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y and the hard sphere glass
transition

Emanuela Zaccarelli,*a Siobhan M. Liddleb and Wilson C. K. Poonb

We investigate the dynamics of polydisperse hard spheres at high packing fractions f. We use extensive

numerical simulations based on an experimentally-realistic particle size distribution (PSD) and compare

to commonly-used PSDs such as Gaussian or top hat distribution. We find that the mode of kinetic

arrest depends on the PSD's shape and not only on its variance. For the experimentally-realistic PSD we

find ageing dynamics even though the density correlators decay fully to zero for f $ 0.59. We observe

substantial decoupling of the dynamics of the smallest and largest particles. While the smallest particles

remain diffusive in all our simulations, a power-law describes the largest-particle diffusion, suggesting an

ideal arrest at fc � 0.588. The latter is however averted just before fc, due to the presence of the mobile

smallest particles. In addition, we identify that a partial aging mechanism is at work, whose effects are

most pronounced for the largest particles. By comparing our results with recent experimental

observations of ergodic behavior up to f � 0.6 in a hard-sphere system, we argue that this is an effect

of polydispersity, which smears out the glass transition.
Introduction

Despite many decades of experimental, theoretical and simu-
lational effort, the glass transition remains only partially
understood. The discovery in the 1980s that hard-sphere-like,
sterically-stabilised polymethylmethacrylate (PMMA) colloids
underwent kinetic arrest1 at a packing fraction of f ¼ fg z 0.58
opened up a fruitful avenue of investigation, because many
features of such kinetic arrest in colloids can be mapped onto
analogues in atomic and molecular glasses. In particular, hard
sphere colloids have become a favourite test bed for mode
coupling theory (MCT).2,3 Apart from over-estimating the
tendency to vitrify (fMCT

g z 0.52), MCT gives a quantitative
account of the main features on approach to arrest, such as a
two-step decay in the system's intermediate scattering function
(ISF) and power-law dependence of transport coefficients on
|f � fg|.4

Such correspondence notwithstanding, doubts remain as to
whether hard spheres really do undergo a glass transition at
fg z 0.58. Some point to the ease with which monodisperse
hard spheres at f $ 0.58 crystallise in simulations5 and in
microgravity6 to suggest that terrestrial arrest is due to the
inevitable presence in real samples of size polydispersity (s ¼
the standard deviation of the size divided by the mean).
However, recent simulations8,9 show that particle dynamics
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near f z 0.58 is nearly invariant for s # 8%. Thus, both poly-
disperse and monodisperse hard spheres form glasses, only
that the latter are poor glass formers and crystallise easily.10,11

Others suggest that the ideal glass transition in hard spheres
is preempted by activated processes7 not taken into account by
MCT. A recent study12 appears to support this view. Measure-
ments of the ISF of PMMA colloids over 7 decades in time show
that the system remains ergodic at f$ 0.59 reinforcing the view
that activated processes delay the glass transition well beyond
MCT; indeed, the suggestion is that there is perhaps no arrest
before random close packing frcp z 0.64.

The work of Brambilla et al.12 has generated signicant
controversy. Some pointed out their data were largely compat-
ible with MCT if uncertainties in measuring f13 were taken into
account,14 while others suggested that the large polydispersity
(s > 0.10) used in ref. 12 to avoid crystallisation could be
responsible for the supposed regime of activated dynamics.15

The authors of ref. 12 subsequently simulated polydisperse
hard spheres with a top hat particle size distribution (PSD) and
reported relaxation times compatible with experiments,
concluding that polydispersity was not relevant for their nd-
ings.16,17 The issue stands unresolved. Its clarication is crucial,
since hard spheres have been a favourite model for glass theory
for the last 30 years.

