revival of studies on hard-sphere nucleation.13–16 In particular,

recent works aim to elucidate the mechanism of crystal forma-

tion in terms of preferred precursor structures,17–19 proposing

a two-step scenario,20,21 and also aim to assess the competition

between different solid polymorphs.22

Not only does the fluid-to-crystal transition remain debated,

but also the presence of an ideal glass transition at packing

fractions below random close packing (frcp z 0.64) is still under

discussion. The initial observations by Pusey and van Megen2 of

a glass transition taking place for f ! 0.58 were later challenged

by works in microgravity23,24 and by numerical simulations by

Torquato and coworkers.25 Moreover, a recent work by Bram-

billa et al.26 caused considerable debate in the glass commu-

nity.27–29 By considerably extending the observation time

window, these authors suggested that the glass transition was

always obviated by activated processes whenever f < frcp.

However, delicate issues remain, concerning for example the

correct way of estimating the ‘‘true’’ colloidal packing fraction in

these experiments.30

With this as background, we have recently started an extensive

numerical investigation of hard-sphere systems, via event-driven

molecular dynamics simulations. Initially, we assessed the role of

polydispersity on dynamics and crystallization,13,31 finding that,

while changing substantially the nucleation behaviour, a small

degree of polydispersity s ( 6% does not strongly affect the

dynamics, leaving unchanged the tendency to form an ideal glass

around 0.58.31 In addition, we identified two regimes of nucle-

ation:13,32 standard nucleation and growth at concentrations in

and slightly above the coexistence region and, beyond f ! 0.56,

‘‘spinodal nucleation’’, where the free energy barrier to
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nucleation appears to be negligible. In the latter regime, at very

high volume fractions, we have investigated the subtle interplay

between slow dynamics and crystallization, elucidating a novel

mechanism by which hard-sphere glasses crystallize without

particle diffusion (even at the single particle level) on scales

comparable to or beyond their radius.33 Diffusionless crystalli-

zation has also been recently reported for a 3 dimensional lattice

system.34

In this work, we investigate another aspect of crystallization

of monodisperse hard spheres: the statistics on static properties

of crystalline clusters as crystallization proceeds. The formation

of finite size clusters in complex fluids has been widely studied

in the past decade.35 Clustering is a recurrent phenomenon in

soft matter systems: attractive colloids may form reversible or

irreversible clusters,36,37 particles that combine short range

attraction with long range repulsion form equilibrium clus-

ters,38–40 the dynamics of particles interacting via DLVO

potential depend on the size distribution of clusters they form,41

and highly concentrated suspensions of purely repulsive parti-

cles with bounded interactions also present clustering.42 These

studies focus on aspects of clustering like the clusters shape, the

clusters size distribution or their percolation threshold. To our

knowledge, such a study has not been performed for crystalline

clusters that appear in the nucleation path connecting the

metastable fluid with the crystal. By monitoring a large system

of hard spheres, we identify the solid-like clusters and analyse

their size distribution, shape and percolation threshold as

a function of packing fraction and of time. We focus on several

packing fractions beyond the fluid–crystal transition up to state

points deep in the glassy regime. Given the differences in the

nucleation mechanism taking place at different packing frac-

tions f (from classical nucleation and growth at low f up to

crystallization from a glass at high f13,33), we expect to observe

differences also in the properties of the growing clusters. These

clusters undergo a percolation transition of the kind described

in simulation43 and in theoretical work on molecular systems.44

We monitor the cluster size distribution and cluster radius of

gyration as a function of time, to address whether non-trivial

exponents can be extracted and related to the standard perco-

lation scenario that is commonly encountered in attractive

systems.45

A comment is due on the definition of clusters of hard-sphere

particles, where no attraction is present. Indeed, clusters are

rigorously defined46 for attractive systems in terms of an energy

scale which cohesively keep particles together. Moreover, in the

case of colloidal particles interacting with competing short-

ranged attraction (e.g. depletion) and long-ranged repulsion

(induced by electrostatics), clusters are found to be a stable

minima of the underlying potential.39,47–49 These equilibrium

clusters have been observed in both experiments and simula-

tions50–53 and their role as a building blocks of non-equilibrium

structures like Wigner glasses and gels is still under active

investigation.40,47,54–58 In the case of hard spheres, particles form

a cluster ‘‘glue’’ due to the thermodynamic driving force toward

crystal nucleation59,60 rather than due to attractive interactions

between particles. Hence, whenever we find two nearest-neigh-

bour solid-like particles (according to the definitions discussed

below), we consider them as belonging to the same crystalline

cluster. Of course, these clusters can be either transient or

permanent, in analogy with attractive clusters at a finite

temperature.

Within our study, we cannot monitor the equilibrium distri-

bution of such clusters because of the irreversible process of

crystallization once it is triggered. However, we can follow their

growth while crystallization proceeds, so that with time clusters

become larger and larger and consequently more and more

permanent, until macroscopic crystallization of the samples

occur. In particular, we study crystallization at different packing

fractions, in order to address the question of whether significant

differences can be found between the different nucleation

regimes. Our findings suggest an important crossover from

compact to fractal clusters with increasing supersaturation,

which reflects the change in the underlying crystallization

processes. These findings could have important consequences for

the final structures of the resulting macroscopic crystals.