We have performed extensive simulations of glassy arrest in
concentrated, polydisperse hard spheres with PSDs of several
shapes, including a PSD measured experimentally by trans-
mission electron microscopy (TEM) for polydisperse PMMA
colloids very similar to those used by Brambilla et al.17 The
distribution is highly skewed to the le with an extended tail of
Soft Matter
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small particles, and can be described by a Weibull distribu-
tion.18 Consistent with ref. 12, we nd that the ISFs decay to zero
at f ¼ 0.59 and beyond. However, these ISFs depend on the
waiting time, i.e. they age. In this regime, the dynamics of the
smallest and largest particles are decoupled, similar to what
occurs in asymmetric binary mixtures19–24 where it is possible
for only the larger species to arrest. In our case, the diffusion
coefficient of the largest particles Dl follows a power law
consistent with ideal arrest at fc � 0.588, until very close to fc,
the non-ergodicity catastrophe is averted due to the smaller
particles, which remain mobile. Such heterogeneous dynamics
is also reected in an unusual partial aging behaviour, which is
most pronounced for the large particles. This peculiar dynamics
is not the result of activated dynamics, but a manifestation of
polydispersity, which smears out the glass transition. Hence,
instead of a transition point, we observe a region of points
where the system behaves with mixed characteristics of both
liquid and glass, due to themore liquid/glass character of small/
large particles coexisting in the system.
Methods

We perform event-driven Molecular Dynamics (MD) simula-
tions of hard spheres with different PSDs. Crucially, this
includes a PSD obtained experimentally from PMMA particles
synthesised in-house, which were very similar to those used in
ref. 12. The experimental PSD, Fig. 1, was measured from TEM
(Phillips CM120 Biotwin) at �2850, at which the mean particle
diameter hsi z 40 pixels. Averaging over z2200 particles gave
hsi ¼ 248 � 4 nm and s ¼ 12 � 1%. A Weibull t well describes
the experimental data, Fig. 1.

We simulate N ¼ 2309 particles with the experimental PSD,
includingmeasurement noise in order to have the most realistic
Fig. 1 Size distribution measured from TEM (histogram) and fitted
Weibull distribution (continuous red curve). The average diameter and
polydispersity are hsTEMi ¼ 248 nm and sTEM ¼ 12% respectively, while
the Weibull fit gives hsWi ¼ 254 nm and sW ¼ 10%. Populations of small
and large particles are defined as those differing from the average
diameter by more than 10% (left and right of dashed verticals). Also
shown are the Gaussian (dashed magenta curve) and top hat (dot-
dashed orange curve) PSD with the same polydispersity. The latter
have been normalised to have equal area to the experimental PSD.
Inset: raw data of PSD as they were used in the simulations.

Soft Matter
possible representation of the system, Fig. 1 inset. We dene
large and small tail populations as particles with sizes >(1 + a)
hsi and <(1 � a)hsi respectively. The choice of a does not
qualitatively affect our ndings. We use a ¼ 0.1 to give optimal
statistics for the tail populations, which consist of �400 parti-

cles each. The unclassied majority
�
� 2

3

�
constitute the

‘average’ particles. The large and small populations have
average size ratio 1.13 and 0.8 (with a 1.41 ratio between the
two), but extreme size ratios as large as 3 exist in this PSD. For
comparison, we also consider N ¼ 2000 particles taken from
Gaussian and top hat distributions with the same hsi and s as
the experimental PSD; the top hat spans sizes in the range
0.8hsi to 1.2hsi, and its variance is 11.5%.16 We use units in
which the particle mass m ¼ 1, average diameter �s ¼ 1, thermal
energy kBT ¼ 1 and time is measured in �s(m/kBT)

0.5.
In all simulations, we rst equilibrate the system in the NVT

ensemble and then production runs are monitored in the
microcanonical ensemble. From the long-time limit of the
mean-squared displacement (MSD) the average self-diffusion
coefficient D is obtained. Averages are performed over different
subsets of particles for calculating the small Ds and large Dl

diffusivities. At high f, we monitor aging and distinguish state
points showing clear waiting time dependence from equilib-
rium ones. For this purpose, data collected using the experi-
mental PSD for f $ 0.59 have been averaged over ten
independent runs. In these cases, the waiting time tw is dened
as the start of the NVT run. We calculate the self and collective
ISFs at the rst peak of the static structure factor and extract
corresponding relaxation times, respectively sself and s, where
the ISF is at e�1. We also calculate the partial relaxation times
for both types of correlators, i.e. sselfs and ss for small particles,
sselfl and sl for large ones.

Results
Dependence on f of the dynamics for the experimental PSD

The self and collective ISFs calculated for the experimental PSD
are shown in Fig. 2(a) as a function of time for different values of
f. While for f < 0.59 data fully decay to zero and do not show
aging features, the ISFs at larger f $ 0.59 show aging depen-
dence. Thus, data in Fig. 2(a) for f $ 0.59 are obtained aver-
aging over independent congurations at a xed waiting time
tw. Although the curves do not decay fully to zero within our
simulation window, they show a clear tendency to depart from
the plateau at long times, suggesting that they would eventually
decay to zero in longer simulations. Prima facia, a fully-decaying
ISF indicates an equilibrated liquid, unless specic aging effects
are present. In our case, we observe clear aging in the f $ 0.59
data. We thus consider these state points as ‘aging liquids’. The
ISF of this ‘aging liquid’ fully decays to zero, but on a progres-
sively longer time scale as waiting time advances. Usually such
behaviour eventually leads to arrest, even on extremely long
timescales, one dramatic example being that of Laponite clay
suspensions.26 In the present case, however, there is no
evidence (see also below) that the system will eventually arrest,
despite continuing to age.
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 (a) Self (dashed lines) and collective (full lines) ISFs, calculated at
the peak of static structure factor q*, as a function of f. Data for f $

0.59 are taken at tw ¼ 18 059 and averaged over 10 independent runs;
(b) collective ISF as a function of tw at f ¼ 0.59. The vertical line
demarcates the time window up to which the ISF has reached sta-
tionarity, indicating a clear departure from the plateau and suggesting
restoration of ergodicity at extremely long times.

Fig. 3 Self-diffusion coefficient D and inverse collective relaxation
time s�1 (scaled by factor 1/40) as a function of f for the experimental
PSD. Fits with exp[�C/(fg � f)d] (dot-dashed and double-dot-dashed
lines) give fg ¼ 0.635 � 0.005 and d ¼ 2.3 � 0.1 for both observables.
The fits describe data well up to f¼ 0.59, which is at the onset of aging
behaviour. Closed (open) symbols represent equilibrium (aging) state
points. Data for f $ 0.59 can only be considered an upper bound of
the realD, s�1. Inset:D as a function of f for the experimental PSD with
s ¼ 0.12 and for Gaussian PSD with smaller s taken from ref. 8. The
dashed lines are power-law fits to the data for s ¼ 0.08 (g � 2.3 and
fg � 0.585) and s ¼ 0.12 (g � 2.1 and fg � 0.587) respectively.
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In Fig. 2(b) the waiting time dependence of the ISF for f ¼
0.59 is reported, showing that aging persists even aer waiting a
transient comparable to the relaxation time (e.g. tw � 105). We
notice that this aging behaviour is subtly different from what
observed in conventional aging of glasses.27,28 Indeed, at the
longest studied tw, the correlators do reach a stationary state for
times below 5000 (see vertical line in Fig. 2(b)), where it is clear
that still a clear departure from the plateau persists. While we
cannot at present extend our simulation time window to the
timescale of experiments performed by Brambilla and
coworkers,12 we are still able to observe that the ultimate fate of
the system for f � 0.59 is that of a uid, albeit with extremely
long equilibration times.