The manuscript is organised as follows: we first present the

simulation and analysis method in Section II; next, we report our

results on the cluster’s structure at different packing fractions

(Section III A), the percolation of the crystalline clusters (Section

III B), the cluster size distribution (Section III C) and on the

effect of the criterion to identify solid-like particle on properties

of the growing crystalline clusters (Section III D).

II. Simulation and analysis methods

We performed event-driven molecular dynamics simulations in

the NVT ensemble with cubic periodic boundary conditions for

a large system of N ¼ 86 400 monodisperse hard spheres.61,62

Mass, length, and time are measured in units of particle mass m,

particle diameter s and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m s 2=kB T

p
, where kB is the Boltzmann

constant and T the temperature and we set kBT ¼ 1. The system

was prepared at different packing fractions f ¼ p

6
N s 3

"
V (with

V the system’s volume) beyond freezing ranging from f¼ 0.54 to

f ¼ 0.61. At f $ 0.54, the metastable fluid-phase spontaneously

crystallizes within the duration of our simulations. With

increasing f, the relaxation of the system becomes slower and

slower, until the glass transition around f ! 0.58 is encoun-

tered.31 Above this value, ageing effects are present and crystal-

lization occurs from a glass.33

To study the formation and growth of crystalline clusters, we

first identified the solid particles in the system. To this end, we

used the rotationally invariant local bond order parameter d6
defined as the scalar product between particle i’s q6 complex

vector and the one of each of its neighbour j, d6(i,j) (see Appendix

A for further details). Once we had identified all solid particles Ns

in the system, we monitored the fraction of crystalline particles,

defined as X ¼ Ns

N
. After having iteratively applied the cluster-

algorithm to all solid particles in the system (as described in

Appendix A), at every time-step we identified all crystalline

clusters and computed their size (s).

To improve the statistics of our results, we considered 10

independent crystallization trajectories for each studied

packing fraction, each initiated from configurations without

pre-existing crystal nuclei. In order to achieve this non-trivial

condition, we compressed a small system of 400 particles to

a high packing fraction, f ¼ 0.64, monitoring that the fraction
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of crystalline particles was less than 0.005 of the total number

of particles. We then replicated this system periodically in

space, checking that any sign of periodicity resulting from the

replication procedure was lost after a very short time (as in ref.

[33]). Next, before starting molecular dynamics runs, we iso-

tropically expanded the configuration to the desired packing

fraction.

First of all, we performed an analysis of the structure of the

growing crystalline clusters at different packing fractions. This

was done both qualitatively, monitoring the structure of the

clusters that are visible in the snapshots taken from our simu-

lations and quantitatively, studying the size-dependence of the

cluster’s radius of gyration:

Rg ¼
"
1

s

Xs

i¼ 1

###~ri # ~RCM

###
2
#1=2

(1)

where s is the number of particles in the cluster (i.e. the cluster

size),~ri indicates the position of particle i and ~RC M is the position

of the centre of mass of the cluster. For fractal aggregates, the

dependence of the radius of gyration on the cluster size follows

a power law, i.e. Rg ! s1/df, where df is the fractal dimension of the

aggregation process. For random percolation in three dimen-

sions, the value of df is known to be about 2.5.45 For spherical

clusters Rg ! s1/3, whereas for planar (loose) clusters Rg ! s1/2 and

for linear ones Rg ! s.45,52

Next, we studied the percolation of crystalline clusters by

estimating the first time when a system-spanning cluster appears

in the simulation box, i.e., the percolation time sp. In practice, we

detected sp as the time when the largest crystalline cluster became

infinite according to our periodic boundary conditions criterion.

After having identified, at each time-step, the largest crystalline

cluster, we replicated the simulation box and checked whether we

get a single cluster in the replicated system: the time when this

happens defines sp (which is then averaged over independent

runs). Once sp is known, we estimated the value of the total

crystallinity at percolation X(sp) ¼ Xp. Even though we were

aware that an accurate location of the percolation threshold

would require a finite-size scaling analysis, our aim was not to

define with high precision the percolation threshold, but rather to

find a link between the percolation transition and macroscopic

crystallization.

We also calculated the cluster size distribution, i.e. the fraction

of clusters with s solid-like particles. The cluster size distribution

changes with time during the crystallization process. To reduce

its numerical noise, we evaluated it for configurations of inde-

pendent trajectories having approximately the same crystallinity,

using narrow X intervals of width DX ¼ 0.01. In this way we

could average our results over all trajectories within a given

X-interval and over the 10 independent runs. According to

random percolation theory, the cluster size distribution in a three

dimensional system decays exponentially fast for large s below

the percolation threshold, whereas it follows a power-law

behaviour at percolation, i.e. s#s (where s x 2.245).

Finally, to assess the role of the particular choice of para-

meters used to define solid-like clusters, we analysed the effect of

the ‘‘solid-like’’ criterion on the cluster’s radius of gyration,

considering different choices of the number of solid-like

connections xc needed to identify a solid-like particle.

III. Results

We present our results as follows: in Section III A we perform

both a qualitative and a quantitative analysis of the clusters’

structure for packing fractions ranging from f ¼ 0.54 to f ¼
0.61; in Section III B we study percolation of the crystalline

clusters; in Section III C we estimate the cluster size distribution.

In the last Section, III D, we analyse the effect of the criterion

used to identify a solid-like particle on the properties of the

growing crystalline clusters.