The relaxation times s are plotted as a function of f together
with the self-diffusion coefficient D in Fig. 3. Both sets of data
are well described by an exponential singularity D, s�1 � exp
[1/(f � fg)

d], where fg z frcp in both cases and d z 2.3–2.4,
suggesting an approximate double exponential singularity in
good agreement with results of Brambilla et al.12 In the inset, we
compare D for the experimental PSD with s ¼ 0.12 (as in the
main panel) with previous results for Gaussian PSDs with s ¼
0.07 and 0.085,8 Fig. 3. Unlike when 0 < s # 0.08,8 the dynamics
speed up with s.25 More interestingly, we nd that the shape of
This journal is © The Royal Society of Chemistry 2014
D(f) changes upon increasing s. For s# 0.08, D� |f� fg|
g with

g � 2.2–2.3 and fg � 0.585, consistent with an MCT glass
transition,8 with aging in states above fg � 0.585. On the other
hand for s ¼ 0.12, the decrease of D(f) becomes much less
pronounced at high f and a power-law behavior fails to account
of all uid state points. Thus, some fundamental difference
exists between almost monodisperse hard spheres (s # 0.08)
and polydisperse ones (s ¼ 0.12), which changes the depen-
dence of transport coefficients on packing fraction and provides
clear deviations from simple MCT predictions (based on a
monodisperse system).
Decoupling of dynamics of smallest and largest particles and
partial aging

To better understand what is going on in our polydisperse
system, we consider D for the tails of the experimental PSD,
Fig. 4. From the beginning of our investigated range, f ¼ 0.52,
there is a clear dynamical separation between the smallest and
largest sub-populations, which increases with f, reaching
Ds � 102Dl at f¼ 0.59. This observation is reminiscent of binary
asymmetric mixtures19–24 in which the small particles remain
mobile in a matrix of arrested large ones. In our case, we nd
that D‘� |f� fc|

gwith fc� 0.588 and g� 2.3 ts all our results
up to and including the data point at f ¼ 0.585. Thus, the
largest sub-population behaves as if it is heading towards an
ideal hard-sphere glass transition at fc. However, deviations are
observed thereaer, with a measurably nite value of D at
f ¼ 0.59 (although suffering of aging effects).

A putative non-ergodicity catastrophe of the largest sub-
population is therefore averted, presumably because of the
presence of smaller particles. In particular, our data show that
Soft Matter
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Fig. 4 Average and partial self-diffusion coefficients (respectively Dl

and Ds for large and small particles) as a function of f for the experi-
mental PSD. A power-law fit (dashed line) with g � 2.3 and fc � 0.588
describes well Dl, while small particles remain mobile at all
investigated f.
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the smallest sub-population remains clearly mobile up to f ¼
0.605; moreover, Ds(f) cannot be tted to a power law suggestive
of arrest at any higher f. The smearing of a true glass transition
by the presence of the small, mobile particles produces an
intriguing state with mixed characteristics of liquids and
glasses, with large and small sub-populations showing quite
distinct dynamics. Thus it is the presence of residual diffusivity
in the small particles that generates the unusual aging
dynamics of the systems beyond what would be normally
considered as glassy regime in monodisperse or slightly poly-
disperse hard spheres.

In addition to the decay of the ISF found even for large tw,
discussed earlier and shown in Fig. 2(b), we also nd evidence
of a clear partial aging. Fig. 5 shows the aging dependence of the
partial MSD of small and large particles for f ¼ 0.595. It is
evident that the small particles MSD easily reach its long-time
Fig. 5 Mean squared displacement (MSD) for small and large particles
as a function of waiting times at f ¼ 0.595. Data are averaged over ten
independent configurations. Dashed lines (in green) show diffusive
behaviour. An unusual partial aging behaviour is observed: small
particles after a transient equilibrate and reach long-time diffusion,
which is independent of tw; large particles instead show clear aging
and always remain sub-diffusive.

Soft Matter
diffusion behaviour and do not age any more at large enough tw.
On the other hand, large particles MSD continues to age and
most importantly it remains subdiffusive at long times. This,
previously unreported, partial aging is a direct consequence of
the heterogeneous dynamics in the system that is caused by the
large polydispersity.
Heterogeneous dynamics

Interestingly, the decoupling between large and small sub-
populations is much less obvious in the f-dependence of the
partial relaxation times. Indeed, from the decoupling of the
diffusivities of these sub-populations one may have expected
the same for the partial self relaxation times. However, studies
of binary mixtures have shown that a full decoupling between
self and collective dynamics only occurs for size ratios $5 (ref.
21 and 29) or for a sufficient fraction of large particles,20 neither
of which is the case in our experimental PSD. Hence, we nd
that the variation of Ds/Dl with f exceeds that of sselfl /sselfs by
roughly one order of magnitude, Fig. 6(a). As Dl begins to drop
precipitously relative to Ds at high f, sselfl fails to rise in
proportional relative to its ‘small’ counterpart, sselfs . If we take
sself as a surrogate for viscosity, then the lack of scaling between
D and sself can be seen as a manifestation of the violation of the
Stokes–Einstein relation (SER). SER violation is ubiquitous in
atomic and molecular glass formers,30,31 where the product Ds
increases on approaching the glass transition. This is
commonly interpreted as evidence for increasing spatial
heterogeneities in the dynamics. In our case, there is a far
sharper rise in Dss

self
s with f than in Dls

self
l . This indicates a high

degree of dynamic heterogeneity for the small sub-population.
Fig. 6 (a) Ratios of large and small particles transport coefficients as a
function of f. Note that Ds, Dss

self
s and Dls

self
l have been multiplied by a

factor 100 to put data on the same scale; (b) total and partial static
structure factors at f ¼ 0.59. Data are averaged over different inde-
pendent runs. The partial structure factors have been scaled by the
concentration of the respective species; (c) snapshot of the system at
f ¼ 0.60. Particles are represented with their own size and have been
classified according to different colours: small particles in blue, large
particles in red and intermediate-sized particles in grey. The small
particles can be seen as moving in a random, porous matrix of larger
particles.

This journal is © The Royal Society of Chemistry 2014
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A close inspection of partial structure factors Fig. 6(b) reveals
that large and small particles are randomly distributed. There is
indeed no preferential ordering of the particles according to
their size and particles are disordered and homogeneously
distributed even among the different subsets. This is clear also
from visualising a snapshot of the system, shown in Fig. 6(c),
where large and small particles (in red and blue respectively) are
randomly distributed in the simulation box. Hence, the large
particles form an almost arrested randommatrix in which small
particles diffuse, providing a conceptual link of our system to
uids in a porous matrix32–34 (although here the large particles
eventually still manage to regain ergodicity thanks to the role of
the small ones). This link is reinforced by the nding of a high
degree of dynamic heterogeneity in the small particles, similarly
to what has been observed for mobile particles diffusing in a
porous matrix.35
Dependence of dynamics on the PSD shape

It is important to ask how the features that we have observed for
the experimental PSD depend on the distribution, specically,
whether any dependence is mostly determined by s, or by the
PSD's whole shape. We therefore repeat the simulations using a
Gaussian distribution with s ¼ 0.12 and a top hat distribution
with s ¼ 0.115, Fig. 1. Fig. 7(a) shows that, averaged over the
whole system, D(f) is essentially independent of the shape of
the PSD, but depends only on its variance. Fig. 7(b) also shows
that lowering s decreases the difference between Ds and Dl.
Thus, the low-s colloids used by Pusey and van Megen1,4,28

should still show ideal arrest of all particles simultaneously at
f � 0.58–0.59 without any effect of partial localisation.

However, we nd that important differences emerge between
the top hat and the other two PSDs at comparable s when we
analyse the contributions from small and large particles,
plotted in Fig. 7(b), as the diffusivity ratio Dl/Ds. While Dl/Ds �
10�2 at f ¼ 0.59 for the experimental PSD, it is z5 times larger
for the top-hat PSD, for which selective localisation of the larger
particles is a much weaker effect. Presumably, this is because
dening sub-populations of small and large particles makes
Fig. 7 (a) Average self diffusion coefficient and (b) ratio of the large to
small diffusivity as functions of f for different PSD shapes as described
in the labels.