A. Structure of the growing crystalline clusters

First, we study the characteristic structure of growing crystallites

at different packing fractions f. In order to visualise how the

structure of crystalline clusters changes with increasing packing

fraction, we follow the largest cluster during the simulation run,

as represented in Fig. 1. When f ¼ 0.54 (left-most panel in

Fig. 1), we observe a rather homogeneous and compact cluster,

whereas more ramified structures emerge at higher f (e.g. f ¼
0.56, 0.58, 0.61). An intermediate case is f ¼ 0.55 (second panel

from the left in Fig. 1) clearly showing small compact clusters

connected to each other via thin branches.

As we have already discussed elsewhere,13,33 there is a strong

correlation between the crystallization mechanism and the

packing fraction of the system. For f ¼ 0.54, crystallization

appears to follow the classical nucleation theory (CNT) picture

where a critical cluster needs to form in order for crystallization

to proceed. Once a crystalline cluster overcomes a critical size, it

grows in an almost compact structure and the entire system

crystallizes (‘‘classical nucleation and growth’’ regime). Having

used a large system and being at a relatively high supersaturation

(with respect to freezing), we detect more than one critical cluster

in the system (of the order of 2–3): all these clusters are compact,

can form anywhere in the system, grow independently and,

eventually, merge together. When f $ 0.56 (‘‘spinodal-like

crystallization’’ regime), a random crystal growth habit is

reached, where crystallization takes place everywhere in the

system. The free-energy barrier of nucleation gets closer to zero

the higher the packing fraction, and no critical cluster size needs

to be exceeded in order for crystallization to proceed. Crystalli-

zation proceeds via branching of ramified clusters as X grows

(right-most snapshot in Fig. 1) and this mechanism is reminiscent

of a percolation transition associated with the crystallization

process: moreover, at f > 0.58, crystallization happens without

particles diffusing more than a diameter.33 As said above, the

case at f ¼ 0.55, where branching connections of more compact

(and finite) clusters are found, is intermediate between f ¼ 0.54

and higher packing fractions (f > 0.56).

To quantify the structure of the crystalline clusters, we

measure their radius of gyration (Rg) as a function of their sizes

at all packing fractions and extract from it an effective fractal

dimension df, via Rg ! s1/df (see Fig. 2). To improve the statistics,

data are averaged over all equal-sized clusters, over 10 trajec-

tories and over time.

In Fig. 2 we observe that, at all packing fractions, the radius of

gyration for small clusters follows Rg ! s1/2. When clusters

become larger (s > 50), their fractal dimension starts to be larger

than 2 and their internal structure changes depending on f. Two

4962 | Soft Matter, 2012, 8, 4960–4970 This journal is ª The Royal Society of Chemistry 2012



distinct behaviours emerge: one pertaining to f ¼ 0.54 and

another to f$ 0.56 (as shown by the superposition of the data in

Fig. 2). When f¼ 0.54, crystallization follows the standard CNT

picture, i.e. the system has to overcome a free-energy barrier in

order to transform into a crystal. Hence, nucleation is a rare

event and clusters appear and disappear in a stochastic way until

the critical size is reached. The critical cluster size at this f is

estimated with CNT to be of the order of s ! 50.13 As it can be

observed from Fig. 2, beyond this critical value clusters show

a marked change in their fractal dimension, becoming more and

more compact (value of df increasing). When the cluster size

exceeds z300, the data clearly follow the exponent df ¼ 3,

characteristic of a compact cluster (such as the corresponding

cluster in Fig. 1).64 Hence, we conclude that, at this f (and in the

CNT-regime), the structure of the clusters is mainly determined

by their size.

When f $ 0.56, nucleation is not an activated process any

more (there is no free-energy barrier to overcome13) and all Rg

data scale onto the same master curve: after a loose/open growth

of the small clusters, as soon as s > 50, clusters grow following

the scaling predicted for random percolation in 3D with a fractal

dimension df ! 2.5. This is consistent with the snapshots pre-

sented in Fig. 1, where already at f ¼ 0.56 clusters start to be

ramified and crystallization occurs with the growth of clusters

appearing almost everywhere in the system. However, as we will

discuss in Section III C, clusters do not grow completely at

random; instead they tend to form in the vicinity of already

existing ones.33 This is even more evident at packing fractions

beyond f ¼ 0.58, due to the particles’ lack of diffusion on the

scale of their radius.

Finally we discuss the case f ¼ 0.55, where we observe

signatures of an intermediate behaviour. Given that the nucle-

ation free-energy barrier is quite low, clusters start growing

everywhere in the system, create a branch-like structure when

they grow larger (as shown in the snapshot of Fig. 1), and Rg

shows an intermediate behaviour between the compact scaling of

the CNT regime and the fractal one pertaining to the spinodal-

like regime (as shown in Fig. 2).

B. Percolation analysis

We now perform an analysis of the percolation of the largest

crystalline cluster in the system for all studied packing fractions,

identifying both the percolation time sp and the value of the

crystallinity at percolation Xp.

In Fig. 3 we report the dependence of Xp on f and observe

that, for increasing values of f, the crystallinity at the percolation

transition has a monotonically decreasing behaviour, that is

Fig. 1 Snapshots of typical largest crystalline clusters as a function of f at fixed cluster size (s¼ 5000). This size is achieved when (f, X) are respectively

(0.54, 0.08), (0.55, 0.15), (0.56, 0.15), (0.58, 0.14), (0.61, 0.12). Periodic boundary conditions are taken into account and clusters are centred in the

simulation box.

Fig. 2 Radius of gyration (Rg) versus cluster-size (s) at various f (s is

averaged over different runs and over time). As a guide to the eye, we plot

Rg! s1/df, with df ¼ 2.0 (continuous black curve), 2.5 (dashed magenta

curve) and 3.0 (dashed blue curve).

Fig. 3 Fraction of crystalline particles at the percolation thresholdXp as

a function of f. Inset: percolation time sp as a function of f.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4960–4970 | 4963



steeper for f < 0.56 than for f$ 0.56. To interpret this result we

recall our previous findings that clusters are more compact with

decreasing f for f< 0.56. Hence, in order to percolate, the largest

cluster needs to reach a larger size than the one needed at higher

f. On the other hand, when f$ 0.56 df remains constant so that

Xp does not change much with f. Due to the stochastic nature of

nucleation at f ¼ 0.54, that results in a small number of growing

clusters that is different for each independent run, the Xp error

bar is larger at the lowest packing fractions.

For f $ 0.56 crystalline clusters are found to percolate when

the total crystallinity of the system is Xp z 0.10–0.15. The fact

that the overall crystallization needs to be at least 0.1 in order to

observe percolation of the crystalline clusters (made of purely

repulsive spheres) has an analog in studies of percolation of

attractive clusters (made of particles interacting via short-range

attraction and screened electrostatic repulsion).52 In fact, it has

been shown that in such systems, when the colloidal packing

fraction fc is about 0.10, attractive clusters (whose size distri-

bution obeys a power law with an exponent typical of random

percolation) percolate throughout the system.

So far, we have presented only static observations of the

structure of the growing clusters. In the inset of Fig. 3 we plot

kinetic results of the clusters growth, representing the percolation

time sp as a function of f. Contrary to the monotonic decrease of

Xp, sp displays a clear minimum at intermediate f. The fastest

percolation of the largest cluster is at f ¼ 0.56 when the largest

cluster is already branched but particles can still easily diffuse.

Whereas at low f the percolation time is longer due to the

compact structure of the growing cluster (requiring a larger Xp),

at large f percolation slows down due to the slowing of particle

dynamics. This behaviour is remarkably similar to that observed

for the ‘‘nucleation time’’ sn(f), defined as the time at which X ¼
0.2, that corresponds to the time when the system is strongly

committed to crystallize:13 at low f, nucleation is slow (large sn)
due to a high nucleation free-energy barrier, while at large f

nucleation slows down again due to the slowing particle

dynamics; the fastest nucleation (smallest sn) occurs around f ¼
0.56, where the free-energy barrier is very low and diffusion still

possible. Therefore, the percolation of the growing clusters is

correlated to the commitment of the system to fully crystallize.

We stress that at large f, despite the slowing down of particle

dynamics, percolation is achieved with lower crystallinity than at

lower f. Hence, the kinetic slowing down is probably responsible

for the continuous decrease of Xp, even when the shape of the

clusters (quantified by df) stops changing. Indeed, we find that

Xp(f ¼ 0.61) is almost a factor of 3 smaller than Xp(f ¼ 0.54),

whereas sp(f ¼ 0.61) is around 3 times larger than sp(f ¼ 0.54),

due to the slowing down of the dynamics beyond the glass

transition (occurring at f ! 0.582,31).

The behaviour ofXp with f can also be rationalised by looking

at the total number of clusters Nc. In Fig. 4 we report Nc as

a function of X for different packing fractions.

It is evident that, for a given X, the number of clusters

increases with increasing f, due to the reduced free-energy

barrier, and it saturates when f $ 0.58. In particular, for f ¼
0.54, the maximum number of clusters occurs at very small values

of X, where one or more critical nuclei have already formed and

grow by single particles or small clusters attaching to them (that

explains the slow decrease of Nc with increasing X). On the other

hand, with increasing f,Nc keeps increasing for small values ofX

(since many small clusters can easily form) until it starts

decreasing from X ! 0.03–0.05 (where clusters start to branch).

We also observe a clear dependence on f below the glass tran-

sition (f ¼ 0.58). This can be better seen by looking at Nc for

a fixed value of X, e.g. X ¼ 0.10, which is reported in the inset of

Fig. 4 as a function of f. Comparing the behaviour of Nc to Xp,

we can rationalise the decrease of the latter as being related to the

increase of the total number of clusters up to f! 0.58. For larger

f, Nc remains constant and the decrease of Xp could be partially

ascribed to the increase of packing fraction, so that even if the

number of the clusters is the same, the number of clusters per unit

volume is higher and percolation happens at lower X. Moreover,

minor differences within the statistical error of our analysis of the

cluster shape and the cluster size distribution (see next Section)

could also contribute to the decrease of Xp from f ¼ 0.58 to f ¼
0.61.

C. Cluster size distribution

In this section we discuss the behaviour of the cluster size

distribution. n(s) represents the number of clusters of size s and

f(s) the fraction of such clusters, i.e. n(s) divided by the total

number of clusters Nc. n(s) varies as crystallization proceeds. To

improve the statistics, we average over 10 independent trajecto-

ries and within X intervals of width 0.01. For all packing frac-

tions we calculate n(s) and f(s) for crystallinity up to X ¼ 0.15; at

this value, crystalline clusters have not percolated yet at f ¼ 0.54

and f ¼ 0.55 (Fig. 3) and have just percolated (on average) for

f$ 0.56. However, in the analysis that follows we have excluded

percolating clusters.