This journal is © The Royal Society of Chemistry 2014
little sense in a uniform distribution compared to the same
exercise in strongly-peaked PSDs. Indeed, at high f the residual
diffusivity detected also in the top-hat PSD is still due to a
gradation of dynamics, from slower, larger particles to faster,
smaller particles, although this is not as extreme as for the
experimentally realistic PSD. Fig. 8(a) shows this in two ways. In
the main gure, we compare the diffusivities of the particles in
the smallest and largest bin in a 10-bin division of the top-hat
distribution as a function of f. The inset shows the mean
squared displacements (MSD) as a function of time for all 10
bins at f¼ 0.58. Note that all these bins have equal populations,
weighting equally on the average of the total D, resulting in a
smearing of differences that are, by contrast, enhanced by the
presence of peaks and tails in more realistic PSDs.

Moreover, a power law t, associated to an MCT-type ideal
glass transition, does not equally well describe the behavior of
the large sub-population in the top-hat PSD. Fig. 8(b) compares
Dl(f) for the experimental and top-hat PSDs dened using a ¼
0.1. As we have already shown in the main text, D‘ � |f � fc|

g

with fc� 0.588 and g� 2.3 describes the experimental PSD data
well for all but the last data point, which showed ageing and
Fig. 8 Diffusion coefficients of the large particles Dl for the top hat
distribution: (a) comparison with those calculated in a 10-bin analysis
of the distributions. Bin1 contains the smallest particles, while bin10
contains the largest ones; (b) power-law fit and comparison with the
experimental PSD. Applying a power-law fit to the top-hat data yields
an anticipated transition at fc � 0.586, which clearly misses the last
equilibrium data point in the simulations. Inset of (a): MSD versus time
for the particles in different bins at f ¼ 058.

Soft Matter
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therefore must be above any putative fc. Fitting the same
functional form to the top-hat data returns the same g, but a
transition point of fc � 0.586. The measured Dl for the top-hat
PSD at this f is substantial, and the system at this f does not
show ageing.

Thus, we conclude that we cannot identify a putative ideal (a
la MCT) arrest transition of the sub-population of large particles
for the top-hat PSD. This conclusion is insensitive to the precise
denition of ‘large’. Fig. 8(a) also compares the Dl(f) data for
the top-hat PSD with those calculated for the particles in the
largest bin in a classication of the top-hat PSD into 10 equal
bins. There is no material difference in the results. Thus, we
conclude that a uniform distribution with the same s as the
experimental PSD does not reproduce key qualitative features of
the microscopic dynamics of the latter, while the use of a
(peaked) Gaussian PSD does largely reproduce these features,
especially at f $ 0.58, Fig. 7(b). Interestingly, there is residual
diffusivity in all three PSDs at f $ 0.59.
Comparison with experimental data in ref. 16

In this section we perform a direct comparison of the collective
relaxation time s calculated from the simulations with the
experimental one measured by Brambilla et al.12,16 Despite the
different microscopic dynamics between experiments (Brow-
nian) and simulations (Newtonian), we build on previous works
which have shown that the long-time slow dynamics is inde-
pendent of the microscopic one.36,37 Experimental and numer-
ical results are compared in Fig. 9. To superimpose the
numerical data onto the experimental ones, we use a double
shi factor which takes into account the uncertainty of the
packing fraction (on the x-axis)13 and the difference in micro-
scopic time (on the y-axis). In this way, we obtain a scaling factor
of 1.011 for fexp in terms of f, which gives an estimate of the
experimental error on determining f of the order of 1%.
Therefore, we nd that fexp ¼ 0.5876, 0.5953, 0.5970, 0.5990 are
equivalent respectively to f � 0.5812, 0.5888, 0.5905, 0.5925 in
our simulations. Also, 1 MD time unit ¼ 0.0075 s real time, so
that our longest waiting time is �103 s.
Fig. 9 Relaxation times from simulations of the experimental PSD,
obtained from the collective ISF at the peak of the static structure
factor, compared with data taken from.16 In both cases the relaxation
time is the time where the ISF reaches e�1. The numerical data have
been scaled as: 1.011f ¼ fexp and s/0.0075 ¼ sexp.