In Fig. 5 we report n(s) for different X-intervals both for f ¼
0.54 (top) and f ¼ 0.61 (bottom). For both packing fractions,

n(s) shows a rapid decay for X < 0.01 signaling the growth of the

first few crystalline clusters. Once X $ 0.03 (when f ¼ 0.54) and

X $ 0.06 (when f ¼ 0.61), all curves collapse onto each other,

showing that the clusters distribution has reached a stationary

profile during crystal growth. This happens for all studied f and

justifies further averaging of the n(s) curves over all configura-

tions within the range 0.06 < X < 0.14.65 We also notice that large

clusters, e.g. s T 100, are rare in the case of f ¼ 0.54 while their

Fig. 4 Nc as a function of X (averaged within a DX ¼ 0.01 and over

independent trajectories) at different f (from bottom to top: f ¼ 0.54,

0.55, 056, 0.58, 0.61). Inset: Nc(X ¼ 0.10) as a function of f.

4964 | Soft Matter, 2012, 8, 4960–4970 This journal is ª The Royal Society of Chemistry 2012



number becomes very large for f¼ 0.61, as indicated respectively

by the scarce/abundant population of large-s points in Fig. 5.

We now focus on the fraction of clusters of size s, f(s). In order

to evaluate f(s) for increasingly large s (where clusters of each size

become more and more scarce), we apply the following criterion:

(i) we arbitrarily subdivide the range of s-values into intervals

Dsi ¼ (si,max # si,max) containing at least one cluster each and

estimate nti, i.e. the total number of clusters within each interval

Dsi; (ii) we assign the value of ni¼ nti/Dsi to every swithin Dsi. The
total number of clusters can be computed as Nc ¼

P
i ni D si and

the fraction of clusters of size s, f(s) ¼ ni/Nc. We now represent

f(s) as a function of s, the closest integer to the central value of

Dsi. We leave to the Appendix B the definition of all Dsi ¼
(si,max # si,max) intervals. In Fig. 6 we plot f(s) for several packing

fractions ranging from 0.54 to 0.61. Data are averaged for 0.06 <

X < 0.14 (within this range we have found the profiles to be

stationary and independent of X65).

First of all, we notice the marked difference that is found

between the data corresponding to f ¼ 0.54 and all other data.

This demonstrates that the stationary cluster size distribution is,

within our statistical uncertainty, identical for any f larger than

0.55. This behaviour is similar to what we observed for Rg,

pointing to the universality of (static) properties of the clusters

once spinodal-like nucleation has occurred.

From the calculated f(s) we can search for the emergence of

a power-law behaviour approaching crystallization, in analogy

with standard attractive systems approaching a percolation

transition. We find that when f ¼ 0.54 a crossover between two

regimes takes place at s* ¼ 50, which corresponds to the estimate

of the critical cluster size according to CNT.13 For s < s* the

cluster distribution is not too different from that of a system

approaching random percolation (f(s) ! s#2.2); whereas larger

clusters grow in a compact way, resulting in a much lower power-

law exponent (f(s) ! s#1.0). When f $ 0.55, f(s) seems to follow

a power law with exponent s ! 1.7 for the entire size range (even

for very small cluster sizes). We notice that this value for s is

similar to that of the exponent found for the size distribution of

mobile regions in glass-forming systems.66 The discrepancy of the

exponent expected from random percolation theory (s ! 2.2)

may stem from the fact that new crystalline regions preferably

appear in the surroundings of existing ones,33 which causes

a partial loss of randomness of the growing aggregate.

We now analyse further the behaviour of f(s) for f ¼ 0.54 by

using CNT, where a clear crossover between two regimes is

present. When s is small, sub-critical clusters form and re-

dissolve whereas when s is large post-critical clusters irreversibly

grow. Only the large-s regime seems to follow convincingly

a power law with exponent s ! 1, whereas the small-s regime

starts deviating from random aggregation (s ! 2.2) when s

approaches s*. According to CNT,59 the free-energy barrier

associated with the appearance of size-s clusters is written as

bDG(s) ¼ #ln(P(s)), where P(s) ¼ n(s)/N is the probability to

have size-s clusters in the system. Therefore, we can use the

cluster size distribution n(s)/N (or equivalently f(s) $ Nc/N) to

estimate the barrier, as shown in Fig. 7 for different packing

fractions (averaged over the range 0.06 < X < 0.14).

At all packing fractions higher than 0.55 the curves in Fig. 7

collapse, showing that crystallites start growing in the same way

Fig. 5 Number of clusters n(s) at f ¼ 0.54 (top) and f ¼ 0.61 (bottom).

Each data set is averaged over 10 independent runs in intervals ranging

from 0.0# X# 0.01 to 0.14# X# 0.15 (DX¼ 0.01). n(s) can take values

smaller than 1, being computed as the number of clusters for each value

of s divided by the number of runs and by the number of configurations

analysed for a given X window. Symbols are the same for both panels.

Only non-percolating clusters are considered in the analysis.

Fig. 6 Fraction of clusters of size s, f(s), averaged over the X-intervals

where the curves collapse (0.06 < X# 0.14 at all f). As a guide to the eye,

we also plot the power-law dependence of s#1.0 (dashed magenta curve),

s#1.7 (dashed violet curve) and s#2.2 (dotted cyan curve). Only non-

percolating clusters are considered in the analysis. The vertical lines s* ¼
50 % 10 indicate the crossover between two regimes at f ¼ 0.54.
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whenever f > 0.55: multiple crystalline patches appear and

crystallization proceeds by a sequence of stochastic micro-

nucleation events, correlated in space by emergent dynamic

heterogeneity.33 As we have already mentioned, the case when

f ¼ 0.55 is intermediate between f > 0.55 and f ¼ 0.54. When

f ¼ 0.55 we cannot distinguish between two regimes and we

interpret this as a consequence of the practical absence of

a barrier-crossing nucleation event. Whereas when f ¼ 0.54 we

observe two regimes: one characterised by pre-critical clusters

(s < s*) and one by post-critical clusters at large s. Therefore, in

the small s regime, #ln(n(s)/N) can be interpreted as the free

energy of cluster formation whose top can be read from the

continuous vertical lines in Fig. 6 and 7, providing an estimate

for DG ! 16. This value is consistent with the value of the top of

the free energy barrier calculated in ref. [12,14] for a lower

packing fraction (f ! 0.535): bDG*z 20. This consistency check

makes us gain confidence in our cluster size distribution analysis.

Within classical nucleation theory, once we know the top of

the free energy barrier bDG* and the size of the critical nucleus s*,

it is possible to estimate the difference in chemical potential

between the fluid and the solid: b D mC N T ¼ 2 b D G&

s&
. The value

of DmCNT is order-parameter dependent given that, contrary to

bDG*, s* depends on the choice of the order parameter used to

identify solid-like particles.14 Only for particular choices of the

order parameter does DmCNT coincide with the true value of Dm
(obtained, for instance, from thermodynamic integration). In our

case, if we use the CNT expression for bDmCNT taking the value

of the top of the free-energy barrier and the critical nucleus size

from Fig. 7 (bDG* ¼ 16 and s* ¼ 50), we obtain bDmCNT ¼ 0.64,

which is in good agreement with the value computed from

thermodynamic integration bDm¼ 0.63 in ref. [14]. Thus, our

choice of the order parameter to identify crystalline particles

seems to be reasonable.

D. Effect on crystallization of the cutoff needed to define of

a solid particle

We now study the effect of the choice of xc (the parameter used to

define solid-like particles in our definition of crystalline clusters),

on the properties of the clusters, such as the radius of gyration.

We focus on the two extreme cases studied, f ¼ 0.54 and f ¼
0.61. To identify the neighbours of each particle, we use the

criterion of ref. [63] and determine the number of connections

with d6 > 0.7. At this point, we use various definitions of the

number of connections needed for a particle to be identified as

solid-like: not only xc ¼ 6 (what we have used so far to identify

a solid-like particle), but also 8 or 10. To qualitatively under-

stand the effect of the choice of xc on the structure of the growing

clusters, we represent a slab of the system taken at the same

position in the sample when f ¼ 0.54 (Fig. 8 a and b) and when

f ¼ 0.61 (Fig. 8 c and d). In panels a) and c) solid particles are

evaluated using xc ¼ 6 and correspond to a system with X ! 0.20

whereas in panels b) and d) they are calculated using xc ¼ 10 and

correspond to a system with X ! 0.10.

From Fig. 8, it is clear that the overall structure of the clusters

is not much affected by the choice of xc. Filion et al.14 have

recently evaluated the effect of the choice of xc on the calculation

of the top of the nucleation free-energy barrier DG* at f ¼ 0.535

(see Fig. 2 in ref. [14]), showing that DG* does not depend on xc
(named in the same way in their work). This contrasts with the

corresponding value of the size of the critical cluster s*: for xc ¼ 6

they find s* ! 100, whereas for xc ¼ 10 they obtain s* ! 25. The

authors conclude that the main difference among the order

parameters (each defined with a given value of xc, 5# xc # 10) is

the ability to distinguish between fluid-like and solid-like parti-

cles near the fluid–solid interface.

To quantify our observations, we represent the radius of

gyration as a function of the cluster size at packing fraction f ¼
0.54 and f ¼ 0.61 (Fig. 9) for different values of xc.

Results for f¼ 0.54 and f¼ 0.61 clearly provide evidence that

Rg does not depend strongly on the different values of xc used in

the definition of solid-like particles. The slabs of Fig. 8 corro-

borate the result presented in Fig. 9, and we conclude that the

Fig. 7 #ln(n(s)/N) versus s for 0.54 # f # 0.61. n(s)/N ¼ f(s) $ Nc/N

(where f(s) data are from Fig. 6). The vertical lines s* ¼ 50 % 10 indicate

the crossover between two regimes at f ¼ 0.54.

Fig. 8 Slabs (about 3–4 particles diameters thick) where solid particles

are identified with: top: f¼ 0.54, a) xc ¼ 6 (X! 0.20) and b) xc ¼ 10 (X!
0.10); Bottom: f ¼ 0.61, c) xc ¼ 6 (X ! 0.20) and d) xc ¼ 10 (X ! 0.10).
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structure of the growing crystalline clusters is not affected by the

choice of xc.

We now re-plot Fig. 8 assigning different colours to each

particle depending whether a particle has been labelled as solid-

like with one of the above-mentioned criteria: in red, we colour

particles that are solid-like according to the most stringent

criterion (xc ¼ 10), in orange particles identified as solid-like

using xc ¼ 8 (but not with xc ¼ 10) and in yellow particles

identified as solid-like using xc ¼ 6 (but not with xc ¼ 8).