Soft Matter
Based on this comparison, we now discuss the ageing
behaviour observed by Brambilla et al. in ref. 16. In this work,
the authors claim to observe usual ageing behaviour up to the
experimental fexp ¼ 0.5990 (f ¼ 0.5925). However, the equili-
bration time of their sample at fexp ¼ 0.5876 (f ¼ 0.5812) is
larger by a factor of 30 than the relaxation time. This may
suggest that the system is at the limit of equilibration. For
densities fexp ¼ 0.5953, 0.5970 (f ¼ 0.5888, 0.5905), a small
dri is observed at long times for s vs. tw (see Fig. 6 of ref. 16). If
we compare the aging behaviour in the simulations (Fig. 2(b) of
the manuscript) at f ¼ 0.59 with that for the corresponding
experimental samples, we have that the maximum waiting time
in the simulations is �103 s. This is considerably smaller than
the experimental waiting times and one can see, again in Fig. 6
of ref. 16, that the system is still (moderately) aging at this time.
Although on longer and longer timescales, t ¼ 104 to 105 s, the
system may indeed be considered equilibrated, it is clear that
this timescale is much larger than the a-relaxation time
(O(103)), so that something non-trivial happens around f� 0.59
also in the experimental system in terms of the system
dynamics, in agreement with what observed in our simulations.
While many factors can alter the equilibration time in experi-
ments, such as shaking or thermalisation, we are tempted to
speculate that the long time required for the system to ‘equili-
brate’ is the result of the decoupling of the dynamics between
large and small particles. Indeed, a complete equilibration is
achieved when also the largest particles have relaxed from their
initial state, which takes a time much larger than the average
time. We suggest that this generates the unusual ageing
observed in the simulations, and is therefore an effect intrinsic
to the wide polydispersity of the system.

Conclusions

We have shown that polydispersity has highly non-trivial effects
on the hard sphere glass transition. In particular, we nd that
experimentally realistic, peaked PSDs preempt the occurrence
of an ideal glass transition at f � 0.58, and give rise to an
unusual aging behaviour due to a strong decoupling between
small and large particles in the tails of the PSD. Within our
simulation window, the large particles tend to, but never quite
reach, arrest, while the small particles remain essentially
diffusive, providing a way to avoid non-ergodicity to the system.
Indeed the correlators still fully decay to zero for f $ 0.59,
despite showing aging effects.

It appears that a system with a peaked PSD is conceptually
close to a binary mixture in which MCT predicts a localisation
transition of only the largest particles. We do not fully observe
this behaviour in our system – D‘(f) deviates from power-law
behavior near fc – because the size differential between large
and small sub-populations is not sufficiently extreme. It is
probable that such a system will eventually arrest into a
conventional glassy state at higher f than those reached in this
work. Thus, the glass transition is smeared out from a sharp
point to a region where aging seem to coexist with ergodicity.
Such behaviour is due to the presence of large, quasi-glassy
particles and small, very mobile particles characterised by
This journal is © The Royal Society of Chemistry 2014
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partial aging. Thus it is an effect of polydispersity, rather than
the signature of activated processes.

Our ndings are compatible with the view that moderately
polydisperse hard spheres, s � 5–6%, can function as a refer-
ence system for glassy arrest. On the other hand, hard spheres
with larger polydispersity, s$ 0.10, at large packing fractions, f
$ 0.59, behave in a far more complex way, where several particle
populations, some with large dynamic heterogeneities, are
present and cannot therefore be used directly as a model to test
simple theories of the glass transition. Since in the simulations
we cannot probe at present the long-time scales explored in the
experiments, it would be desirable then to repeat the experi-
ments performed in ref. 12 for particles with lower poly-
dispersities to really see whether deviations fromMCT continue
to be observed. For the more polydisperse ones, the great level
of complexity of the system makes it difficult to move beyond
the descriptive understanding given in this work to elucidate
the microscopic mechanisms38 operative in such systems; this
will be addressed in future work.
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