When f ¼ 0.54 (Fig. 10 (left)) we observe that the criterion

with xc ¼ 10 allows one to obtain particles in the inner part of the

clusters, surrounded by particles defined as solid-like according

to the looser criterion xc ¼ 8 and then by the ones defined with

xc ¼ 6. During the time-evolution of the clusters, we always

observe the colour-code ranging from red (black) in the inside to

yellow (light grey) in the outside of the clusters. As we have

already discussed, small clusters for f ¼ 0.54 as well as branched

ones for f¼ 0.61 are far from being compact: in these cases, most

particles will live at the interfaces, so that red (black) particles are

less abundant.

In recent works,20–22 it has been suggested that in hard sphere

systems at low packing fractions (f ! 0.54) nucleation happens

via a two-step scenario: first the formation of locally denser

regions with high bond orientational order parameter, and next

the restructuring of these regions at constant density. Analo-

gously, either at f ¼ 0.54 and at f ¼ 0.61, we first observe the

formation of loosely packed clusters (in yellow), that become

more compact when growing (in orange) and within which we

identify the growth of highly ordered regions (in red). However,

from our analysis one could argue that nucleation happens via

a ‘‘multi-step’’ mechanism, and that the number of steps

depends on the number of cutoffs xc that are monitored, i.e.

three in this case. In our previous work,33 we have demonstrated

how crystallization from a glass (at f ¼ 0.61) happens via

a gradual (many-steps) mechanism, but we did not discuss the

process at packing fractions below the glass transition (f ¼
0.58). As we have just shown, the mechanism of gradual growth

seems to hold also in super-saturated systems just above

freezing.

E. Discussion and conclusions

In this paper we have analysed the properties of clusters of solid

particles during crystal growth in a system of monodisperse hard

spheres. We have focused on several packing fractions beyond

the fluid–crystal transition up to state points deep in the glassy

regime. Given the marked differences in the nucleation processes

taking place at different f, i.e. from CNT regime up to crystal-

lization from a glass,13,33 we expected to observe clear differences

also in the properties of the growing clusters. On the basis of the

results presented here, we can clearly identify two regimes where

clusters are characterised by distinct statistical properties: one

pertains to f # 0.54 and one to f $ 0.56. The value f ¼ 0.55

marks the threshold between the two behaviours, showing

intermediate properties.

In the low-f regime (f¼ 0.54), CNT holds and the existence of

a critical size s* leads to a cluster size distribution which shows

two distinct behaviours respectively below and above s* (at long

enough times). The structure of the clusters is loose for very small

sizes (s < 50) and crosses to spherical and compact (df ¼ 3) for

larger sizes (this can also be visualised in the snapshots shown in

Fig. 1). When studying the cluster size distribution, we find

analogies between crystalline clusters growing and standard

clusters of attractive particles approaching percolation: the

cluster size distribution seems to approach a power-law behavi-

our also in our case, albeit with markedly different exponents. At

f ¼ 0.54 and for s < s*, the cluster distribution it is not too

different from a random-percolation power-law, i.e. f(s) ! s#2.2.

However, for s > s*, f(s) crosses to a clearer power-law behaviour,

with a much less effective power-law exponent, i.e. f(s) ! s#1.0,

due to the fact that larger clusters grow in a compact way. The

use of CNT has allowed us to provide estimates of the free-energy

barrier at f ¼ 0.54 and of the difference in chemical potential

between the solid and liquid phase that, being in agreement with

thermodynamic integration calculations for the same system at

Fig. 9 Rg versus s at f ¼ 0.54 (red) and f ¼ 0.61 (black) averaged over

time and over 10 runs. In both cases, filled circles, striped squares and

empty diamonds correspond to clusters where solid-particles are defined

using xc ¼ 6, xc ¼ 8, and xc ¼ 10, respectively. The spreading of the data

for large values of s at f ¼ 0.61 is due to poor statistics for very large

clusters.

Fig. 10 Left: f ¼ 0.54. Re-plot of Fig. 8 a), where we colour in red

particles identified as solid-like with xc ¼ 10 (corresponding to the ones

represented in Fig. 8 b), in orange particles identified as solid-like using

xc ¼ 8 (but not with xc ¼ 10) and in yellow particles identified as solid-like

using xc ¼ 6 (but not with xc ¼ 8). Right: f ¼ 0.61. Re-plot of Fig. 8 c)

with the same colour-code. Particles identified as solid-like with xc ¼ 10

correspond to the ones represented in Fig. 8 d). The colours become

black, dark grey and light grey, respectively, in black-and-white.
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the same conditions,12,14 corroborates our choice of the order

parameter used to identify solid-like particles.

In the large-f regime (f $ 0.56), the free-energy barrier to

nucleation becomes negligible, so that no critical cluster size

exists: small size clusters have a loose structure and do not reach

a compact form when growing (df ! 2.5). When studying the

cluster size distribution, we observe a power-law behaviour for

all sizes, but the exponent (s ! 1.7) is smaller than the value

predicted by random percolation (s ! 2.2). This could be

ascribed to the fact that clusters do not grow completely at

random, but preferably particles become solid-like in the vicinity

of solid regions, which act as seeds for further growth.33 This

mechanism should become more and more important with

increasing f, due to the reduced diffusion of the particles.

However, the surprising result is that the same behaviour is

observed for any packing fractions above f ¼ 0.56, covering

a range where the dynamics slow down by several orders of

magnitude.31 Hence, we conclude that the static properties of

these clusters are not much affected by dynamics.

We also notice a striking similarity between percolation events

and nucleation. When f < 0.54, clusters are more compact and

take a long time to percolate: similarly, the nucleation time

(defined as the time whenX¼ 0.20 in ref. [13]) is large at f¼ 0.54,

given that crystallization is an activate process, and decreases

when f ¼ 0.55, due to the lowering of the free-energy barrier.

When f$ 0.56, clusters percolate throughout the system and the

nucleation time increases with f due to the slowing down of

particle dynamics. Of course, the resulting macroscopic crystals

at all packing fractions are quite different in the two nucleation

regimes, as is evident from the snapshots presented in Fig. 1. On

the one hand, homogeneous and compact structures are found

in the CNT region, where crystallization once activated proceeds

to the formation of a full crystal. On the other hand, for larger f,

the macroscopic crystals that are formed are more heteroge-

neous, since they result from the branching of many sub-units. In

this case, we speculate that the final structure will have a rather

poly-crystalline character (with different units possibly bearing

a different orientation). We stress that, for both regimes (low and

high f), the cluster properties are very different from those

observed in a standard aggregating system, driven by attractive

interactions. The main difference can be observed for small sizes,

where attraction drives the growth of compact small clusters

(df ¼ 3).48 Then, with increasing size, the structure of the clusters

remains spherical upon growth if particles are interacting via

a pure attraction, while a fractal structure (decreasing df) is

observed when additional interactions, like for example long-

range electrostatic repulsion, are also at work.48,52 In the present

case of crystalline clusters, the loose structure for the small

clusters can be understood by the absence of a real attraction

between the particles. Hence larger clusters become compact in

the classical nucleation regime (at small super-saturations), while

they turn into random fractal objects when nucleation happens

without activation (at large super-saturations f $ 0.56), so that

adjacent solid particles merge and branch into a percolating

cluster.

In conclusion, we have provided new insights into the growth

of clusters of solid particles during the nucleation process of

monodisperse hard spheres. Our results shed more light on the

existence of different nucleation regimes already discussed in ref.

[13,31–33], highlighting the influence of these on the connective

properties of the system. In particular we identify that while

compact crystals are formed at small super-saturations, a cross-

over to the formation of fractal ramified clusters is encountered

upon increasing f. Surprisingly, the static properties of the

growing clusters in the high-f regime (f $ 0.56) are f-indepen-

dent. In our previous work,33 we have demonstrated how crys-

tallization from a glass (at f ¼ 0.61) happens via a gradual

(many-steps) mechanism, but we did not discuss the process at

packing fractions below the glass transition (fg ¼ 0.58). In this

paper we show how the mechanism of gradual growth seems to

hold also in super-saturated systems just above freezing.

The two growth regimes (at f < 0.56 and f $ 0.56) may

explain the different morphology of the crystals observed at low

and high f in the experiments of Pusey and van Megen.2

However, to allow for a more detailed comparison with those

experimental results, a similar investigation of slightly poly-

disperse hard spheres, which should also favour fractionation

and hence a stronger tendency for the formation of poly-crystals,

will be the subject of a future investigation.

Appendix A: local bond-order parameter

We use the rotationally invariant local bond order parameter d6
defined as the scalar product between particle i’s q6 complex

vector and the one of each of its neighbour j,

d6 ði; jÞ ¼
P6

m¼#6q6;m ðiÞ$q&6;m ð jÞ (where q*6,m is the complex

conjugate), then averaged over all particle i’s neighbours,

Nb(i).
67–69 In order to identify particle i’s neighbours Nb(i) we use

the cutoff-free algorithm SANN proposed in ref. [63], that has

the advantage of not being density dependent. Each component

q6,m(i) depends on the relative orientation of particle i with

respect to its Nb(i) neighbouring particles, and is defined

as q6;m ðiÞ ¼ 1

Nb ðiÞ

$XNb ðiÞ
j¼1

j6;m ðqi; j ;fi; jÞ
%
=
$X6

m¼#6

##q6;m ðiÞ
##2
%

(withm¼ [#6,6]), where j6,m(q,f) are the spherical harmonics of

order 6. We then consider particles i and j as having a ‘‘solid

connection’’ when their d6(i,j) exceeds the value of 0.7: particle i is

then labelled as solid-like if it has at least xc ¼ 6 solid connec-

tions. d6(i,j) Is a normalised quantity correlating the local envi-

ronments of neighbouring particles, it is a real number and is

defined in the range #1 # d6(i,j) # 1: it decreases when thermal

vibrations are present but, on average, it is close to one if

particles have a solid-like environment, and around zero if

particles have a fluid-like environment. After having labelled all

solid particles in the system, we run a cluster-algorithm to

identify crystalline clusters: whenever two solid particles are

closer than 1.4s they belong to the same cluster. rc ¼ 1,4s is large

enough to include neighbours in the first coordination shell even

at the lowest f.

Appendix B: values of Dsi used to compute f(s)

In Section III C we compute the fraction of clusters of size s, f(s):

each value of f(s) is computed within a given interval of width

Dsi ¼ (si,max # si,min). In Table 1 we explicitly indicate all Dsi used
to calculate f(s). In our calculations we have also checked that

different choices of interval widths yield the same cluster size

distributions, within statistical error.
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